
Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 1

Best Practice 1

2
3

4
5

6
7
8

9
10
11

12
13

14
15
16

17
18
19
20
21
22
23
24
25
26

27
28

Subject:
High-Level Architectural Model for DDI Applications (2009-02-22)

Document identifier:
DDIBestPractices_HighLevelArchitectureForApps.doc.PDF

Location:
http://www.ddialliance.org/bp/DDIBestPractices_HighLevelArchitectureForApps.doc.
PDF

Authors:
Karl Dinkelmann, Pascal Heus, Chuck Humphrey, Jeremy Iverson, Jannik Jensen,
Sigbjørn Revheim, Joachim Wackerow

Editors:
Jeremy Iverson

Intended audience:
This document is for software designers who are developing DDI applications. The
designers may be familiar or unfamiliar with the DDI specification.

Abstract:
This best practices document looks at a possible way to design components that
can be combined to create DDI applications. Given that object-oriented design is the
most common programming paradigm, and that systems are often based around
service-oriented principles, and given the modular design of DDI 3.0 itself, this
document provides an architectural model that can be a reference point for
implementers. The document also takes into consideration issues of maintenance
and management of DDI applications, and discusses best practices for application
documentation and configuration. The focus is on interoperability of DDI
applications.

Status:
This document is updated periodically on no particular schedule. Send comments to
editor: ddi-bp-editors@icpsr.umich.edu 29

mailto:ddi-bp-editors@icpsr.umich.edu

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 2

Table of Contents 30

31

32

33

34

35

36

37

38

39

40

41

42

43

1 INTRODUCTION.. 3

1.1 Problem statement .. 3

1.2 Terminology ... 3

2 BEST PRACTICE SOLUTION ... 3

2.1 Definitions .. 3

2.2 Best Practice behavior.. 4

2.3 Discussion ... 11

2.4 Examples.. 11

3 REFERENCES ... 14

3.1 Normative ... 14

APPENDIX A. ACKNOWLEDGMENTS ... 15

APPENDIX B. REVISION HISTORY .. 17

APPENDIX C. LEGAL NOTICES ... 18

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 3

44

45
46
47
48
49

51
52
53

55
56
57

60
61

62

63

64

65
66

67
68
69

70
71

72
73

1 Introduction
This best practices document looks at a possible way to design components that can be
combined to create DDI applications. The paper is targeted at developers, but it does not
assume a high level of DDI knowledge. It is intended to serve as a starting point for developers
new to the DDI.

1.1 Problem statement 50
Software developers who are new to the DDI 3.0 standard may find the standard daunting. This
best practices document provides an overview of how an application may be structured so that
developers have a starting point for the design of their application.

1.2 Terminology 54
The key words must, must not, required, shall, shall not, should, should not, recommended,
may, and optional in this document are to be interpreted as described in [RFC2119]. Additional
DDI standard terminology and definitions are found in http://www.ddialliance.org/definitions/.

2 Best Practice Solution 58

2.1 Definitions 59
DDI: When used without a version, DDI refers to the latest DDI specification, currently version
3.0. When older versions are referenced, the version number will be explicitly specified.

DDI community: Any person or organization working with the DDI specification.

DDI application: A software application that reads and/or writes DDI XML.

Specification: The DDI specification.

Component: A piece of software with a specific purpose with a well-defined input and well-
defined output.

Middleware: In the context of this best practices paper, middleware refers to utilities that
manage the interface between the DDI metadata model and application services or high-level
end-user tools.

Task: An activity that a person undertakes in order to create, edit, or view documentation about
data.

End user: Person performing work in the data life cycle for whom DDI metadata is required. The
end user will likely not even be aware of the DDI metadata in the application he or she is using.

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 4

Java: Java is a programming language expressly designed for use in the distributed
environment of the Internet. It was designed to have the "look and feel" of the

74
C++ language,

but it is simpler to use than C++ and enforces an
75

object-oriented programming model. 76

Eclipse: Eclipse is an ongoing project in support of an open source integrated development
environment (

77
IDE). Eclipse provides a framework and a basic platform (called the Eclipse

Platform) that allows a company to build an integrated development environment from
78

plug-in
software components provided by Eclipse members.

79
80

81 GNU-LGPL: The GNU Lesser General Public License (formerly the GNU Library General Public
License) is a free software license published by the Free Software Foundation. 82

Unicode: Unicode is a computing industry standard allowing computers to consistently represent
and manipulate

83
text expressed in most of the world's writing systems. 84

85

86
87

GUI: A GUI is a graphical (rather than purely textual) user interface to a computer.

API: An API (or Application Programming Interface) is a language and message format used by
an application program to communicate with the operating system or some other control
program such as a database management system (DBMS) or communications protocol. APIs
are implemented by writing function calls in the program, which provide the linkage to the
required subroutine for execution.

88
89
90

91
92

Internationalization: Internationalization is the process of planning and implementing products
and services so that they can easily be adapted to specific local languages and cultures, a
process called localization. 93

94
95
96

97
98
99

100
101
102

104
105
106
107
108
109

DDI instance: A DDI Instance is the top-level wrapper for any DDI document. It may contain a
set of top-level elements, which generally correspond to the modular breakdown within DDI.
Every DDI Instance will use this wrapper, regardless of its content.

Resource package: A resource package is a means of packaging any maintainable set of DDI
metadata for referencing as part of a study unit or group. A resource package structures
materials for publication that are intended to be reused by multiple studies, projects, or
communities of users. A resource package uses the group module with an alternative top-level
element called Resource Package that is used to describe maintainable modules or schemes
that may be used by multiple study units outside of a group structure.

2.2 Best Practice behavior 103
Given that object-oriented design is the most common programming paradigm, and that
systems are often based around service-oriented principles, and given the modular design of
DDI itself, it makes sense to have a reference model for the componentization of functions
within DDI-based systems. This document provides an overview of the component architecture
that DDI applications may use. Additionally, it discusses resources available to developers
creating DDI applications, as well as general software application development best practices.

http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci211967,00.html
http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci211850,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci212681,00.html
http://searchenterpriselinux.techtarget.com/sDefinition/0,,sid39_gci212709,00.html
http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci214013,00.html
http://whatis.techtarget.com/definition/0,,sid9_gci1103696,00.html
http://searchcio-midmarket.techtarget.com/sDefinition/0,,sid183_gci212800,00.html
http://en.wikipedia.org/wiki/Free_software_license
http://en.wikipedia.org/wiki/Free_Software_Foundation
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Industry_standard
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Writing_system
http://www.pcmag.com/encyclopedia_term/0,2542,t=API&i=37856,00.asp
http://searchcio.techtarget.com/sDefinition/0,,sid182_gci212496,00.html

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 5

110

111
112
113

114

115
116
117

118
119
120
121

DDI Profiles

DDI applications will inevitably support only a portion of the DDI specification. Applications
should describe which portions of the standard they implement. This can be described using
DDI profiles. See the Creating a DDI Profile Best Practice document for details.

DDI Application Components

This best practice defines a standard architectural model to be used as a reference point for
implementers. This section describes several of the tiers and components that may be used in
creating a DDI application.

Applications should be designed in such a way that each component has a single, stand-alone
purpose. Components should avoid overlapping functionality. Depending on the development
paradigm being used, components may take the form of assemblies, classes, methods, or other
programming constructs.

 122

123 Figure 1: Sample Component Model

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 6

124
125
126

127
128
129

130
131
132
133
134
135

136
137
138

139
140
141

142
143
144

145
146

147
148
149

150
151
152
153

154
155
156
157

Components may be created as needed by application developers. In some cases, it may be
possible to use existing third-party components. For more information on possible sources of
DDI-related components, see the DDI Application Development Resources section below.

Components that allow users to generate DDI should ideally implement the area of the
specification completely so the end user can rely exclusively on the tool for that aspect of
metadata management.

High-level components
High level components are considered the software front-ends with which users interact. These
could be rich desktop applications, Web applications, or command-line tools. These could
include utilities with a single purpose such as extracting metadata from an existing file and
storing it in DDI format, full-featured metadata creation and editing suites, or anything in
between.

It should be clear to end users which stage of the data life cycle a tool addresses. The purpose
of the tool will imply what sorts of things can be used as input, and what sorts of things will be
output.

These applications should not necessarily mirror the DDI model, but should provide the user
with a highly usable interface for working with the metadata. See the DDI Identifier Best
Practices document for more information.

Application services
Application services components are application services called by the high-level components.
These could be in the form of Web services.

Examples include repositories based on DDI schemes such as question banks or concept
banks.

DDI transmitted from or to application services may be held in resource packages. The DDI
should be wrapped in a DDI instance element, even if only a small snippet of DDI is included.
See DDI User Guide Part II, line 2215 for details.

Middleware components
Middleware components are utilities that manage the interface between the DDI metadata
model and application services or high-level end-user tools. Some examples of middleware
components are described here.

Identifier Generation
DDI requires specialized forms of identifiers. Application developers will need to create a
component to create these identifiers. See the DDI Identifer Best Practices document for details
[see References section].

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 7

158
159
160
161
162
163

164
165
166
167
168

169
170
171
172
173
174

175
176
177
178
179
180

181
182
183

184
185
186
187

188
189
190

191

192

URN Resolution
In DDI, URN identifiers may be resolved to locate resources within a DDI instance. The DDI
instance holding the identified resource could be held internally or externally to the current DDI
instance. Application developers will want to create or use a specialized component to provide
this URN resolution functionality. See the DDI URN Resolution Best Practices document for
details [see References section].

DDI Validation
In order to be valid, DDI instances generated by application components must validate against
the DDI specification schema. Instances must also validate against second-level validation tools
as described in the Interoperability with Other DDI Applications section below. Developers will
want to use a component that provides this validation functionality.

DDI Manager
A DDI Manager component allows developers to work with the underlying metadata model in a
convenient manner. It provides access to metadata that are required for a specific task. It may
provide access to the elements actually used by other components, instead of all DDI elements.
It can also provide easy ways of retrieving desired elements by providing methods for searching
and filtering.

Group Manager
The DDI grouping mechanism allows the definition and redefinition of hierarchical relationships
among objects. See DDI Overview Part I, line 1819 for details.An application may provide
grouping functionality such as editing, regrouping, and extracting. This functionality will require a
component that allows items to be put into groups, as well as for existing group structures to be
edited.

Low-level components
Low level components are the software libraries on top of which middleware and high-level
components are implemented. Several examples follow, but this list is by no means exhaustive.

Metadata/DDI Model
All DDI applications require a model of the data with which they work. The model allows
developers to query, add, update, and remove metadata. Depending on the scope of the
application, the model may represent the full DDI specification, or a subset of the specification.

DDI Serialization
All DDI applications must be able to read and/or write valid DDI XML. A serialization component
provides one or both of the following functions:

• Read and parse valid DDI XML and load the data into the application’s DDI model

• Write the application’s DDI model to an XML file

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 8

193
194
195

196
197

198

199
200
201

202
203
204

205
206
207
208
209

210
211
212
213

214

215
216
217
218
219
220
221

222
223
224
225
226

227

The DDI XML created by an export component must be a complete DDI instance. See the
Interoperability with Other DDI Applications section below for details about ensuring
interoperability among DDI applications.

Import/Export Components
DDI applications may wish to read from and write to file formats other than DDI.

Interoperability with Other DDI Applications

DDI applications must interoperate well with other DDI applications written by the DDI
community. A DDI application must have output that other DDI applications are able to use, and
must be able to take as input DDI generated by other applications.

DDI XML must be wrapped in a DDI instance element. This applies whether the DDI is loaded
from a file or retrieved from an application service. The documentation for this element can be
found in the DDI User Guide Part II, line 269.

DDI instances must validate against the schema published as the standard. DDI instances
should also validate against second-level validation tools like the reference validator available
from the DDI Foundation Tools web site (http://tools.ddialliance.org/?lvl1=library) . Identifiers
and URNs used in the DDI instance should conform to the best practices described in the DDI
Identifier Best Practices document and the DDI URN Resolution Best Practices paper.

XML allows namespace prefix declarations to be used flexibly. Developers should write DDI to
use namespace prefix conventions as they are published in the DDI specification. See DDI User
Guide Part II, line 208 for more information. Applications should be able to read DDI documents
even if an instance does not use the conventional prefixes.

DDI Application Development Resources

DDI foundation tools program
The DDI Foundation Tools Program (DDI-FTP) is an initiative aimed at the development of a
Foundation Framework and a Toolkit to support the implementation of DDI applications and
utilities. The DDI-FTP implements several of the components described above. The
components are mainly available under the open source GNU-LGPL, so developers of both
open source and proprietary applications can make use of them. The tools are mainly written in
Java. The user interface portions are mainly based on the Eclipse platform.

Application/component catalog
DDI application developers may submit information regarding their development efforts to the
DDI Alliance. The DDI Alliance will publish the details of the application or component in a
directory. This will allow developers to get exposure for their software, and may help to foster
collaboration among developers.

A component listing consists of the following:

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 9

228

229

230

231

232

233

234
235
236
237

238
239
240
241
242
243

244
245
246

247
248
249
250

251
252

253
254

255
256
257

258

• Title

• Developer

• Description

• License

• Screenshots (if appropriate)

DDI Development Pitfalls

Link integrity
Developers should be sure elements being linked to exist in the document. When an object is
deleted, links to that object should be removed. If an object identifier is renamed, links to that
object should be updated.

DDI namespace URNs
DDI namespace URNs contain the version number of the schema (e.g., “ddi:instance:3_0”).
This number will change when new DDI XML schema versions are released (e.g.,
“ddi:instance:3_01”). This could present issues for DDI parsers that expect certain namespace
URNs. DDI components should be careful to work with potential future version numbers, for
example, by not depending on explicit namespace URNs.

Avoid circular references
DDI applications should not create circular reference patterns, and should detect circular
reference patterns in order to avoid abnormal program behavior.

Loss of metadata
When importing metadata from a DDI file, all metadata should be preserved so that everything
in the original DDI instance is reflected in a new version. Identifiers from imported DDI should be
preserved.

If an application manages data that cannot be stored in DDI format, it should warn the user that
those metadata are not supported when exporting to DDI format.

If an application reads a DDI file that contains metadata that the application will not preserve or
manage, it should warn the user that the metadata will be lost.

Be aware of encoding
Make sure the characters being saved in an XML instance are a valid part of the encoding being
used. Use an encoding that supports the characters. Work with Unicode (generally UTF-8).

General Software Development Recommendations

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 10

259
260
261

262
263
264
265

266
267
268

269
270
271
272
273

274
275
276
277

278
279

280
281
282
283

284
285
286
287

288
289
290
291
292
293

This section describes some general software application development best practices. DDI
application developers should follow these guidelines in order to provide the best user
experience.

Documentation
DDI applications should include effective end-user documentation so researchers can use the
application productively. Several types of help should be available to meet the needs of different
types of users.

Tutorials
A Tutorials section may contain a series of “how to” articles describing how to perform common
tasks. This is useful to users who are new to an application or who only use it occasionally.

Reference
A Reference section contains detailed descriptions of each part of the software. Each form and
user interface element of a GUI may be described, along with screenshots where appropriate.
This is useful for those who use an application frequently and need quick access to reference
information.

Technical Reference
A Technical Reference section provides information for system administrators, programmers,
and other technical users. It can include information about installation, file formats, and software
developer’s kits.

For developers providing their source code or an API, thorough code documentation should be
provided. This could be derived from JavaDoc or similar documentation systems.

Knowledge Base
A Web-based Knowledge Base allows developers to deliver up-to-date information to end users.
A knowledge base should contain searchable and well-categorized information related to the
software. Articles can be added to the knowledge base based on user feedback.

Internationalization
DDI applications should be written with globalization in mind. This will enabled localized
versions of applications to be created, increasing the audience for the tool. Applications should
support Unicode text encoding.

Logging
DDI applications should write logs with enough detail so that end users can submit the logs to
developers in the event of unanticipated behavior, and the logs will provide sufficient information
to the developers to diagnose any issues with the software. Users should be able to adjust the
level of logging (for example, Debug, Info, Warn, Error). Developers may wish to use existing
logging libraries such as log4j or log4net.

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 11

294
295

296
297

298
299
300

301
302
303

304
305
306
307

309
310
311

312
313
314
315

316
317
318

320

321
322

Keep in mind that this log data may be useful metadata usable at different stages of the life
cycle. Log file formats should be documented.

Performance
DDI applications should operate responsively and should not overuse a system’s resources.

Configuration
DDI applications should provide a reasonable level of end-user customization. Commonly used
configuration systems should be used, for example, Java properties files.

Platform independence
Ideally, DDI applications should be written in a platform-independent manner so they may run
on Windows, Mac OSX, Linux, and other operating systems.

Intellectual property issues of third-party components
Developers should be aware of licensing implications of any third-party components they use.
Third-party licenses should not be more restrictive than the desired license of the developer’s
application.

2.3 Discussion 308
The paradigm used in this document for structuring the identified components is based on an
object-oriented, tiered approach. Developers who do not use this approach should still be able
to gain insight from the description of the functionality identified in this document.

These best practices provide the foundation for implementing feature-rich, interoperable DDI
applications. They do not address every aspect of the DDI specification. Applications that wish
to provide certain functionality (e.g., geographical metadata management or a statistical engine)
will need components to provide those features.

The DDI Alliance is committed to digital preservation, which may require applications to
incorporate additional preservation standards (e.g., PREMIS,
http://www.oclc.org/research/projects/pmwg/).

2.4 Examples 319

Applying Architectural Components to Data Life Cycle Application

This section contains several examples of how a developer might apply the architectural
components to create specific applications for the data life cycle.

Data Documentation Initiative

 323

324

325
326
327
328
329
330

331

332

333

334

335

336

337

338

339

340

341

342

Figure 2: From the DDI User Guide Part I Page 6

Data collection example
A sample application that addresses the data collection stage of the data life cycle would be a
survey instrument documentation application. Such an application might read source code from
a Computer Assisted Interviewing system, populate a metadata model, generate
documentation, and store a representation of an instrument in DDI format. The application may
submit questions to an online question repository.

In order to create this application, the developer may make use of the following components.

• Low level

o DDI/Metadata model

o Serialization

o Import and export

• Middleware

o ID generation

o Validation

• Application services

o Question bank Web service

• High level

o Graphical user interface

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 12

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 13

343

344
345
346
347

348

349

350

351
352

353

354

355

356

357

358

359

360
361

362
363
364
365
366
367

368
369
370

o Questionnaire visualization component

Data discovery and data analysis example
A Web application allows researchers to browse metadata to discover data suitable for their
work. The application might dynamically produce descriptive statistics based on various physical
data product formats, and allow users to generate custom datasets.

• Low level

o Metadata model

o Serialization for reading DDI

o Exporters for generating custom datasets (which could be used by the statistical
engine)

• Middleware

o DDI Manager to access underlying metadata model.

• Application services

o Variable bank

o Statistical engine

• High level

o Web pages to display study metadata and allow the user to navigate through it

o Dynamic Web pages to display variables selected by the user (data
visualizations), let the user select descriptive statistics, and display results

Integrating components across the data life cycle
DDI allows applications that address different stages of the data life cycle to work together. An
example application could allow researchers to discover data based on questions found in
survey instrument documentation, and then proceed to extract the relevant data and perform
analysis on it. This process can be done using the two previously described applications if they
both follow interoperability best practices.

Publicizing applications
Developers who want information about the application or component to be available to the DDI
community should submit an entry to the DDI application/component catalog. The catalog can
be found at the DDI Foundation Tools site -- http://tools.ddialliance.org/. The application should
contain a DDI Profile that describes which parts of the DDI specification it uses.

371
372

http://tools.ddialliance.org/

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 14

3 References 373
DDI User Guide Part I (http://www.ddialliance.org/ddi3/index.html) 374

DDI User Guide Part II (http://www.ddialliance.org/ddi3/index.html) 375

DDI Tools Foundation Web site (http://tools.ddialliance.org/) 376

DDI Tools Foundation Roadmap (http://tools.ddialliance.org/?lvl1=ftp&lvl2=roadmap) 377

378 DDI Profile Best Practices:
http://www.ddialliance.org/bp/DDIBestPractices_CreatingAProfile.doc.PDF 379

380 DDI Identifiers Best Practices:
http://www.ddialliance.org/bp/ManagementOfDDI3Identifiers.doc.PDF 381

382 DDI URN Resolution Best Practices:
http://www.ddialliance.org/bp/URNsAndEntityResolution.doc.PDF 383

385

386
387

388
389

3.1 Normative 384

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

OASIS, Best Practice, http://www.oasis-open.org/committees/uddi-
spec/doc/bp/uddi-spec-tc-bp-template.doc, 2003

http://www.ddialliance.org/ddi3/index.html
http://www.ddialliance.org/ddi3/index.html
http://tools.ddialliance.org/
http://tools.ddialliance.org/?lvl1=ftp&lvl2=roadmap
http://www.ddialliance.org/bp/DDIBestPractices_CreatingAProfile.doc.PDF
http://www.ddialliance.org/bp/ManagementOfDDI3Identifiers.doc.PDF
http://www.ddialliance.org/bp/URNsAndEntityResolution.doc.PDF

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 15

390

1
2

393

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

 Appendix A. Acknowledgments 39
 The following individuals were members of the DDI Expert Workshop held 10-14 November 39

2008 at Schloss Dagstuhl, Leibniz Center for Informatics, in Wadern, Germany.

 Nikos Askitas, Institute for the Study of Labor (IZA) 39

 Karl Dinkelmann, University of Michigan 39

 Michelle Edwards, University of Guelph 39

 Janet Eisenhauer, University of Wisconsin 39

 Jane Fry, Carleton University 39

 Peter Granda, Inter-university Consortium for Political and Social Research (ICPSR) 39

 Arofan Gregory, Open Data Foundation 40

 Rob Grim, Tilburg University 40

 Pascal Heus, Open Data Foundation 40

 Maarten Hoogerwerf, Data Archiving and Networked Services (DANS) 40

 Chuck Humphrey, University of Alberta 40

 Jeremy Iverson, Algenta Technology 40

 Jannik Vestergaard Jensen, Danish Data Archive (DDA) 40

 Kirstine Kolsrud, Norwegian Social Science Data Services (NSD) 40

 Stefan Kramer, Yale University 40

 Jenny Linnerud, Statistics Norway 40

 Hans Jørgen Marker, Danish Data Archive (DDA) 41

 Ken Miller, United Kingdom Data Archive (UKDA) 41

 Meinhard Moschner, GESIS - Leibniz Institute for the Social Sciences 41

 Ron Nakao, Stanford University 41

 Sigbjørn Revheim, Norwegian Social Science Data Services (NSD) 41

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 16

5

6

417

418

 Wendy Thomas, University of Minnesota 41

 Mary Vardigan, Inter-university Consortium for Political and Social Research (ICPSR) 41

Joachim Wackerow, GESIS - Leibniz Institute for the Social Sciences

Wolfgang Zenk-Möltgen, GESIS - Leibniz Institute for the Social Sciences

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 17

9
420

 Appendix B. Revision History 41

Rev Date By Whom What
0.1 10 Nov 2008 Jeremy Iverson Initial draft
0.9 2009-02-15 Stefan Kramer Changed sections above ToC to heading

3, rebuilt ToC for heading levels 1-2 only.
Added rev. date to Subject. Added future
URLs for DDI BPs to References section.

 421

Data Documentation Initiative

DDIBestPractices_HighLevelArchitectureForApps.doc.PDF
Copyright © DDI Alliance 2009. All Rights Reserved. Page 18

422

3
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

 Appendix C. Legal Notices 42
Copyright © DDI Alliance 2009, All Rights Reserved

http://www.ddialliance.org/

Content of this document is licensed under a Creative Commons License:
Attribution-Noncommercial-Share Alike 3.0 United States

This is a human-readable summary of the Legal Code (the full license).
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

You are free:

• to Share - to copy, distribute, display, and perform the work
• to Remix - to make derivative works

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

• Noncommercial. You may not use this work for commercial purposes.
• Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same or similar license to this one. For any reuse or
distribution, you must make clear to others the license terms of this work. The best
way to do this is with a link to this Web page.

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Apart from the remix rights granted under this license, nothing in this license impairs
or restricts the author's moral rights.

Disclaimer

The Commons Deed is not a license. It is simply a handy reference for understanding the Legal Code
(the full license) — it is a human-readable expression of some of its key terms. Think of it as the user-
friendly interface to the Legal Code beneath. This Deed itself has no legal value, and its contents do not
appear in the actual license.

Creative Commons is not a law firm and does not provide legal services. Distributing of, displaying of, or
linking to this Commons Deed does not create an attorney-client relationship.
Your fair use and other rights are in no way affected by the above.

Legal Code:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

	Subject:
	Document identifier:
	Location:
	Authors:
	Editors:
	Intended audience:
	Abstract:
	Status:
	1 Introduction
	1.1 Problem statement
	1.2 Terminology

	2 Best Practice Solution
	2.1 Definitions
	2.2 Best Practice behavior
	DDI Profiles
	DDI Application Components
	High-level components
	Application services
	Middleware components
	Identifier Generation
	URN Resolution
	DDI Validation
	DDI Manager
	Group Manager

	Low-level components
	Metadata/DDI Model
	DDI Serialization
	Import/Export Components

	Interoperability with Other DDI Applications
	DDI Application Development Resources
	DDI foundation tools program
	Application/component catalog

	DDI Development Pitfalls
	Link integrity
	DDI namespace URNs
	Avoid circular references
	Loss of metadata
	Be aware of encoding

	General Software Development Recommendations
	Documentation
	Tutorials
	Reference
	Technical Reference
	Knowledge Base

	Internationalization
	Logging
	Performance
	Configuration
	Platform independence
	Intellectual property issues of third-party components

	2.3 Discussion
	2.4 Examples
	Applying Architectural Components to Data Life Cycle Application
	Data collection example
	Data discovery and data analysis example
	Integrating components across the data life cycle
	Publicizing applications

	3 References
	3.1 Normative

	Appendix A. Acknowledgments
	Appendix B. Revision History
	Appendix C. Legal Notices

