

© 2018 Khaled Almakadmeh, Kenza Meridji and Khalid T. Al-Sarayreh. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Towards a Reference Model of Software Resources Quality

1
Khaled Almakadmeh,

2
Kenza Meridji and

1
Khalid T. Al-Sarayreh

1Department of Software Engineering, The Hashemite University, Zarqa, Jordan
2Department of Software Engineering, University of Petra, Amman, Jordan

Article history

Received: 02-12-2017

Revised: 25-01-2018

Accepted: 02-02-2018

Corresponding Author:

Khaled Almakadmeh

Department of Software

Engineering, The Hashemite

University, Zarqa, Jordan
Email: khaled.almakadmeh@hu.edu.jo

Abstract: International standards for software product quality classify

software resources as a non-functional requirement for software product.

Resources requirements based-standards describe required resources

requirements related to software and hardware requirements, in which

hardware resources requirements specify requirements relevant to hardware

environment in which the software will operate. Whereas, software

resources requirements specify sizing and timing requirements required by

software product. This paper propose a reference model to identify and

measure resources requirements of software product quality based on ISO

international standards. The proposed reference model is experimented to

present its applicability using the software specifications of an ATM

machine to identify and measure the functional size of resources

requirements independently from development technology. This measure

take place at an early phase of the software development life cycle and used

by software project managers as one of the primary inputs for the effort

estimation process of software products.

Keywords: Software Resources, Software Product Quality, Measurement,

ISO19761, ISO25010

Introduction

Software products face a traditional challenge to

obtain required resources to accomplish needed

functionality for its users. Software resources

requirements are considered as primary requirements for

several computing environments (Alur and Weiss, 2008).

For example, simple business transaction might struggle

to utilize memory resources to be fully executed. The

selection of such resource utilities has lead to the

proposal of algorithms based on predefined metrics

related to customer satisfaction or even performance

metrics. For example, the quantity of advertisement

pamphlet without affecting their quality requirements.

Software development organizations require software

engineers to identify, measure and implement all

requirements of software products. In particular,

software engineers are responsible to identify all

resources requirements such as I/O devices, memory

resources utilization and expansion transmission of

software resources. Developing such software products

within time and budget is the primary challenge for

many software development organizations.

A few research is found in the literature on the

identification and measurement of software

requirements based on international standards (Abran et al.,

2013; Al-Sarayreh et al., 2013a; Meridji et al., 2013;

Al-Sarayreh et al., 2013b; 2012; 2014; Al-Sarayreh and

Abran, 2010). Most of research studies target the

identification and measurement of software requirements

at late phase of the software development life cycle

(Khatter and Kalia, 2013).

Further, several software products failed because

software engineers have poorly identified and

measured software requirements (Al-Sarayreh et al.,

2013a). This comes from the fact that software

engineers have no reference model that is built based

on an international standard to justify the need for

such software requirements.

Software resources requirements illustrate the need of

software components for resources from its environment

in order to execute its tasks. In addition, it express the

restrictions of software resources associated with

workstation resources, such as microprocessor chip load

and upper limit memory volume.

Software resources requirements are primary

requirements in software development cycle, in which

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

183

they guarantee software suitability and availability of

resources for every task executed in such software

products (Khatter and Kalia, 2013).

The ISO25010 international standards series (i.e.,

systems and software engineering - systems and

Software Quality Requirements and Evaluation

(SQuaRE) standards) express software resources

requirements as the ability of software product to utilize

correct quantities and varieties of software resources to

execute certain tasks for its users under pre-defined

conditions (ISO25010, 2011).

In spite of the existence of several measures for

software resources requirements, most of these measures

are still subjective and ineffective. For example, such

these measures are defined informally, either used in an

imperfect context or using poorly defined procedures.

Therefore, such measures cannot be justified by software

engineers for their project managers in order to use them

in the effort estimation process of software products.

The motivation of this research paper is to help

software development organizations and in particular

software project managers and technical leaders to build

more accurate effort estimation models, by improving

one of primary inputs (i.e., measurement of software

resources requirements) for the effort estimation process.

This improvement will improve planning, management

and development of software at different phases of the

software development life cycle. Further, the

measurement results of the proposed reference model

can be used for software benchmarking purposes

conducted by specialized groups such as International

Software Benchmarking Group (ISBSG).

The contribution of this paper is a new reference model

to identify and measure software resources requirements

based on international ISO standards ISO19761 and

ISO14143-1. This reference model measures functional size

of software resources requirements allocated to software

independently from development technology used to

develop the software product.

This paper is organized as follows: Section 2

presents the literature review and section 3 presents the

international standard for software functional

measurement - ISO 19761: COSMIC. Section 4

presents the design of the reference model for software

resources requirements. Then, section 5 presents

verification of the applicability for the proposed

reference model using the software specifications of an

ATM machine. Finally, section 6 presents conclusions

and future work directions.

Literature Review

Khatter and Kalia (2013) studied several software

development approaches to analyze the impact of

software non-functional requirements on requirements

evolution and on software quality during the software

development life cycle. This study focused on views and

representation of non-functional requirements and on the

description of non-functional requirements in different

software development approaches. It reported that there

is a strong need for an accurate modeling and

quantification of software non-functional requirements in

order to produce high quality software.

Several research studies are presented in the literature

targeted the measurement and/or approximation of

software resources. For instance, Perez et al. (2015)

proposed an algorithm that applies linear regression and

maximum probability measures to calculate an

approximation of the required software resources. The

algorithm is experimented using real application

datasets. For each CPU request, the proposed algorithm

inputs response time and resource queue measures and

yields the value of CPU consumption.

Arnold et al. (2014) proposed a generic architecture

to calculate resources requirements such as computing,

network usage and storage for a software application in a

cloud computing environment. The software application

is transformed and called a "workload" using a

declarative workload definition language. It is then

deployed in the cloud infrastructure using a workload

orchestration and optimization layer. A case study is

conducted on a real application to illustrate coordination

and functionalities optimization in IBM connections.

Eklov et al. (2014) proposed a software profiling

method to report the impact of scalability bottleneck on

the scalability of multi-threaded program. These reports

are aimed to help a software engineer to analyze

resources requirements and to improve the architecture

of such multi-threaded program.

Fotrousi et al. (2014) proposed an approach to

identify the relationships between levels of software

quality and their impact on quality attributes and

software stakeholders. This approach is aimed to help

software engineers to identify the quality of "good"

software from the perspective of software stakeholders.

The stakeholders are given a prototype of software

product to determine its quality and record their

subjective feedback.

Arfeen et al. (2011) proposed a framework for

network resource allocation in cloud computing

environment. Several strategies for network resource

allocation are evaluated for possible application. Their

work focused on optimizing such network allocation

strategies and on network awareness.

Kocsis and Ekler (2012) defined "advertising type"

for advertising websites. They collected websites

usage statistics and users' behavior using a web

analytics program to calculate total system startup.

This program collected various information about

users from advertising websites including location,

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

184

number of visits and time spent in each website visit

on a daily basis.

Shilun et al. (2011) proposed a resource-ability

design to identify the resources requirements of an

equipment. The proposed design allows for defining an

equipment attributes in order to guarantee the capacity of

resources conservation and environment responsiveness.

This study reported that consumption, function, structure

and environmental impacts are qualitative requirements

for equipment resources.

Wang et al. (2008) proposed an approach for

requirements analysis and proposed a workflow model

for resource-constrained business processes. This study

explained that business processes are typically

constrained by insufficient software resources and such

shortage of resources might cause a conflict and

therefore delay the achievement of higher-level business

goals. The proposed approach is aimed to meet such

business goals by managing the required resources as

well as making available facilities for monitoring and

controlling capabilities.

Jia et al. (2012) analyzed a technique for maintenance

task allocation. They proposed a system for computer-

aided decision analysis to improve the efficiency of

maintenance-task analysis and maintenance-support

analysis of software resources requirements.

Liu et al. (2011) reported that most software

resources on the internet do not provide justifiable

quality indicators. Therefore, they proposed an approach

that collect comments on software resources

automatically. This approach is aimed to provide

software engineers with justifiable quality indicators;

such indicators typically help software engineers in the

selection process of software resources and reusability.
Li et al. (2014) studied the impact of two

consolidating n-tier web applications in a cloud
environment; they measured the CPU utilization and
performance of two consolidated n-tier web
applications, in which these two systems deploy two
different soft resource allocation strategies. The study
reported that a web application with more software
resources has overused the CPU with a percentage of
eight percent than the other consolidated application.
They observed that software resource allocation in
cloud environment is a primary factor on the
performance of an n-tier software application.

Doulamis et al. (2014) proposed an algorithm to

improve software resource selection in a distributed

computing environment. The proposed algorithm

assigned software resources to tasks in a way that

improves the utilization of software resources and

minimize time requirements of tasks. It employed the

concepts of graph partitioning in order to minimize

time overlapping of tasks for a specific software

resource and maximize time overlapping of tasks for

different software resources.

Seth et al. (2012) conducted an empirical study to

assess the role software requirements, stakeholders and

resources in the development of a high quality software

product. In this study, an interview is conducted with

eleven participants involved in different roles in software

development projects such as software programmers,

testers, requirements managers and quality control

personnel. The study reported that quality attributes of a

software product depend on the type of software,

software users and its application domain. Further, it

reported that software product quality is highly

dependent on allocated resources.

Chen et al. (2015) proposed an architecture to

manage resources utilization of distributed datacenters

and optical networks. They adopted two strategies for

resources allocation along with two strategies for virtual

network composition. The proposed architecture is

experimented using three metrics: CPU utilization,

latency and virtual network failure.

Yuan (2015) proposed a prediction algorithm for

virtual resource scheduling in a cloud-computing

environment. The proposed algorithm is built based on

Support Vector Machine (SVM) to predict dynamic

software resources requirements. Experimentation of the

proposed algorithm is conducted two phases, training

and prediction phases using real virtual resource data.

The experimental results indicated that building the

prediction algorithm based on the concepts of support

vector machine has improved the prediction accuracy

and has opened the opportunity to use such concepts to

achieve real-time performance and high accuracy

software resources requirements.

Li et al. (2016) proposed a framework to improve the

communications between machines in software-defined

cellular networks. The proposed framework is aimed

improve the random access process of machine-to-

machine communications. They developed a dynamic

feedback and control loop to update the number of

available resource blocks in a virtual machine-to-

machine communications network.

Triwijoyo et al. (2017) proposed an approach to

measure software reliability based fault analysis and

categorization. This approach divided failure data into

three groups and five modules. However, this is rather

late in the software development life cycle.

Iskandar et al. (2016) used the use case point

(Karner, 1993) method to measure software size of a

knowledge management software in Bina Nusantara

University. However, the measurement result is not

based on internationally standardized method and it is

only applicable to object-oriented software

requirements and does not cover other types of

requirements specifications.

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

185

Wang et al. (2017) proposed a regression-based

model to identify software security requirements of

three open source software products. However, the

study reported that this model is not able to identify

all security requirements specifications without an

additional support of other software tools such as

GitHub tool. This means that this model requires that

software requirements specifications should be written

in a certain style/format.

The International Standard for Software

Functional Size Measurement: ISO 19761

The ISO19761: COSMIC (ISO, 2011) international

standard proposes a general model of software functional

requirements that explains the borderline among

hardware and software. This standardized method

measures functional size of a software product

independently of the technology used to develop such a

product based on the identified functional user

requirements. The COSMIC measurement method

propose generic model of software functional user

requirements in order to clarify the boundary between

hardware and software.

Figure 1 presents the COSMIC generic model that

demonstrate the generic flow of data from a functional

perspective. In this model, software is typically bounded

by hardware and it is used either by a human user or by

an engineered device. The human user interacts with

software using a variety of input/output devices.

Furthermore, software is bounded by storage hardware

such as RAM memory.

The functionality of software is enclosed within the

data groups of functional flows. In order to specify these

functional flows, four data movement types are

identified by COSMIC as follows:

• Two data movement types (i.e., Entry and eXit) are

identified specify the functional flows between the

human users and engineered devices from one side

and software from the other side

• Two data movement types (i.e., Read and Write) are

identified to specify the functional flows between

storage and software

Diverse perceptions normally used for different

measurement purposes. For example, in embedded and

real time software, users are typically "engineered

devices" which interact straightforward with software.

For business and management application software,

COSMIC considers that the users are one or more

humans who interact directly with the business or

management applications software across the border. In

other words, the "I/O hardware" is ignored.

The ISO 19761 method measures the size of

software based on identifiable of functional user

requirements. Then, they are allocated to hardware

and software from the unifying perspective of a

system integrating these two "components". Since ISO

19761 is aimed at sizing software, only those

requirements allocated to software are considered in

its strategic measurement procedure.

Fig. 1: A generic model of ISO 19761: COSMIC measurement method

Entry

I/O hardware

Exit

Boundary

Human users

Engineered devices

S
to
rag

e h
ard

w
are

Exit
Write

Read

Entry

Software

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

186

Design of Reference Model of Software

Resources Requirements

This section present the design of reference model to

identify and measure software resources requirements

based on international standards. Four steps are

recommended by Abran (2010) to design a reference

measurement model as follows:

• Determination of measurement objectives for

software product

• Characterization of software resources terms

• Identification of resources entity types and

relationship among entities

• Numerical assignment rules for software resources

requirements

Determination of Measurement Objectives for

Software Product

This part presents the main objective of the proposed

reference model as a portion of a software product

quality, along with the point of view of the reference

measurement model and the anticipated uses of the

measurement results:

• Measurement objective: To measure the functional

size of software resources requirements using

ISO19761: COSMIC as an intentional standard for

software functional measurement

• Measurement point of view: Software resources

perspective allocated to software resources

requirements

• Intended use of measurement results: The uses of

measurement results spans the whole software

development life cycle. These functional size

measures represent one of the primary inputs for the

effort estimation process of software products.

Further, these measures can be used for software

benchmarking purposes

Characterization of Software Resources Terms

This part presents the terms and vocabulary of

software resources requirements as defined by ISO

standards ISO19761 (ISO, 2011) and ISO 14143-1

(IOS, 2007). Software resources requirements are

classified as external and internal software resources.

External software resources include I/O resources,

memory resources and transmission resources. On the

other hand, internal software resources include

consumptions of hardware resources in system

environment together with the software resources

product during testing and/or operations. Therefore,

software resources entities that are to be measured using

the proposed reference model are as follows:

• External resources entities

a. I/O resource measurements: include two entities

to measure:

o I/O devices utilization

o User waiting time of I/O devices utilization

b. Memory resource measurements: include one

entity to measure:

o Memory Utilization

c. Transmission resource measurements: include

three entities to measure:

o Maximum transmission utilization

o Transmission capacity utilization

o Media device utilization

• Internal resources entities: There are two entities

for internal measures of the I/O devices;

meanwhile the ISO standards do not list any

internal measures for memory and transmission

resources requirements

a. I/O related errors

b. I/O loading

Identification of Resources Entity Types and

Relationships among Entities

This part presents the identification of software

resources entity types and the relationships among

such entity types. Eight entity types are identified to

help software engineers to identify software resources

requirements based of ISO international standards.

The technical specifications of such entity types are

presented using the following entity type template:

Entity Type # (what software resources it identify):

• Entity name: Each entity type should have a

descriptive meaningful name.

• Input of entity type: Designed data resource group

Process used between input and output: Manipulation

carried out on input resource data-group

• Output of entity type: Actual measured resource

data group

• Entity type measurement role: Usage in functional

size measurement using ISO standards

• Entity relationship: Type of relationship with other

entity types

Further, this part present three metamodels to

capture external and internal software resources

requirements. A metamodel is an effective candidate

to present visually different entity types, existing

relationships, rules and constraints of a requirement-

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

187

modeling problem. A metamodel provides software

engineers with a roadmap in order to improve the

representation of stakeholders needs, in a "language"

that is understandable to other software development

teams in software development project. Based on the

identification of the eight entity types, three

metamodels are proposed to present visually the entity

types and their relationships.

Metamodel of I/O Device Resources

There are four entity types to capture the

requirements of I/O devices resources; they are I/O

devices utilization, I/O related errors, I/O loading and

user waiting time of I/O devices. Figure 2 presents a

metamodel that represents the four identified entity

types and their corresponding relationships. This

metamodel represent the relationship between entity

types in terms of input, process and output.

Entity Type 1 (for external measurement for I/O

device resources):

• Entity name: I/O devices utilization

• Input of entity type 1 is specified time that designed

to occupy I/O devices

• Process used between input and output: execute

concurrently a large number of tasks, record I/O

device utilization and compare with design

objectives

• Output of entity type 1 is actual time of I/O devices

occupied

• Entity type 1 measures the functional size of the I/O

devices utilization

• Entity relationship: many-many of I/O devices time

on software

Entity Type 2 (for internal measurement for I/O

device resources):

• Entity name: I/O related errors

• Input of entity type 2 is user-operating time during

user observation

• Process used between input and output: calibrate test

conditions

• Output of entity type 2 is number of warning

messages or system failures

• Entity type 2 measures the functional size of the I/O

related errors

• Entity relationship: many-many of I/O devices

related errors on software

Entity Type 3 (for internal measurement for I/O

device resources):

• Entity name: I/O loading

• Input of entity type 3 is designed I/O loading limits

• Process used between input and output: emulate

conditions weather the system reaches a situation of

maximum I/O load

• Output of entity type 3 is occupied of I/O loading

limits

• Entity type 3 measures the functional size of the I/O

loading limits

• Entity relationship: many-many of I/O devices

loading period on software

Entity Type 4 (for external measurement for I/O

device resources):

• Entity name: User waiting time of I/O devices

• Input of entity type 4 is designed waiting time of I/O

devices

• Process used between input and output: Run the

application and record number of errors due to I/O

failures and warnings

• Output of entity type 4 is actual waiting time of I/O

devices

• Entity type 4 measures the functional size of user

waiting time of I/O devices

• Entity relationship: Many-many of I/O devices waiting

Entity Type 5 (for external measurement for

memory resources):

• Entity name: Memory utilization

• Input of entity type 5 is designed required memory

• Process used between input and output: Calibrate

test conditions, emulate conditions weather system

reaches a situation of maximum I/O load, run the

application and record number of errors due to I/O

failures and warnings

• Output of entity type 5 is the actual memory needed

• Entity type 5 measures the functional size of

memory utilization

• Entity relationship: Many-many of memory

utilization on software

Metamodel of Transmission Resources

There are three entity types to capture the

requirements of transmission resources; they are

maximum transmission utilization, transmission capacity

utilization and media devices utilization. Figure 4

presents a metamodel that represents the three identified

entity types and their corresponding relationships. This

metamodel represent the relationships between entity

types in terms of input, process and output.

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

188

Fig. 2: A metamodel of software I/O devices resources

Fig. 3: A metamodel of software memory resources

Emulate a condition

whereby the system

reaches a situation of

maximum I/O load

User operating

time during user

observation

Designed I/O

loading limits

Designed waiting

time of I/O devices

Calibrate the test

conditions

Run the application and

record number of errors due

to I/O failure and warning

Number of warning

messages or system

failures

Occupied of I/O

loading limits

Actual waiting time

of I/O devices

Specified time which

is designed to occupy

I/O devices

Execute concurrently

a large number of

tasks

Record I/O device

utilization

Compare with the

design objectives

Time of I/O devices

occupied

Software product I/O resources

Emulate a condition whereby
the system reaches a situation

of maximum load

Run the application and
record number of errors
due to memory failure

and warnings

Calibrate the test

condition of memory

Designed

required memory
Actual memory

needed

Software product memory resources utilization

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

189

Fig. 4: A metamodel of software transmission resources

Entity Type 6 (for external measurement for

transmission resources):

• Entity name: maximum transmission utilization

• Input of entity type 6 is designed maximum number

of transmission

• Process used between input and output: Evaluate

what is required for the system to reach a situation

of maximum load

• Output of entity type 6 is the required maximum

transmission including error messages and failures

• Entity type 6 measures the functional size of

maximum transmission utilization

• Entity relationship: many-many of transmission load

on software

Entity Type 7 (for external measurement for

transmission resources):

• Entity name: Transmission capacity utilization

• Input of entity type 7 is designed transmission capacity

• Process used between input and output: Run

application and monitor the results

• Output of the entity type 7 is the actual transmission

capacity

• Entity type 7 measures the functional size of

transmission capacity utilization

• Entity relationship: Many-many of transmission

capacity on software

Entity Type 8 (for external measurement for

transmission resources):

• Entity name: Media devices utilization

• Input of entity type 8 is: Designed transmission rate

between different media devices

• Process used between input and output: Execute

concurrency specified tasks with multiple users,

observe transmission capacity and compare with the

specified one

• Output of entity type 8 is the degree of

synchronization between devices

• Entity type 8 measures the functional size of media

devices utilization

• Entity relationship: Many-many of media devices

utilization on software

Numerical Assignment Rules for Software

Resources Requirements

The foundations of the numerical assignment rules

for software resources requirements are presented in

the previous metamodels of I/O device resources,

memory resources and transmission resources (Fig. 2

to 4). Numerical assignments rules can be described

Software product transmission resources

utilization

Evaluate what is required

for the system to reach a

situation of maximum load

Designed the

maximum number

of transmission

Required maximum

transmission including

error massages and

failures

Designed the

transmission capacity

to be used by the

software

Run application and

monitor result (s)

Designed the

transmission rate

between different

devices media

Execute concurrently

specified tasks with

multiple users

Observe transmission

capacity and compare

specified one

Actual transmission

capacity

The degree of

synchronization

between devices

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

190

using descriptive text (i.e., practitioner’s description)

or using mathematical expressions (i.e., formal

theoretical viewpoint).

According to the international standard for

software functional size measurement – ISO19761, a

functional process is defined as an elementary

component of a set of functional user requirements. It

includes a unique cohesive and independently

executable set of data movement types (ISO, 2011).

Four data movement types are identified by

ISO19761: An 'Entry' data movement type moves a

data resource group into software from a functional

user and an 'eXit' data movement type moves a data

resources group out. Further, the 'Write' and 'Read'

data movement types move a data group to and from

persistent storage, respectively (ISO, 2011). One (1)

CFP (i.e., COSMIC Function Point) represent a

functional size measurement of each counted data

movement type (ISO, 2011).

Data resources groups form sources and/or to data

destinations for software resources requirements.

Table 1 and 2 presents data sources/destinations of

software resources requirements. In both tables,

software resources are categorized into the three

classes, I/O device resources, memory resources and

transmission resources - see column #1, data

sources/destinations are next presented in column #2

and finally the objects of interest (i.e., resource type)

are presented in column #3.

Quality Evaluation of Software Resources

This section presents an extension of the proposed

reference model software resources requirements. It

presents building numerical assignments rules based on

mathematical expressions using descriptive text rules in

ISO25010 (2011). The numerical assignment rules are

appended to the I/O resources devices, memory

resources and transmission resources metamodels. The

resulting metamodels presented in this section represent

instantiation metamodels of the proposed reference

model. They can be used to identify and measure

software resources requirements based on the concepts in

ISO25010 (2011), which can be considered as quality

evaluation of software resources requirements in

addition to the measurement benefit.

Table 1: Resources data sources

Categories Data Sources Objects of Interest

I/O devices resources • Specified time, which is designed to occupy I/O devices • Time

 • Actual time of I/O devices occupied • Time

 • User operating time during user observation • Number

 • Number of warning messages or system failures • Number

 • Designed I/O loading limits • Loading limit

 • Occupied of I/O loading limits • Loading limit

 • Designed waiting time of I/O devices • Time

 • Actual waiting time of I/O devices • Time

Memory resources • Designed required memory • Size

 • Actual memory needed • Size

Transmission resources • Designed maximum number of transmission • Transmission no.

 • Required maximum transmission including error messages and failures • Transmission no.

 • Designed transmission capacity • Transmission capacity

 • Actual transmission capacity • Transmission capacity

 • Design of transmission rate between different devices media • Transmission rate

 • Degree of synchronization between devices • Transmission rate

Table 2: Resources data destinations

Categories Data Destinations

I/O devices resources • I/O devices utilization

 • I/O related errors

 • I/O loading

 • User waiting time of I/O devices

Memory resources • Memory utilization

Transmission resources • Maximum transmission utilization

 • Transmission capacity utilization

 • Media devices utilization

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

191

Fig. 5: Metamodel of I/O devices resources with numerical assignment rules

Figure 5 presents an instantiation metamodel to

measure I/O device resources externally and internally

for one functional process. The measurement of I/O

device externally is based on entity type (1) and entity

type (4). Entity type 1 is used to measure the external

software resources throughout executing concurrently a

large number of tasks and record I/O device utilization

(Equation 1). Further, entity type 4 is used to measure

the external software resources throughout run the

application of record of errors due to I/O failures and

warning (Equation 2). It is worth mentioning that the

measurement result of Equation 1 and 2 is in Time and

Equation 3 is used calculate all the arithmetic summation

of all data movement types in one functional process:

()
1

/ 1
1

A
I Odevicesutilization y

B
= (1)

()
4

/ 4
4

A
User watining time I Odevicesutilization y

B
= (2)

() ()1 4Datamovement dataresource group y y= +∑ ∑ (3)

Where:

A1 = Time of I/O devices occupied

B1 = Specified time designed to occupy I/O devices

A4 = Actual waiting time of I/O devices

B4 = Designed waiting time of I/O devices

On the other hand, the measurement of I/O devices

internally of one functional process is based on entity type

(2) and entity type (3). Entity type 2 is used to measure

internal software resources throughout calibrating the test

conditions and emulate a condition whereby the system

reaches a situation of maximum I/O loading to define the

Execute concurrently a

large number of tasks,

record I/O device

utilization and compare

it with design

objectives

Time of I/O devices

occupied (A1)

Specified time designed to

occupy I/O devices (B1)

A1/B1
I/O devices

utilization (y1)

Number of warning

massages or system

failures (A2)

User operating time during

user observation (B2)

A2/B2

I/O related

errors (y2)

I/O loading (y3) A3/B3

Occupied I/O

loading limits (A3)

Designed I/O

loading limits (B3)

Actual waiting time

of I/O devices (A4)

Designed waiting time

of I/O devices (B4)

A4/B4

User waiting time

of I/O devices

utilization (y4)

Calibrate the test conditions.

Emulate a condition in which

the system reach a situation

of maximum I/O load. Rum

the application, record

number of errors due to I/O

failure and warnings.

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

192

I/O errors (Equation 4). Entity type 3 is used to measure

internal software resources throughout calibrating the test

condition to define maximum I/O loading (Equation 5). It

is worth mentioning that the measurement result of

Equation 4 and 5 is in Number. Equation 6 is used

calculate all the arithmetic summation of all data

movements in one functional process:

()
2

/ 2
2

A
I Orelated errors y

B
= (4)

()
3

/ 3
3

A
I Oloading limits y

B
= (5)

() ()2 3Datamovement dataresource group y y= +∑ ∑ (6)

Where:

A2 = Number of warning msgs or system failures

B2 = User operating time during user observation

A3 = Occupied I/O loading limits

B3 = Designed I/O loading limits

Figure 6 presents an instantiation metamodel to

measure memory resources - externally - for one

functional process and it is based on entity type (5).

Entity type 5 is used to measure external software

resources throughout executing concurrently a large

number of tasks and run the application and record

number of errors due to memory failures and warnings

for one functional process (Equation 7). It is worth

mentioning that there are no internal memory measures

as defined in ISO19761 (2011). Further, the

measurement result of Equation 7 is in Size and

Equation 8 is used calculate all the arithmetic summation

of all data movements in one functional process:

()
5

5
5

A
Momeryutilization y

B
= (7)

() ()5Datamovement dataresource group y=∑ ∑ (8)

Where:

A5 = Actual memory needed

B5 = Designed required memory

Figure 7 presents an instantiation metamodel to

measure transmission resources - externally - for one

functional process and it is based on entity type 6, entity

type 7 and entity type 8. Entity type 6 is used to measure

the external software resources throughout evaluate what

is required for the system to reach a situation of

maximum load. Further, entity type 7 is used to measure

the external software resources throughout observing

transmission capacity and compare it to the specified

one. Finally, entity type 8 is used to measure the external

software resources throughout executing concurrently

specified tasks with multiple users. The measurement

results of Equation 9 to 11 is in transmission number,

capacity and rate, respectively:

()
6

6
6

A
Maximumtramission y

B
= (9)

()
7

7
7

A
Transmissioncapacity y

B
= (10)

()
8

8
8

A
Mediadevicesutilization y

B
= (11)

Where:

A6 = Maximum required transmission including error

messages and failures

B6 = Designed maximum number of transmissions

A7 = Actual transmission capacity

B7 = Designed transmission capacity used by software

A8 = Degree of synchronization between devices

B8 = Designed transmission rate between different

media devices

Fig. 6: Metamodel of memory resources with numerical assignment rules

 Calibrate test condition.
Emulate a condition in which

system reaches maximum

load situation. Run the

application and record

number of errors due to

memory failure and warnings

Actual memory

needed (A5)

 Designed required
memory (B5)

Memory

utilization (y5)
A5/B5

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

193

Fig. 7: Metamodel of transmission resources with numerical assignment rules

Verification of the Proposed Reference

Model with an Automated Teller Machine

Scope and Objective

This section presents a verification of the proposed

reference model of software resources requirements using

the software specifications of an Automated Teller Machine

(ATM) system. The automated teller machine system is a

real time system that is developed for banks' clients to

conduct several financial services without the interference

of bank personnel. A sample of requirements specifications

is selected for the withdrawal process of the automated

teller machine. These requirements specifications represent

an explanation of the withdrawal process that a typical user

normally conduct to withdraw money from the automated

teller machine. It is worth mentioning that the authors

have not selected certain ideal (complete) requirements

specifications of the withdrawal process with possibly

quality attributes identified for two reasons:

• During an early phase of the software development

life cycle, it is expected to obtain software

requirements specifications in which they are vague,

incomplete, or inaccurate. Therefore, the selected

specifications can emulate a similar case.

• Selecting ideal requirements specifications will

prevent quality evaluation of software resources

requirements using the proposed reference model.

Software Specifications of an Automated Teller

Machine

An automated teller machine wait for the user to start

interaction process by inserting the bank client-card into

the card reader to read all necessary information from

magnetic strip and/or the microprocessor chip. This

information includes a unique card number and other

encrypted personal and account information. Upon

insertion of user card into the card reader, the user shall

wait until the "insert PIN" screen appears; it is

considered as the starting step for client authentication.

When the "insert PIN" screen appears, the user shall

enter her/his personal identification number. Then, the

system need to verify whether the entered information

(i.e., PIN) is correct. If the entered personal

Evaluate what is required

for system to reach

maximum load situation.

Run the application and

monitor the result (s)

Maximum required

transmission including error

message and failures (A6)

Designed maximum

number of transmissions

(B6)

Maximum

transmission

utilization (y6)

Actual transmission

capacity (A7)

A6/B6

A7/B7

A8/B8

Transmission

capacity

utilization (y7)

Designed transmission

capacity to be used by

software (B7)

Degree of

synchronization

between devices (A8)

Designed transmission

rate between different

media devices (B8)

Execute concurrently

specified tasks with

multiple users, observe

transmission capacity and

compare with specified one

Media device

utilization (y8)

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

194

identification number is wrong, the system will

automatically eject the client-card. However, if it is

correct, the system will ask the user to enter the

withdrawal amount. After that, the system need to check

the account balance in order to complete the withdrawal

transaction and withdraw cash for the user. On the other

hand, if the account balance is not enough or user entered

a wrong PIN, the transaction information is saved in the

account table (on the server database). Figure 8 presents a

flow of activities diagram for withdrawal process of an

automated teller machine system.

Experimentation of the Proposed Reference Model

The withdrawal process in the automated teller

machine is analyzed based on flow of functionality from

the user view. The following steps represent the flow of

functionality steps: Waiting to insert card, waiting to

enter PIN, waiting to check PIN, waiting to enter

amount, verify balance and get cash.

Two approaches are adopted for the purpose of this

experiment:

• First approach identifies software resources

requirements using the proposed reference model

and then measures the functional size of the

software resources requirements using the concepts

exist in ISO19761 (IOS, 2007)

• Second approach identifies software resources

requirements using the proposed reference model

and then measures such identified requirements

based on the concepts exist in the international

standard ISO25010 - systems and Software Quality

Requirements and Evaluation (SQuaRE) standard

(ISO25010, 2011)

Table 3 presents the identification and the

measurement of software resources requirements of the

automated teller machine using the first approach. Using

this approach, there are seven functional processes are

identified and they are presented in column #1. It can be

noticed that there are two functional processes identified

with the name "verify balance". One functional process

is associated with memory resources and another process

is associated with transmission resources.

For each identified functional process, the

corresponding resource type and description of measured

resource is presented in column #2 and column #3. The

description of the measured resource represents a data

resource group, which this is moved by a one data

movement type. Each data movement type that moves

one data resource group is measured as one CFP

(COSMIC Function Point). For example, the functional

process "waiting to insert card" is measured using

ISO19761 as follows: it represents an I/O resource type

and includes two data resource groups. The first data

resource group is moved when the user enters her/his

client-card using an I/O device (i.e. card reader); this

movement is defined as an Entry (E) data movement

type and equals to (1) CFP. The second data resource

group is moved from the system using the I/O device

(i.e. ATM screen); this movement is defined as an eXit

data movement type and equals to (1) CFP. Therefore,

the total functional size measurement for the "waiting to

insert card" functional process equals to (2) COSMIC

Function Points (CFPs).

Table 3: Identification and measurement of resources requirements of ATM system using first approach

Functional process Resource type Description of measured resource Data movement type CFP

Waiting to insert card I/O Specified time which is designed Entry (E) 2

 to occupy input resources to ATM

 Time of I/O devices occupied eXit (X)

Waiting to enter PIN I/O User operating time to enter PIN Entry (E) 2

 during user observation

 Number of warning messages eXit (X)

 or system failure

Waiting to check PIN I/O Designed loading limits to Entry (E) Read (R) 4

 check PIN code

 Occupied of I/O loading limits eXit (X) Write (W)

Waiting to enter amount I/O Designed loading limits to check PIN code Entry (E) 2

 Occupied of I/O loading limits eXit (X)

Verify balance Memory Designed required memory Read (R) 2

 Actual memory needed Write (W)

Verify balance Transmission Designed transmission rate between Read (R) 2

 different devices media

 Degree of synchronization Write (W)

 between devices

Get cash I/O Designed waiting time of I/O devices Entry (E) 2

 Actual waiting time of I/O devices eXit (X)

Total functional size of software resources 16 CFP

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

195

Table 4: Identification and measurement of resources requirements of ATM system using second approach

Functional Process Resource Type Description of measured resource Unit of measure Equation used

Waiting to insert card I/O Specified time which is designed to Time (1)

 occupy input resources to ATM

 Time of I/O devices occupied Time (1)

Waiting to enter PIN I/O User operating time to enter PIN Time (2)

 during user observation

 Number of warning messages or Number (3)

 system failure

Waiting to check PIN I/O Designed loading limits to check PIN code Loading limit (4)

 Occupied of I/O loading limits Loading limit (4)

Waiting to enter amount I/O Designed loading limits to check PIN code Loading limit (4)

 Occupied of I/O loading limits Loading limit (4)

Verify balance Memory Designed required memory Size (5)

 Actual memory needed Size (5)

Verify balance Transmission Designed the transmission rate between Rate (8)

 different devices media

 The degree of synchronization between Rate (8)

 devices

Get cash I/O Designed waiting time of I/O devices Time (2)

 Actual waiting time of I/O devices Time (2)

Fig. 8: Flow of activities diagram for withdrawal process of an automated teller machine system

The measurement concepts of ISO19761 applies to

the other six functional process in the similar fashion.

For example, the fifth functional process "verify

balance" is measured using ISO19761 as follows: It

represents a memory resource type and includes two data

resource groups. The first data resource group is moved

from the storage hardware into the ATM software

designated functionality; this movement is defined as

Read (R) data movement type and equals to (1) CFP.

The first data resource group is moved from the ATM

software designated functionality and written into

storage hardware; this movement is defined as Write (W)

data movement type and equals to (1) CFP. Therefore,

the total functional size measurement for the "verify

balance" functional process equals to (2) COSMIC

Function Points (CFPs).

The total functional size measurement of software

resources requirements of the withdrawal process for the

Start

Waiting to Insert Card

Waiting to Enter the PIN

Insert the card

Insert the PIN

Waiting to Check the PIN

Waiting to Enter Amount

Input withdraw amount

Waiting to Enter Amount

Verify Balance

Get Cash

Eject card
Incorrect PIN

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

196

ATM system, equals to the arithmetic summation of the

functional size of all identified functional process and this

is equal to (16) COSMIC Function Points (CFPs).

Table 4 presents the identification and the

measurement of software resources requirements of the

automated teller machine using the second approach.

Using this approach, seven functional processes are

identified and they are presented in column #1. It can be

noticed that there are two functional processes identified

with the name "verify balance". One functional process

is associated with memory resources and another process

is associated with transmission resources.

For each functional process out of the seven

identified processes, there is a corresponding "resource

type" and "description of measured resource" that is

presented in column #2 and #3, respectively.

Furthermore, the measurement units and the

corresponding mathematical equations used to calculate

resources size for each functional process are presented

in column #4 and #5, respectively. For example, the

'waiting to insert card' functional process use I/O

resource and include two data resource groups, the

measurement unit for both data resource groups is in

'time' and this resource is measured using Equation 1.

Summary of Findings

Both approaches adopted in this experiment are able

to identify the same number of functional processes. The

functional size measurement using the first approach,

measures the functional size of software resources

requirements independently of the technology used to

develop such a product based on the identified functional

user requirements. The resulting measures have a unified

measurement unit (i.e., CFP - COSMIC function point)

and they are aggregated arithmetically to be used in the

effort estimation process of a software product.

On the other hand, using the second approach to

measure software resources requirements do not yield

unified size units of software resources requirements. For

example, the measurement unit for I/O device resources is

in 'time' unit and the measurement unit of memory

resources is in 'size' unit. Therefore, software engineers

who need a unified measurement - for effort estimation

purposes - cannot aggregate these measures arithmetically.

Further notice, not all the proposed equations using

the second approach are used to measure software

resources requirements of the ATM system. This can be

referred to the fact these specifications are not developed

(i.e., identified and modeled) using a model that is built

based on an international standard, such as ISO25010.

However, this can be considered as quality evaluation of

software resources requirements. Finally, the

measurement of software resources using the second

approach has not lead to numerical values result; it is be

because the requirements specifications of the ATM

system have provided no details about designed values

of software resources requirements.

Threats to Validity

An internal validity threat is associated with any

changes in the design of the experiment such as lack of

description for the concepts to be evaluated in the

experiment. To mitigate the risk of this threat to validity,

the principal researcher who designed the reference

model has not conducted the experiment himself.

However, another researcher (i.e., author) has conducted

a pilot test verify the validity the experimental steps and

finally a third researcher (i.e., author) has conducted the

experimentation of the proposed reference model.

An external validity threat is expressed as the extent

that the experimental results can be generalized beyond

the experimental settings. The proposed reference model

of software resources requirements is experimented only

using the requirements specifications of the withdrawal

process for an automated teller machine. To mitigate the

risk of this threat to validity, further experiments should

be conducted in the future using the requirements

specifications of different software products of different

types (i.e., real time software, business application

software, or even a hybrid of both types).

Conclusion

This paper proposed a new reference model to identify

and measure software resources requirements based on

ISO international standards ISO19761 and ISO14143-1.

This proposed reference model measures functional size

of software resources requirements allocated to software

using the concepts of ISO19761 and independently from

development technology used to develop the software

product. Further, the proposed reference model measures

software resources requirements using the concepts in

ISO25010, which can be considered as quality evaluation

of software resources requirements.

The experimental results showed that the proposed

reference model is capable of identifying and measuring

the functional size of software resources requirements.

The industrial impact of this paper is improving one of

the inputs for the effort estimation process. Therefore, it

will improve planning, management and development of

software at different phases of the software development

life cycle. Further, the measurement results of the

proposed reference model can be used for benchmarking

software purposes conducted by research groups such as

ISBSG software benchmarking group.

Future work will be directed to conduct more

experiments using requirements specifications of different

software products of different types, in order to generalize

the results reported in this study. In addition, future work

will be directed to automate the measurement of software

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

197

resources requirements through building (or add to an

existing) automated measurement tool.

Acknowledgment

We would like to thank the Hashemite University and

the University of Petra for supporting us in using their

facilities to conduct this research paper.

Authors Contributions

Khaled Almakadmeh: Design of the Reference

Model of Software Resources Quality.

Kenza Meridji: Conduct of the case study.

Khalid T. Al-Sarayreh: Conduct of the literature

review.

Ethics

Authors should address any ethical issues that may

arise after the publication of this manuscript.

References

Abran, A., 2010. Software Metrics and Software

Metrology. 1st Edn., IEEE Computer Society Press.

ISBN: ISBN-10: 0470597208, pp: 348.

Abran, A., K.T. Al-Sarayreh and J.J. Cuadrado-Gallego,

2013. A standards-based reference framework for

system portability requirements. Comput. Standards

Interfaces, 35: 380-395.

 DOI: 10.1016/j.csi.2012.11.003

Al-Sarayreh, K.T. and A. Abran, 2010. A generic model for

the specification of software interface requirements and

measurement of their functional size. Proceedings of

the 8th International Conference on Software

Engineering Research, Management and Applications,

May 24-26, IEEE Xplore Press, Montreal, Canada,

 pp: 217-222. DOI: 10.1109/SERA.2010.35

Al-Sarayreh, K.T., A. Abran and J.J. Cuadrado-Gallego,

2013a. A standards-based model of system

maintainability requirements. J. Software: Evolut.

Process, 25: 459-505. DOI: 10.1002/smr.1553

Al-Sarayreh, K.T., I. Al-Oqily and K. Meridji, 2013b. A

standard-based reference framework for system

operations requirements. Int. J. Comput. Applic.

Technol., 47: 351-363.

 DOI: 10.1504/IJCAT.2013.055328

Al-Sarayreh, K.T., I. Al-Oqily and K. Meridji, 2012. A

standard based reference framework for system

adaptation and installation requirements.

Proceedings of the 6th International Conference on

Next Generation Mobile Applications, Services and

Technologies, Sept. 12-14, IEEE Xplore Press,

Paris, France, pp: 7-12.

 DOI: 10.1109/NGMAST.2012.19

Al-Sarayreh, K.T., K. Meridji, E. Fayyoumi and S.

Idwan, 2014. A novel approach to build a generic

model of photovoltaic solar system using sound

biometric techniques. Int. J. Inform. Technol.

Web Eng., 9: 31-44.

 DOI: 10.4018/ijitwe.2014010103

Alur, R. and G. Weiss, 2008. Regular specifications of

resource requirements for embedded control

software. Proceedings of the IEEE Real-Time and

Embedded Technology and Applications

Symposium, Apr. 22-24, IEEE Xplore Press, St.
Louis, MO, USA, pp: 159-168.

 DOI: 10.1109/RTAS.2008.13

Arfeen, M.A., K. Pawlikowski and A. Willig, 2011. A

framework for resource allocation strategies in cloud

computing environment. Proceedings of the 35th

Annual Computer Software and Applications

Conference Workshops, Jul. 18-22, IEEE Xplore

Press, Munich, Germany, pp: 261-266.

 DOI: 10.1109/COMPSACW.2011.52

Arnold, W.C., D.J. Arroyo, W. Segmuller, M. Spreitzer

and M. Steinder et al., 2014. Workload orchestration

and optimization for software defined environments.

IBM J. Res. Dev., 58: 1-11.

 DOI: 10.1147/JRD.2014.2304864

Chen, H., J. Zhang, Y. Zhao, J. Deng and W. Wang et al.,

2015. Experimental demonstration of datacenter

resources integrated provisioning over multi-domain

software defined optical networks. J. Lightwave

Technol., 33: 1515-1521.

 DOI: 10.1109/JLT.2015.2395079

Doulamis, N.D., P. Kokkinos and E. Varvarigos, 2014.

Resource selection for tasks with time requirements

using spectral clustering. IEEE Trans. Comput., 63:

461-474. DOI: 10.1109/TC.2012.222

Eklov, D., N. Nikoleris and E. Hagersten, 2014. A

software based profiling method for obtaining

speedup stacks on commodity multi-cores.

Proceedings of the IEEE International

Symposium on Performance Analysis of Systems

and Software, Mar. 23-25, IEEE Xplore Press,

California, USA, pp: 148-157.

 DOI: 10.1109/ISPASS.2014.6844479

Fotrousi, F., S.A. Fricker and M. Fiedler, 2014. Quality

requirements elicitation based on inquiry of quality-

impact relationships. Proceedings of the 22nd

International Conference on Requirements

Engineering, Aug. 25-29, IEEE Xplore Press,

Karlskrona, Sweden, pp: 303-312.

 DOI: 10.1109/RE.2014.6912272

IOS, 2007. Information Technology-software

measurement-functional size measurement Part 1:

Definition of concepts (ISO/IEC-14143-1).

International Organization for Standardization,

Geneva, Switzerland.

Khaled Almakadmeh et al. / Journal of Computer Science 2018, 14 (2): 182.198
DOI: 10.3844/jcssp.2018.182.198

198

Iskandar, K., F. Gaol, B. Soewito, H Leslie and H.
Warnars et al., 2016. Software size measurement of
knowledge management portal with use case point.
Proceedings of the International Conference on
Computer, Control, Informatics and its Applications,
Oct. 3-5, IEEE Xplore Press, Tangerang, Indonesia,
pp: 42-47. DOI: 10.1109/IC3INA.2016.7863021

ISO, 2011. COSMIC: International standard for software

functional size measurement: COSMIC. International

organization for standardization, Geneva, Switzerland.

ISO25010, 2011. Systems and software engineering-

systems and Software Quality Requirements and

Evaluation (SQuaRE)-System and software quality

models. International Organization for

Standardization, Geneva, Switzerland.
Jia, Y., L. Sun, W. Yabin and G. Yubo, 2012. Research on

maintenance task allocation and support resource
requirement analysis for ordnance equipment.
Proceedings of the International Conference on
Quality, Reliability, Risk, Maintenance and Safety
Engineering, Jun. 15-18, IEEE Xplore Press, Chengdu,
China, pp: 459-465.

 DOI: 10.1109/ICQR2MSE.2012.6246274
Karner, G., 1993. Metrics for objectory, Diploma Thesis,

University of Linkoping, Sweden. No. LiTHIDAEx-
9344:21.

Khatter, K. and A. Kalia, 2013. Impact of non-functional
requirements on requirements evolution.
Proceedings of the 6th International Conference on
Emerging Trends in Engineering and Technology,
Dec. 16-18, IEEE Xplore Press, Nagpur, India, pp:
61-68. DOI: 10.1109/ICETET.2013.15

Kocsis, G. and P. Ekler, 2012. Resource requirement
estimation of advertising websites. Proceedings of
the International Symposium on Computational
Intelligence and Informatics, Nov. 20-22, IEEE
Xplore Press, Budapest, Hungary, pp: 207-211.
DOI: 10.1109/CINTI.2012.6496761

Li, J., Q. Wang, C.A. Lai, J. Park and D. Yokoyama et al.,

2014. The impact of software resource allocation on

consolidated n-tier applications. Proceedings of the 7th

International Conference on Cloud Computing, Jun.

27-Jul. 2, IEEE Xplore Press, Anchorage, AK, USA,

pp: 320-327. DOI: 10.1109/CLOUD.2014.51
Li, M., F. Richard Yu, P. Si, E. Sun and Y. Zhang, 2016.

Random access and resource allocation in software-
defined cellular networks with M2M
communications. Proceedings of the IEEE Global
Communications Conference, Dec. 4-8, IEEE
Xplore Press, Washington, DC, USA, pp: 1-6.

 DOI: 10.1109/GLOCOM.2016.7842194

Liu, C., Y. Zou, S. Cai, B. Xie and H. Mei, 2011. Finding

the merits and drawbacks of software resources from

comments. Proceedings of the International

Conference on Automated Software Engineering, Nov.

6-10, IEEE Xplore Press, Lawrence, KS, USA,

pp: 432-435. DOI: 10.1109/ASE.2011.6100091

Meridji, K., K.T. Al-Sarayreh and A. Al-Khasawneh,

2013. A generic model for the specification of

software reliability requirements and measurement

of their functional size. Int. J. Inform. Quality, 3:

139-163. DOI: 10.1504/IJIQ.2013.054279

Perez, J.F., G. Casale and S. Pacheco-Sanchez, 2015.

Estimating computational requirements in multi-

threaded applications. IEEE Trans. Software Eng.,

41: 264-278. DOI: 10.1109/TSE.2014.2363472

Seth, F.P., E. Mustonen-Ollila, O. Taipale and K.

Smolander, 2012. Software quality construction:

Empirical study on the role of requirements,

stakeholders and resources. Proceedings of the 19th

Asia-Pacific Software Engineering Conference, Dec.
4-7, IEEE Xplore Press, Hong Kong, China, pp: 17-26.

DOI: 10.1109/APSEC.2012.119

Shilun, L., N. Mingfang, H. Kaikai and Y. Ma, 2011. Study

on the main requirements of equipment resource-

ability design. Proceedings of the International

Conference on Quality, Reliability, Risk, Maintenance

and Safety Engineering, Jun. 17-19, IEEE Xplore
Press, Xi'an, China, pp: 709-713.

 DOI: 10.1109/ICQR2MSE.2011.5976709

Triwijoyo, B., F. Gaol, B. Soewito and H. Warnars, 2017.

Software reliability measurement base on failure

intensity. Proceedings of the 3rd International

Conference on Science in Information Technology,

Oct. 25-26, IEEE Xplore Press, Bandung, Indonesia,
pp: 176-181. DOI: 10.1109/ICSITech.2017.8257106

Wang, J., W. Tepfenhart, D. Rosca and A. Tsai, 2008.

Workflow resource requirement modeling and

analysis. Proceedings of the International Conference

on Networking, Sensing and Control, Apr. 6-8, IEEE
Xplore Press, Sanya, China, pp: 246-251.

 DOI: 10.1109/ICNSC.2008.4525219

Wang, W., N. Hussein, A. Gupta and Y. Wang, 2017. A

regression model based approach for identifying

security requirements in open source software

development. Proceedings of the IEEE 25th

International Requirements Engineering Conference,

Sept. 4-8, IEEE Xplore Press, Lisbon, Portugal, pp:

443-446. DOI: 10.1109/REW.2017.56

Yuan, S., 2015. Virtual resource scheduling prediction

based on a support vector machine in cloud

computing. Proceedings of the 8th International

Symposium on Computational Intelligence and

Design, Dec. 12-13, IEEE Xplore Press, Hangzhou,
China, pp: 110-113. DOI: 10.1109/ISCID.2015.303

