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Abstract: Clustering data streams in order to detect trending topic on social networks is a chal-

lenging task that interests the researchers in the big data field. In fact, analyzing such data needs

several requirements to be addressed due to their large amount and evolving nature. For this

purpose, we propose, in this paper, a new evolving clustering method which can take into account

the incremental nature of the data and meet with its principal requirements. Our method explores

a deep learning technique to learn incrementally from unlabelled examples generated at high

speed which need to be clustered instantly. To evaluate the performance of our method, we have

conducted several experiments using the Sanders, HCR and Terr-Attacks datasets.
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1 Introduction

Today, social networks have become a fact in our society. They play an empowering
role and have a tremendous impact on our lives. In fact, social networks have become a
modern and revolutionary tool for communication and for sharing news on a very wide
scale and through a variety of themes. Recently, such platforms have played a major
role in our society mainly in the exposition of oppressive political regimes and even the
change of the world. In regards of this emerging popularity of social media, processing
and analyzing the sharing data entered as data streams, namely for extracting the hot
topics under discussion on these networks, is a challenging task for researchers. The
data stream is described as a potentially infinite non-stationary data element sequence

(x(1), x(2),…x(n),...) where the objects of the stream x(i)∈ Rn can be represented by a

vector of attributes of length d, x(i) = [x(i)1, x
(i)

2,x
(i)

3,…, x(i)d]. This data stream is
characterized by the high volume of continuous data, the quick rate of arriving data and
the presence of noisy data. Hence, the problem of exploiting this large amount of data in
social networks, has been raised. This form of data has given place to several researches
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that aim at establishing tools for mining data streams namely for extracting hot topics.
The problem of text clustering can be very complex where the text to be clustered can be
of different granularities and written by different users. In addition, data stream presents
multiple challenges such as the unknown feature space and the change of distribution
over time known as the concept drift problem. Due to these facts, data streams clustering
algorithms raise fundamental issues to be addressed such as the requirements of speed
and memory, the detection of the concept drift and the identification of outliers.
Achieving text stream clustering in order to detect hot topics is the key aim of this paper.
So, we propose a new evolving method of clustering called Stream-Clus that explores a
deep learning technique namely the stacked autoencoders. Our method takes into account
the feature evolution and learns incrementally from unlabeled examples that need to be
clustered instantly. This paper is an extension of a previous work presented in [Rekik
et al. 2016]. The extensions include : (1) The emphasis on the concrete aspect of the deep
learning process. (2) The improvement of the approach and the going into detail of each
step. (3) The introduction of examples that simplify and intuitively describe the method.
(4) The extension of the experiments by preparing a new dataset as well as conducting
a series of new experiments to assess the method’s performance.(5) The inclusion of a
discussion section where we have highlighted our contributions.
The reminder of this paper is structured as follows: the next section is devoted to the
related work. In section 3, we give an overview of deep learning techniques and especially
Autoencoders. In section 4, we explore our method in further details. Section 5 reports
the findings of the experimental results and discusses them. Finally, section 6 concludes
the paper.

2 Related work

Data strams clustering algorithms require generally an efficient process of partitioning
data continuously taking into account memory and computational time restrictions. In
this context, several research has been proposed . This section presents a review of
some previous works related to the target issue. In [Cao et al. 2006], authors proposed
an algorithm called DenStream for discovering clusters in an evolving data stream
where the core-micro-cluster is introduced to summarize the clusters while the potential
core-micro-cluster and outlier micro-cluster structures are proposed to maintain and
distinguish the potential clusters and outliers. However, DenStream requires adjusting
many parameters to have a good clustering result.Authors, in [Chen et al. 2007], proposed
a clustering algorithm called Dstream which uses a grid-based approach. It maps each
input data into a grid and computes the grid density. Then, all grids are clustered based
on their densities using a density-based algorithm. Dstream adopts a density decaying
technique to capture the changes over the data stream, but it is not very appropriate
for the textual data. In [Aggarwal et al. 2003], the proposed CluStream algorithm is
separated into online and offline components. It continuously maintains a fixed number
of micro-clusters. The online component periodically stores detailed summary statics and
the offline component uses only this summary statics and performs clustering using the
k-means algorithm. However, CluStream predefines a constant number of micro-clusters
and it is also risky when the data contains noise. Authors, in[Tareq et al. 2020], proposed
CEDGM algorithm for discovering the clusters of evolving data streams in multi-density
environments. During the first step, authors pursue a density-grid based procedure in
order to produce the Core Micro-clusters (CMCs). Hence, a simple process is used to
minimize the life of the CMCs and allow the removal of unused CMCs. In the second
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phase, The suggested approach requires merging the CMCs into global macro clusters.
Moreover, in order to handle multi-density data and noises, the grid-based procedure
was used as an outlier buffer. Authors, in [Adepu et al. 2019], proposed an Improved
Differential Evolution algorithm (IDE) for the data stream clustering. The first phase
involves determining the closest cluster center for each object from the input data stream
and updating the clusters. Any concept drift occurs around then, the approaching objects
are placed in the buffer before a specified amount of time is reached. In order to find
the optimal number of clusters, the authors adopt an IDE-based optimization. In [Abid
et al. 2018] Abid et al proposed a novelty detection method in data stream clustering
called AIS-Clus that uses the artificial immune system (AIS)-meta heuristic. For each
incoming data, a scoring function is calculated in order to examine the affinity value
of each cluster. The AIS is involved to determine which cluster will absorb this novel
invader by applying both the clonal selection principle which is based on the production
of antibodies to better match the new invader, and the negative selection mechanism
that enables detecting noisy data. However, AIS-Clus results are not constantly good
since it is based on a set of arbitrary parameters. In [Zhu et al. 2019], a new approach
for identifying hot terms was recommended in order to efficiently classify hot topics.
First, the authors proposed a method to discover new terms in network news, that are lost
from the word segmentation algorithm. Then, they used the time distribution information
and the attention of users in order to propose a refined TF-IDF algorithm entitled TA
TF-IDF. Finally, candidate hot news is classified according to the derived hot words
and clustered into clusters representing hot topics. Despite the theoretical advantages
of the methods mentioned above, most of them did not meet all of the requirements of
data stream clustering algorithms: some researches did not handle concept drift, some
had lacked in terms of accuracy and others were not concerned with the problem of the
vocabulary evolution.

3 Background

Deep learning (DL) methods are described as representation learning methods with
multiple levels of representations [Arnold et al. 2011]. Their relevant aspect is their
ablity to learn compressed representations as intermediaries between input data and
desired output which boost their performances. One of the most important requirements
that motivates researchers to explore DL is its adequacy to learn complex functions from
a very large set of examples. Several types of DL techniques can be distinguished namely
the autoencoders. An autoencoder (AE) is a two-layer neural network with one hidden
layer. The first layer along with the hidden layer form the encoder while the hidden layer
and the last layer form the decoder. It is an unsupervised learning algorithm that applies
backpropagation on a set of unlabeled training examples by setting the target value to be
equal to the input. The AE is trained to encode the input x into a representation c(x), so
that the input can be reconstructed from that representation. The main goal of the AE is
to learn a representation for a set of data which is relevant to the tasks of data mining,
typically, for dimension reduction [LeCun et al. 2015]. We present the principal idea of
the AE as follows: Starting with random weights, the AE can be trained by minimizing
the discrepancy between the original data and its reconstruction [Hinton et al. 2006]. It

takes an input vector x ∈ [0,1]d, and maps it to a hidden representation y ∈ [0,1]d
′
using

the following function:

y = σ(W (1)x+ b(1)) (1)
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Where σ is the activation function, W is a d′*d weight matrix and b is the encoding bias
vector. The AE is fine-tuned using back-propagation of error-derivatives to adjust its
weights and make its output as similar as possible to its input. Several types of AEs exist
in the literature [Vincent et al. 2008] [Lucas et al. 2018]. One of the most famous is
the Sparse AE [Andrew. 2011] . It has proved its suitability with sparse data like those
presented in the social streams. These AEs discover interesting features by putting a
sparsity constraint on the weights. This constraint allows only a small number of units to
be activated. Given a sparsity parameter p and pj the average activation of the hidden
unit j, we have:

p̂j =
1

m

m∑
i=1

[a
(2)
j (x(i))] (2)

Where m is the number of the training samples and a
(2)
j (x(i)) is the activation of the

hidden neuron j for the ith training sample. The sparse AE works on enforcing the
constraint p̂j=p. Activations of the hidden unit must be near 0 to satisfy this constraint.
So, an extra penalty term will be added which is:

s2∑
j=1

p log
p

p̂j
+ (1− p) log

1− p

1− p̂j
(3)

Where s2 is the number of neurons in the hidden layer. This penalty term can also be
written as follow:

KL(p||p̂j) = p log
p

p̂j
+ (1− p) log

1− p

1− p̂j
(4)

Where KL is the Kullback-Leibler (KL) divergence between p and p̂j . Indeed, the
training process of the sparse AE is distinguished from the simple AE by its objective to
optimize the cost function which is :

cost = (
1

2n
)

i=n∑
i=1

(xi − x̂i)
2 + β

j=m∑
j=1

KL(p||p̂j) (5)

Where n is the number of layers, m is the number of the training samples, xi is the sample
i, x̂i is the constructed sample i and β is a parameter which indicates the sparsity penalty
per layer.AEs, can be stacked to form the so called stacked autoencoder (SAE). This deep
nature provides a high level of feature learning where each layer is trained separately
with an AE. The SAE encodes the input data X and produces Y and then decodes Y and

produces X̂ . The weights between the layers X and Y are tuned by the error e = X̂-X.
The networks continue to encode Y and produce Z and then to decode Z and produce

Ŷ . The error e = Ŷ -Y is used later to tune the weights between layers Y and Z. These
encoding and decoding operations will be repeated until it reaches the desired number of
layers [Deng et al. 2010]. SAEs have showed highest performance on several problems
[Kandaswamy et al. 2016] [Gehring et al. 2013].
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4 Proposed method Stream-Clus

In this section, we present a detailed description of our proposed method called Stream-
Clus (Stream Clustering) to extract hot topics from social streams and how deep learning
techniques are exploited for clustering text streams. Data streams must be processed to
extract the useful information instantly. Because of the high speed and the huge size of
data that arrive continuously, our proposed clustering algorithm should be efficient to
manage the large amount of data and adaptive to manage the unknown change in the
distribution of data. Stream-Clus should also take into account the vocabulary evolution
and handle the concept drift in real time. Our algorithm involves the training of a stacked
sparse AE with evolving vectors of features (attributes) having unknown space, in order
to reduce the data dimensionality and to improve the efficiency of the social streams
clustering. The overall process of our algorithm is presented in figure 1. Stream-Clus is

Figure 1: The overall workflow of our proposed method

composed of two phases:
The static phase: During this phase, historical data are clustered. Therefore, a step of
preprocessing is achieved. Later, a representing and training step is managed. Then, the
clustering algorithm Partitioning Around Medoids (PAM) [Kaufman et al. 1990] is used
to obtain the initial clusters.
The streaming phase: It takes into account features selected and clusters obtained
during the static phase. In this streaming phase, for each new arriving stream, the text
is preprocessed, the features are evolved and the clusters are updated. Some clusters
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disappear, others grow and new clusters appear.

4.1 Static phase

4.1.1 Text preprocessing

The aim of this step is to filter and reduce the huge size of textual data. Therefore, this
step leads to more compact and structured data. For this purpose, all punctuation marks
are removed as well as non-text-character and stop words that have no additional value.
Also, non-English text is considered as irrelevant, and, URLs, reply and re-post syntaxes
are removed.

4.1.2 Feature selection

The feature selection is one of the most interesting steps of our algorithm. It aims at
identifying an optimal subset of interesting attributes to represent tweets. During this
phase, a feature selection method is applied to select the best features. Thus, we filter the
set of attributes to extract the discriminating and relevant information. Accordingly, the
frequency of each word of the historical data is calculated. This is done by dividing the
number of tweets where a word appears by the total number of tweets composing the
static phase as follow:

Frequency(word) =
NumberOfTweetsContainingWord

TotalNumberOfTweets
(6)

If the frequency of the word is greater than the user-defined threshold α, this word is
considered as a relevant one, thus, as a feature. The threshold is fixed using a development
set composed by a set of tweets. The relevant words will be considered as a first part
of the initial feature vector. The second part will be presented as a set of empty cases.
Its size is determined by the user. It is meant to take into account relevant words that
can appear in the streaming phase. Otherwise, a feature vector is defined by the set of
frequent words identified as features. An example of an initial feature vector is illustrated
in figure 2.

Figure 2: Initial feature vector

4.1.3 Data representation and dimension reduction

During this phase, our method takes, for all batches (also called streams), the same input
vector size. Hence, the input vector size should be determined from the beginning. So,
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after the selection of all features of the static phase, all tweets of this phase are represented
by a binary vector that is composed of two parts. The first part is formed depending
on the presence of each attribute, previously selected, in each tweet. If the attribute i is
present in the tweet, the case i of the tweet vector representation is filled by one, else, it
is filled by zero. The second part which corresponds to the empty part is filled with zeros.
It is designed to take into account features that can be added in the following streams
(see Fig.3). Then, a binary representative vector of the whole static phase is formed. It is
prepared in the same manner than the vector of each tweet. Regarding the high dimension

Figure 3: Example of a tweet vector in the static phase

of the data, a SAE is used to reduce dimension. It learns all the tweets vectors of the static
phase and returns low-dimensional representations of the input vectors, which will be
clustered later (see Fig.4). These representations are defined as reduced vectors presented
with values that vary from zero to one. When the SAE finish learning, we introduce
as input the representative vector of the static phase, and the learnt SAE will return a
low-dimensional representation vector of the static phase. This compact representation
aims at representing the whole static phase in a synthetic and global manner. Then, the
obtained SAE will be used to represent the tweets of the following batches in order to
take into account the temporal evolution of data streams and to integrate the historical
data with the new streamings.

4.1.4 Initial clustering

Our algorithm consists, during the static phase, of clustering the low-dimensional repre-
sentations of tweets obtained by the SAE. For this purpose, the representations of the
data produced by the SAE are clustered using the (PAM) clustering algorithm [Kaufman
et al. 1990]. To solve the problem of the choice of the number of clusters, we have
proposed to reapply iteratively the PAM algorithm with k = k + 1 and to calculate the
intra-similarity of the obtained clusters. Then, we compare this intra-similarity with a
user defined parameter S that we have fixed following a set of experiments on a corpus
of development. Finally, we decide for the optimal number of clusters. Thus, we obtain
the initial clusters of tweets representing the initial topics of the historical data.

4.2 Streaming phase

4.2.1 Feature evolution

In the streaming phase, new relevant words appear with each stream, so new features
could be added. Therefore, a feature evolution method is applied. Some features will
be deleted and others will be added. For this purpose, we have performed the same
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Figure 4: Process of the dimension reduction phase using the SAE model

preprocessing step described in 4.1.1 for all the arriving textual data. Then, for each
stream, the frequencies of all words are calculated (see Equation.6). If the frequency
of a word is greater than the user-defined-threshold β, then, this word is considered
as a feature. If a previous feature is missed in k successive streams (k is defined by
the user using the development set), then, it is considered as no more relevant, and it
should be removed from the feature vector. In fact, even if this word will return to be a
feature during the following streams, it will be considered as a new feature that concerns
a new topic. The new features take the places of those removed in the feature vector.
For example, if the feature vector of the stream S is as follow: And if, during the S+k

successive streams, the words 2, 3 and n-1 become no more relevant, they should be
deleted. Thus, we obtain: We assume, however, that two relevant words have to be added
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as new features: the word i and the word j. Hence, they will take the places of the deleted
attributes 2 and 3, while the position n-1 remains empty. Thus, the feature vector of the
stream S+k is as follow: Furthermore, if there are no more places, new features will

be added in the empty cases of the feature vector. For example, if during the stream,
two relevant words appear, then, one relevant word (Wordx) will take the place of the
remaining case (the place of word n-1 deleted previously). Moreover, we will consume
one empty place for the second relevant word (Wordy) as follow: Actually, the number

of the frequent words that can be considered as features is limited. So, in some cases,
some features will not be considered. This feature evolution process allows to take into
consideration the temporal aspect of the streams and to adapt the existing feature to the
new ones.

4.2.2 Data representation and dimension reduction

Our method consists of the tweets representation by three parts vectors corresponding to
three dimensions: the past, the present and the future. The first part represents the past.
It is defined as the low dimensional representation of the previous stream (or the static
phase in the case of the first stream), produced by the SAE. This part allows representing
all previous data in a synthetic manner. This compact representation is intelligent and
incremental since it captures the relevant information extracted from all previous data. In
fact, the integration of this part in the representation of the tweets of the current stream
ensures a continuous link between the evolving data during the dynamic phase. The
second part represents the present. It designs the representation of each tweet in a bag
of words (BOW) manner. This part is the only real one which represents each arriving
tweet depending on the features it contains. The third part designs the future. We have
composed this part of a set of cases filled with zeros to take into consideration relevant
words that could be added in the future. This overall representation of tweets of the
current stream will be later integrated with the arriving data of the following streams
throw the first part of their low dimensional representations. This recurrent process
allows adapting current data to historical ones and cope with the evolving nature of the
text stream data (see Fig.5). In a similar manner that in the static phase, the representative
vector of each stream is prepared at this step. Indeed, at each stream, the SAE learns the
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tweets vectors and produces corresponding semantic low-dimensional representations.
The SAE produces also the compressed representation of the representative vector of
the whole stream based on the model formed by the learned vectors of the tweets of the
same stream. This low-dimensional representation of the stream will be used as a first
part in the tweet vectors of the following stream in order to integrate all previous data
with those who arrive continuously.

Figure 5: An example of a tweet representation in the dynamic phase

4.2.3 Evolving clustering

For each batch, we achieve the clustering of the low-dimensional representations of
the tweets obtained by the SAE with the same method as in the static phase. In fact, a
batch is defined as a stream during the streaming phase of our method. e notice that
with the progress of streams, clusters (topics) will evolve. Some clusters will disappear,
others will grow and new clusters will appear. So, a mapping step between clusterings at
time t and t-1 is required to ensure the permanent tracking of the clusters evolution with
the progress of streams over time. First, a fusion parameter is calculated between each
cluster C, produced by the clustering at time t, of the current batch and every cluster G,
produced by the clustering step at time t-1, of the previous batch. As every cluster is
represented by the set of words contained in its tweets, then the fusion parameter FP can
be calculated as follow:

FP (C,G) =
NumberOfCommonWords(C,G)

Min(TotalNumberWords(C), T otalNumberWords(G))
(7)

The FP is calculated to conclude how much two topics from two following streams
are similar as they share a set of the same words, and if they consequently should be
merged. If the value of the FP between two clusters is greater than the user-defined-
fusion threshold γ (fixed on a development set), then these two clusters are considered
as similar. So, they are specific to the same topic. Thus, they will be merged together
even if they are expressed by different words. . This is explained by the fact that even if
the words used to describe a topic change, several other frequent words described the
subject will be absolutely used in common. In some cases, a cluster G of the current
stream can be merged with several clusters of the previous stream. In this case, the
cluster G will be merged with the cluster that ensures the maximum value of the fusion
parameter. In addition, a cluster that did not merged during the λ previous streams will
be no more considered as a relevant one since it is representing an old topic which is
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no more discussed. Therefore, it will disappear. Moreover, if a cluster appears with the
current batch, and it cannot be merge with any cluster from those obtained in previous
streams, then it will be identified as a new cluster representing a new topic (see Fig. 6).
The final clusters obtained are the clusters that represent the current hot topics in social
networks streams.

Figure 6: The mapping step in the streaming phase

5 Experimental evaluation

In this section, we discuss the experimental results of our proposed method. In order
to evaluate the performance of our algorithm, we conducted several experiments based
on the two datasets which have been widely used in the literature and will be firstly
introduced: Sanders [Saifet al.2013] and Health Care Reform HCR [Speriosu et al.
2011]. Also, we constructed our personal dataset that we called it Terr-Attacks which
we used to evaluate the performance of our method. In fact, the implementation of our
method requires a set of development tools to automate its main tasks. For this purpose,
we used the R language to efficiently develop our SAE based method. Therefore, a set
of packages in R are used as the SAENET package [Stephen et al. 2015] to ensure the
implementation of the SAE. To reach efficient clustering results, different parameters
need to be adjusted in our algorithm according to our development set. We compare our
results with three of the most relevant algorithms DenStream [Cao et al. 2006], Dstream
[Chen et al. 2007] and CluStream [Aggarwal et al. 2003], which have given the best
results in the context of the data streams clustering.

5.1 Test datasets

The datasets which are used in this evaluation step are divided into two phases, static and
streaming. Sanders dataset consists of 5512 hand-classified tweets about four different
topics collected between 18 October 2011 and 20 October 2011 [Saif et al. 2013] (see
table1). After a selection step, only English tweets are considered which are 3065 tweets.
The second dataset HCR is an annotated dataset composed of tweets dealing with the
health care reform in the USAand containing the hashtag (# hcr) in March 2010 [Speriosu
et al. 2011]. It consists of 2516 tweets with 8 targets (see table1). After the preprocessing
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step, 780 tweets are considered. Moreover, we constructed our own dataset called Terr-
Attacks using the twitteR package from the framework R [Gentry. 2016].We focused
on five of the most dangerous terrorist attacks and we extracted tweets discussing them
using a set of key words. Our dataset consists of 3200 tweets on 5 topics (see table 1).
Statistics of the mentioned datasets are presented in table 2.

Dataset Phases Number of tweets Topics Tweets

( per Topic)

Sanders

Static 500
Apple 260

Google 240

Streaming 2565
Apple 606

Google 548

Microsoft 797

Twitter 614

HCR

Static 365
HCR 180

Obama 150

Streaming 450
Democrats 130

Gop 120

Conservatives 80

Liberals 30

Teaparty 20

Hcr 70

Terr-Attacks

Static 500
TurkeyAttack 300

GermanyAttack 200

Streaming 2700
TurkeyAttack 400

GermanyAttack 200

RussiaAttack 500

SwedenAttack 700

LondonAttack 900

Table 1: Datasets’ clusters distribution

5.2 Evaluation of the proposed method

5.2.1 Evaluation of the data representations

In order to evaluate our approach, we carry out a series of experiments where the first
objective is to assess the performance of the SAE with our data. For this purpose, we
should evaluate the efficiency and compactness of the low-dimensional representations
produced by the SAE. Therefore, we use the SAE with seven hidden layers for the
Sanders and HCR datasets, and with four hidden layers for the Terr-Attacks dataset. Also,
we adjusted the number of iterations to the minimum necessary during the evolving
phase. Thus, each AE is learnt with 3000 iterations except with the static phase where
4000 iterations are done in the learning step since the SAE has enough time to learn.
All these parameters are fixed using a development set composed by subsets of our
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Sanders HCR Terr-Attacks

Tweet’s size minimal 9 9 12

Tweet’s size maximal 140 140 138

Tweet’s size average 47 71 83

Word’s number minimal per tweet 2 2 2

Word’s number maximal per tweet 23 26 24

Word’s number average per tweet 9 13 15

Table 2: Datasets statistics

datasets separately.Then, we follow the experimental protocol presented in Figure 7. The
aim of this evaluation step is to compare results obtained with BOW vectors and SAE-
reduced vector using the SVM classifier [Noble. 2006]. First, we apply the SVM method
[Noble. 2006] to the binary vectors representing the preprocessed tweets of the static
phase (classification1). Second, we train the SAE with the binary vectors representing
the preprocessed tweets on a learning corpus (80% of the static phase) to obtain their
low-dimensional representations. Then, the learned SAE predicts the low-dimensional
representations of the preprocessed tweets composing the test corpus (20% of the static
phase). This test corpus was composed by 20% of tweets of each cluster in order to prevent
to have a predominant class in the 20% used for test. Actually, we have chosen this split
(80/20) by referring to the Pareto principle [Sanders. 1987]. Later, we apply the SVM
method to these low-dimensional representations produced by the SAE (classification
2) and we compare the results of the two performed classifications. This experimental

Figure 7: Experimental protocol of the SAE evaluation
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protocol is followed mainly to estimate the capacity of the SAE of discovering interesting
low-dimensional representations of the input vectors. The obtained results are presented
in table 3. The SVM classifier is first applied on the feature vectors of the tweets during

Evaluation Sanders HCR Terr-Attacks

SVM with binary representations 71% 60% 64%

SVM with SAE representations 91% 82% 88%

Table 3: Classification accuracies of the binary and low-dimensional representations
using the SVM

the static phase. Second, the SVM is applied to the low-dimensional representation of
the same tweets produced by the SAE. The results of the classification of the data by the
SVM are improved remarkably with the use of the SAE. Thus, the SAE is well trained
and produces interesting low-dimensional representations of the input vectors that will
be clustered later.

5.2.2 Evaluation of the dynamic clustering

At this stage, we adjusted the size of the stream to 200 tweets for the Sanders and Terr-
Attacks datasets and 100 tweets for the HCR dataset. The choice of the parameters is
supported in figure 8 which presents the influence of streams size on the accuracy of our
dynamic clustering for the Sanders, HCR and attacks datasets . The accuracies of our
method vary each time where a new stream arrives. The obtained results are depicted in
figure 9. For the Sanders dataset, the tweets of the static phase are labeled according to
2 topics. In the first stream a new topic appears (see Fig.9). The results are stable and
bred. During the fourth stream, another new topic appears. The clustering results are
still high, the same as all streams, which proves that the appearance of new topics do
not disturb the clustering results of our method. For the HCR dataset, the static phase
is composed by tweets about 2 topics. With the first stream, a new topic appears and
detected efficiently by our method. During the third, fourth and fifth streams, new topic
appears. The accuracy of our method is still high. Concerning the Terr-attacks dataset,
the tweets composing the static phase are divided into 2 topics. New topics appear in the
third, the fifth and the eighth streams. This apparition does not disturb the performance
of clustering and the accuracy keeps its elevation which proves that our method can
efficiently detect new clusters. So, the performance of our method is explained by: (1)
the efficiency of the evolving representation of the tweets of each stream, and (2) the
application of the SAE. However, the low fall of the accuracies during some streams can
be explained by the heterogeneity of their data.

5.2.3 Evaluation of the mapping step

Actually, in order to perform scalable clustering, the mapping step between the groups
of time t and the groups of time t-1 is required. In fact, the mapping is a phase which
guarantees that each old stream’s clusters are updated in accordance with the new clusters
generated during the current stream. Thus, it allows for the continuous monitoring of
the evolution of the clusters over time. In order to evaluate the mapping step, we have
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Figure 8: Streams size influence on the accuracy of our dynamic clustering

Figure 9: Accuracy evolution over streams of the three datasets

realized several experiments to choose the thresholds parameters of fusion and deletion
over streams.Then, we compared the number of real clusters with the number of obtained
clusters (see Fig.10). We can conclude that the real number of clusters in each stream is
almost the same as the number of clusters that are produced by our method. This proves
that the mapping step that we fulfilled to track the evolution of clusters is efficient and
requisite. However, the difference, in some streams, between the real number of clusters
and the produced ones by our method can be explained by the dependence of the results
of the mapping step on the quality of the performed clustering in each stream in the
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Figure 10: Real number of clusters VS produced number of clusters

Sanders and HCR datasets. Although, for Terr-Attacks dataset, the difference between
the real number of clusters and the produced ones by our method can be explained by
the heterogeneity of the vocabulary composing the same cluster between two streams.
Moreover, when our method did not perform the necessary fusion of the old cluster and
the new detected one during a stream, this result affects also the number of clusters in
the following stream containing this old cluster. In addition, this new cluster that was
not merged will be treated as an outlier and later will be deleted. However, in case our
method produces a number of clusters lower than the real number of clusters, the results
of the following streams will not be affected. In addition, we also used the measure of
the Hamming distance to evaluate the difference between the real clusters and those
obtained by our method in each stream [Hamady et al. 2008]. So, we presented the
obtained clusters and the real clusters in each stream by a binary vector where each
bit represents the presence/absence of each cluster. Then, we calculated the average

Hamming distanceH for all streams. Hence, we obtainedHSanders=0.23 ,HHCR=0.28

and HTerr−Attacks=0.13. So, the produced clusters are so similar to the real clusters
except in some streams with a slight difference. In fact, in some streams where our
method produces more clusters than the real ones, these small additional clusters will be
treated as outliers so that they will not affect the results of our method. Thus, the exploited
process to track the clusters evolution over the streams allows to extract efficiently the
real clusters.

5.3 Performance comparison

For comparison purposes, we used the CluStream, DenStream and Dstream algorithms ,
and we fixed their parameters by following a set of experiments. Then, we implemented
these methods using the StreamMOA [Hahsler. 2020] package of the R language. The
final results are tabulated in table 4. In this latter, the precision was obtained by counting
the number of positive class predictions that were correct. However, we calculated the
recall by counting how many positive class predictions were obtained from all positive
examples in the dataset. The obtained results show the efficiency of our proposed system
in retrieving hot topics from social streams, as compared to other algorithms in all
datasets, in terms of recall, accuracy, F-measure and the number of clusters.
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Datasets Evaluation mea-

sures

CluStre-

am

DenStre-

am

Dstre-

am

Stream-

Clus

Sanders

(4clusters)

Recall 0,967 0,753 0,694 0,87

Precision 0,451 0,562 0,37 0,899

F-measure 0,615 0,644 0,482 0,884

Number of clusters 4 4 6 4

HCR

(7clusters)

Recall 0,88 0,98 0,828 0,69

Precision 0,35 0,33 0,508 0,759

F-measure 0,5 0,5 0,63 0,723

Number of clusters 7 1 2 7

Terr-Attacks

(5clusters)

Recall 0,7 0,57 0,65 0,85

Precision 0,63 0,54 0,52 0,79

F-measure 0,66 0,55 0,58 0,82

Number of clusters 5 8 4 5

Table 4: Performance comparison

6 Discussion

Our method is capable of dealing with the evolution of data streams that come continu-
ously at a rapid rate. This is achieved through the mechanism we have suggested for the
evolution of features, which is presented by the elimination of the no longer important
features and the inclusion of new features that appear with each stream. This process
ensures the efficient adaptation of new features with the old relevant ones. Moreover,
our method allows interpreting tweets in a scalable manner in order to take into account
the incremental character of the data streams. In addition, our approach relied mainly
on the application of the SAE. The use of such technique led our algorithm to deal with
the immense mass of data streams. The SAE used a series of hidden layers that reduced
the representation dimension of the tweets without considering the zero positions and
while preserving the most significant characteristics. As a matter of fact,exploring the
representations of the tweets produced by the SAE helps our approach to effectively
cluster the evolving data streams. Often, one of the benefits of our approach has been the
exploration of the PAM method. PAM definitely allows us to obtain results that are not
only efficient, but also stable since it does not rely on random values during its execution.
Furthermore, our method succeeds in considering the evolutionary temporal aspect of the
clusters produced at each stream. This is accomplished via the mapping phase between
clusters created during consecutive streams. As it succeeded in following the evolution
of the clusters over time, SAE-Clus is also able to detect the drift concept. The benefit of
our method lies also in its speed. This is due the RStudio platform that we have used for
learning the SAE. Indeed, the R language is known by a high speed, particularly with
the DL algorithms. The speed of our method is also due to the adjustment of an optimal
iterations number for training the SAE in order to ensure a good performance.However,
we are conscious, of the method’s limits when dealing with datasets that are completely
unbalanced. So, we will strive to improve our method in the future to deal with this kind
of datasets.
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7 Conclusion and future work

In this paper, we presented a new method based on a DL architecture to extract relevant
topics from social streams continuously. First, data are represented in an evolving manner.
Then, a SAE is trained to produce low dimensional representation for the data which will
be clustered in a scalable way to detect the real time evolution of topics. The experiments
prove that our method extracts efficiently the hot topics and exceeds relevant data stream
algorithms. Our main perspective will concern the improvement of our method to handle
multilingual tweets. Also, we tend to focus on the detection of menacing tweets clusters.
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