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Abstract: Semi-supervised learning is a branch of machine learning focused on improving the

performance of models when the labeled data is scarce, but there is access to large number of

unlabeled examples. Over the past five years there has been a remarkable progress in designing

algorithms which are able to get reasonable image classification accuracy having access to the

labels for only 0.1% of the samples. In this survey, we describe most of the recently proposed

deep semi-supervised learning algorithms for image classification and identify the main trends

of research in the field. Next, we compare several components of the algorithms, discuss the

challenges of reproducing the results in this area, and highlight recently proposed applications of

the methods originally developed for semi-supervised learning.
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1 Introduction

The rise of convolutional neural networks over the last decade revolutionized image
analysis. With large scale human-annotated datasets like ImageNet [Deng et al., 2009], it
is possible to learn an image classifier with close-to-perfect accuracy. The next challenge
is to get similar results with significantly less human labeling effort.

In this paper we describe the latest advances in semi-supervised learning, a branch of
machine learning focused on improving the performance of an algorithm using a small
set of labeled and a large set of unlabeled samples.

These algorithms rely on the premise that obtaining unlabeled data is cheap. Although
we have to note that most of these algorithms fail when the distribution of the unlabeled
data is different from the distribution of the labeled data. In fact, some methods use
special tricks that explicitly require the distributions to be the same.

There is a lot of literature on semi-supervised learning. Many recent papers refer to
two classical works for a general overview [Chapelle et al., 2006, Zhu and Goldberg,
2009]. In this survey we will focus on more recent algorithms which build on top of
existing neural network architectures designed for regular supervised learning. These
algorithms introduce regularization terms to the loss functions, augment the inputs and
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perform various tricks developed for self-supervised learning. This paper notably does
not cover transductive SVMs (which were a popular method in early 2000s), graph-based
methods and methods based on generative models.

In parallel work, [Ouali et al., 2020] compiled another survey on semi-supervised
learning for image classification, including graph-based and generative methods. Our
work has more focus on critical analysis and comparison of the proposed algorithms.

This paper is an extension of the work presented at CODASSCA 2020 workshop
[Vanyan and Khachatrian, 2020]. The paper is organized as follows. We start from basic
definitions. Section 3 continues with the description of consistency regularization and
describes the first attempts to make it reliable for a few benchmark datasets. Sections
4 and 5 describe the two major research directions in deep semi-supervised learning
research. Section 6 discusses the important details of the algorithms and the challenges
of proper evaluation and reproducibility. Finally, Section 7 shows two applications of
the methods developed for semi-supervised learning.

2 Definitions

Let X denote the labeled dataset with samples (x, p) ∈ X . Here, p is a one-hot C-
dimensional vector indicating the ground-truth label of x, where C is the number of
classes in the dataset. U denotes a dataset without labels. It is assumed that the samples
in X and U are drawn from the same distribution.

Let fθ(x) be a function (neural network) with parameters θ. It outputs a probability
distribution on the labels. The goal of deep semi-supervised learning is to learn parameters
θ using labeled and unlabeled datasets such that fθ produces correct labels for unseen
samples.

Data augmentation is a critical component in many semi-supervised learning algo-
rithms. By Augment(x) we denote a stochastic operation that augments the sample
x such that its label remains the same. In case of images, Augment(x) might crop or
resize the image, change the brightness or color saturation etc. ByH(·, ·) we denote the
cross entropy: H(p, q) = −

∑
i

pi log(qi).

Most of the algorithms described in this paper are being tested on popular image
classification datasets: CIFAR-10, CIFAR-100 [Krizhevsky et al., 2009], SVHN [Netzer
et al., 2011] and ImageNet [Deng et al., 2009]. CIFAR datasets have 50000 images
for training, SVHN has 73257 images. All these datasets are designed for supervised
learning, so to use them in a semi-supervised setup, part of their labels is hidden from
the algorithms during the training. On the other hand, the validation sets are usually
kept intact, which makes these setups a little bit unrealistic. Some papers also perform
experiments on STL-10 dataset [Coates et al., 2011] which by design has a large subset
of unlabeled examples. SVHN also has a special extension called SVHN-extra with 531K
additional images which is sometimes used as an additional source of unlabeled images.

3 Consistency regularization

The main concept that drives research in semi-supervised learning for the past five years
is called consistency regularization. The core idea is to make sure the neural network
produces similar results for the augmented versions of the same unlabeled image. It is
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enforced by an additional term in the loss function:

LU =
1

|U |
∑
x∈U

‖fθ(Augment(x))− fθ(Augment(x))‖22 (1)

Note that Augment(x) is a stochastic function, and fθ might also be stochastic (e.g. due
to dropout). So the difference is most likely non-zero.

3.1 Π-model

As far as we know, consistency regularization was first introduced in an algorithm
called Π-model [Laine and Aila, 2017]. In particular the authors used the following loss
function:

L = LX + λ(t)LU (2)

LX =
1

|X|
∑

(x,p)∈X

H(p, fθ(x)) (3)

Here, λ(t) is the relative weight of the consistency loss term, which slowly grows from
zero to its final value λ over the training process. λ is a hyperparameter. In Π-model,
Augment(x) means just two operations: translation by a ∼ Uniform(−2, 2) pixels
and a random horizontal flip (for all datasets, except SVHN). This augmentation strategy
is called weak augmentation in many subsequent papers.

3.2 The problem of the unstable target

One critical problem with the above formulation of the consistency loss is that it is not
stable. This was discovered in the same paper and a partial solution was given. The
authors suggested to update one of the terms in the consistency loss (the one with no
augmentation) less often and slowly. In particular, they update it once per epoch, and use
exponential moving average of the outputs of the snapshots taken at each epoch. This
trick is called temporal ensembling.

ftemp.ens(x) = αftemp.ens(Augment(x)) + (1− α)fθ(Augment(x)) (4)

LU =
1

|U |
∑
x∈U

‖fθ(Augment(x))− ftemp.ens(x)‖22 (5)

The first formula is computed once per epoch. Indeed, this helped to stabilize the training
and improve the performance.

3.3 Mean Teacher

The authors of Mean Teacher algorithm [Tarvainen and Valpola, 2017], presented in
NIPS 2017, gave a better solution to the unstable target problem. They use two separate
models: a Student network with θ parameters and a Teacher with θ′ parameters. Student
is trained as usual. Teacher is not trained via backpropagation. Instead, its weights are
updated at each iteration using the weights from the Student network:

θ′t = αθ′t−1 + (1− α)θt (6)
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On unlabeled examples, the Teacher network provides the learning target:

LU =
1

|U |
∑
x∈U

∥∥fstudent
θ (Augment(x))− f teacher

θ′ (Augment(x))
∥∥2
2

(7)

This work highlighted another problem in the space of semi-supervised learning
algorithms. The number of hyperparameters in such setups is getting quite large: the
choice of the neural architecture (backbone); the ratio of labeled and unlabeled examples
in a batch; early stopping criteria; decay rate α in the exponential moving average
formula; learning rate schedule; weight decay.

In such conditions, one way to make comparisons with earlier work more fair is
to re-implement the old models in the same codebase. The authors of Mean Teacher
re-implemented Π-model. Mean teacher consistently worked better than the previous
methods.

4 Stronger Augmentations

One line of research to improve the performance of semi-supervised algorithms is to
use various kinds of data augmentation techniques, so that the inputs given to the two
branches of the neural model (or, to the two separate networks) are sufficiently different.

4.1 Virtual Adversarial Training and Entropy Minimisation

Instead of using data-specific augmentation functions, the authors of [Miyato et al.,
2018] suggest to generate an adversarial example. The idea is similar to the adversarial
training method introduced in [Goodfellow et al., 2014b], when the regular loss function
is applied to the perturbed version of the input sample:

Ladv = H (p, fθ(x+ radv)) (8)

radv = argmax
r:‖r‖<ε

H(p, fθ(x+ r)) (9)

Note that radv can be approximated using Fast Gradient Sign method introduced in the
same paper: radv = εsgn(∇xH(p, fθ(x))). Also note that this operation requires access
to the correct label p. For unlabeled examples, we do not have p, so we calculate radv
by taking the perturbation which changes the prediction of the network by the largest
magnitude (measured by cross-entropy):

radv = argmax
r:‖r‖<ε

H(fθ(x), fθ(x+ r)) (10)

The authors of [Miyato et al., 2018] suggest a fast approximation of this operation.
Another notable difference in VAT and previous methods is that VAT uses cross-

entropy instead of Euclidean distance in the consistency loss term.
Another problem with semi-supervised learning methods is the lack of confidence in

predictions on unlabeled examples. On the other hand, it is assumed that each unlabeled
image belongs to only one class, so the prediction on each image should have low entropy.
There are several ways to achieve that, but the first one, as far as we could find, was
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introduced in the same paper. It adds an additional term into the loss function to minimize
the entropy of predictions.

Lent =
1

|X|+ |U |
∑

x∈X∪U

H(fθ(x)) (11)

H(p) = −
∑
i

pi log pi (12)

4.2 MixMatch

MixMatch is an algorithm that combinesmany ideas, including consistency regularization,
exponential moving average of network weights and a special trick for obtaining new
unlabeled examples called MixUp.

MixUp, introduced in [Zhang et al., 2017], is a way to construct new samples by
taking a convex combination of existing samples. For each pair of samples (x1, p1) and
(x2, p2), MixUp performs the following steps:

1. Sample λ ∼ Beta(α, α)

2. λ′ = max(λ, 1− λ) to make sure it’s close to 1

3. x′ = λ′x1 + (1− λ′)x2

4. p′ = λ′p1 + (1− λ′)p2

5. Return (x′, p′)

The second step was introduced in MixMatch and makes sure that the samples from
MixUp(A,B) are “closer” to A.

MixUp can be interpreted as an advanced augmentation algorithm. Its main difference
from regular methods is that it constructs new samples based on two original samples.
As these two samples can have different labels, the resulting sample’s label is set to be
the convex combination of the two labels in the C dimensional space, where C is the
number of classes.

The semi-supervised learning algorithm used in MixMatch paper is essentially the
same as in the papers discussed above, except there is an additional stage of modifying
both the labeled and unlabeled sets. This stage is called MixMatch.

X ′, U ′ = MixMatch(X,U, T,K, α)

LX =
1

|X ′|
∑

(x′,p′)∈X′

H(p′, fθ(x
′))

LU =
1

|U ′|
∑

(x′,q′)∈U ′

‖q′ − fθ(x
′)‖22

L = LX + λ(t)LU

In short,MixMatch(X,U) function applies MixUp to both labeled and unlabeled
examples, and uses the average prediction of multiple augmented versions of the same
unlabeled image. As taking average might reduce the entropy in the predicted distribution,
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the authors perform an additional step of sharpening the probabilities with temperature
T which is another hyperparameter.

The authors attempt to follow the setup used in [Oliver et al., 2018]. They note, that
the best values for two of the new hyperparameters they have introduced do not vary in
the datasets they have tested on: sharpening temperature is always set to T = 0.5 and
the number of augmentations performed on the same unlabeled image is alwaysK = 2.
Instead, the best values for α hyperparameter of the Beta distribution used in MixUp and
the coefficient λ in the main loss function are different for CIFAR versions and SVHN.

To make evaluations more stable, they use an exponential moving average of the
model parameters with a decay rate of 0.999 when evaluating on the validation set.
The results beat all previously reported results. This is the first paper which tests the
performance of SSL algorithms on CIFAR-10 with only 250 labels.

4.3 Unsupervised Data Augmentation

Unsupervised Data Augmentation (UDA) is another model quite similar to VAT, which
replaces virtual adversarial example generation with a very strong augmentation. In
particular, they use RandAugment [Cubuk et al., 2019b], which at the time was the
strongest data augmentationmethod known for CIFAR datasets. RandAugment is inspired
by AutoAugment [Cubuk et al., 2019a]. AutoAugment uses a search method to combine
all image processing transformations in the Python Image Library (PIL) to find a good
augmentation strategy. In RandAugment, search is not used, instead the augmentations are
uniformly sampled from the same set of transformations in PIL. Basically, RandAugment
is simpler and requires no labeled data as there is no need to search for optimal policies.
It is important to note, that it is not obvious how RandAugment should be configured for
other datasets. As with many other models, the branch of the network which guesses the
label on the non-augmented version of the image uses a fixed copy of weights and does
not pass the gradient through.

Additionally, UDA uses a training technique, called Training Signal Annealing
(TSA), to reduce overfitting when there is a huge gap between the amount of unlabeled
data and that of labeled data. TSA gradually releases the “training signals” of the labeled
examples as training progresses. It ignores a labeled example if the model’s confidence
on that example is higher than a predefined threshold, which increases according to a
schedule. The threshold for the confidence is increased during the training by one of the
three rules: logarithmic, linear and exponential.

UDA is tested on CIFAR-10 and SVHN, but also on several sentence classification
tasks. To perform data augmentation on sentences, they used backtranslation: translated
each sentence into French and back into English using an existing machine translation
model. Although they reported state-of-the-art results on almost all benchmarks, this
paper was also rejected from ICLR 2020 due to the lack of novelty1. Later it was accepted
at NeuriPS 2020.

4.4 ReMixMatch

The team behind MixMatch made their algorithm even more complicated by adding two
more components. The resulting system, called ReMixMatch [Berthelot et al., 2019],
was presented at ICLR 2020 conference. The two main additions are:

1 https://openreview.net/forum?id=ByeL1R4FvS

https://openreview.net/forum?id=ByeL1R4FvS
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1. Distribution alignment. The predicted probabilities on a batch of unlabeled examples
are scaled to match the distribution of the labels present in the labeled subset. This
allows to get significantly higher accuracies in CIFAR-100 with very limited labeled
examples. In practice, the scaling coefficients are estimated using a running average
of 128 batches.

2. Anchored augmentation. The target label (or probability distribution over labels)
for unlabeled examples is determined using weakly augmented versions of the
images, while the prediction for the same images is computed by using strongly
augmented versions. Weak augmentation is the same augmentation used in previous
works. Strong augmentation used in ReMixMatch is called CTAugment. CTAugment
uniformly samples transformations from Python Image Library to apply to the
images (just like RandAugment) but dynamically updates the magnitudes for each
operation during the training. CTAugment’s advantage is that it does not require an
optimization on a supervised task and has no sensitive hyperparameters, so it can
easily be integrated in semi-supervised models. The authors provide the following
intuition for CTAugment: for each transformation CTAugment learns the likelihood
that it will produce an image which is classified correctly.

There are few other tricks, like using a self-supervised loss of predicting the rotation
angle (an idea borrowed from S4L model, see Section 5.2). ReMixMatch shares values
with MixMatch for multiple hyperparameters, but notably, the number of strongly aug-
mented samples used in the consistency loss term is changed from k = 2 to k = 8. In
addition to the experimental setups used in previous papers, the authors report perfor-
mance on CIFAR-10 with only 40 labels, although they mention that they had to change
one hyperparameter to make their model work in that setup: the coefficient for the loss
term responsible for rotation prediction.

4.5 FixMatch

FixMatch [Sohn et al., 2020] is another iteration on this direction. Similar to UDA, it
uses weakly augmented version of an image to guess the label, and forces the network to
output the same label on a strongly augmented version of the same image. FixMatch uses
CutOut [DeVries and Taylor, 2017] along with RandAugment or CTAugment as a strong
augmentation, which makes it even stronger. In contrast to UDA and other methods,
FixMatch performs argmax on the guessed label, so it essentially becomes equivalent to
pseudo-labeling. Additionally, FixMatch ignores the guessed labels if the confidence is
lower than τ = 0.95 threshold.

Unlike MixMatch, FixMatch does not change the λ weight of the consistency loss
term during the training. The thresholding operation likely compensates for that. λ is
always set to 1. FixMatch uses SGD with a cosine annealing schedule. It does not use
MixUp, sharpening or distribution alignment.

The paper does extensive analysis on the role of various components, which is
relatively rare in this field. The outcomes of their analysis might be helpful in subsequent
research:

1. Stochastic gradient descent with momentum performs better than Adam optimizer

2. Nesterov momentum is not significantly better than the regular momentum

3. Weight decay is extremely important. Changing weight decay value by 10x might
result in 10% absolute increase in error rate.
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4. Sharpening instead of pseudo-labeling does not significantly change the results, so
pseudo-labeling is chosen for simplicity.

5. The batch size for unlabeled data is set to be µ = 8 larger than the one for labeled
data. µ < 8 results in worse performance. µ > 8 does not improve the performance.

6. Cosine decay of learning rate performs better than no decay. The difference between
linear and cosine decay schemes is not significant.

7. ImageNet requires a completely different set of hyperparameters (See Appendix
C of [Sohn et al., 2020]. The experiments are performed with batch size 1024 for
labeled and 5120 for unlabeled samples.

Finally, FixMatch reports performance on an extremely low label scenario which the
authors call “barely supervised learning”. When only one image is available per class,
the performance of FixMatch strongly depends on the choice of that single image. They
show that when the samples are “representative” of the class, the performance can reach
80% using only 10 labels (one per class). On the other hand, if the samples are poorly
chosen, the accuracy is below 40%. The “representativeness” is measured by a technique
which requires all available labels, so this paper does not suggest an automatic method
to determine the best samples.

4.6 AlphaMatch

AlphaMatch [Chengyue Gong, 2020] is another improvement on top of UDA. The
authors propose to use alpha-divergence to measure the label consistency instead of
Euclidean distance. They replace the consistency regularization with

Ex∼U,x′∼Px
[Dα(pθt (·|x)‖pθ(·|x′))] , (13)

here Px is a distribution that prescribes a random augmentation on x that keeps the label
of x unchanged, Dα(·||·) is the alpha divergence with α ∈ (0, 1) ∪ (1,∞), defined as:

Dα (pθt(·|x)‖pθ(·|x′)) =
1

α(α− 1)
Ey∼pθt (·|x) [ρDα (y|x)]− 1, (14)

with

ρDα(y|x) :=
(
pθt(y|x)
pθ(y|x′)

)α−1

. (15)

Notice that Dα(·||·) reduces to KL divergence when α → 0 or 1.
The authors show that using large α (e.g., α = 1.5) can potentially obtain better

results than smaller α, but the training is more unstable and may eventually diverge to
worse results. This is because the iterative update of parameters does not correspond to
an optimization of a well-defined objective and has no guarantees to converge in theory.
To address this problem, they propose an optimization-based framework for consistency
matching, which yields an EM-like algorithm with some convergence guarantees.

5 Convergence with self-supervised learning

Another direction of research in semi-supervised learning is its convergence with self-
supervised learning methods. Self-supervised learning is a class of representation learning
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algorithms where the supervision signal can be computed without human annotations.
Representations learned using these methods allow quick fine-tuning for downstream
tasks. There is a rich literature in this area, and some of the ideas have been borrowed
to semi-supervised learning. It is important to note that strong augmentations are also
critical in this line of research.

5.1 Methods based on Contrastive Predictive Coding

In [Oord et al., 2018], a novel method for unsupervised representation learning was
introduced. It is based on the so called InfoMax principle, which attempts to maximize
mutual information between representations of different “views” of the image (usually
defined as various patches extracted from the same image). The representation is trained
by predicting the representation of the closest patch using a contrastive loss, inspired
by ideas from metric learning. The method is called Contrastive Predictive Coding. The
representations learned using this method act as high quality features for downstream
tasks. The model has many technical details, e.g. using PixelCNN for aggregating
representations of patches.

[Henaff et al., 2020] extends this model with several tricks (e.g. layer normalization,
random flipping of patches, etc.) and applies it to semi-supervised setups. In particular,
they learn an unsupervised representation based on contrastive predictive coding using all
images from ImageNet dataset, and then use the labeled subset to train another classifier
on top of the learned representations. Note that the classifier is not a linear shallow model,
it is another ResNet. This setup is pretty hard to compare with other semi-supervised
models. The authors report results with various percentages of labeled examples. There
are two commonly used benchmarks for semi-supervised setup for ImageNet: with 1%
labeled data (10 samples per class) and with 10% labeled data. CPCv2 is applied to both
setups.

This paper was submitted to ICLR 2020, but was rejected. Later, another paper criti-
cally analyzed the results obtained using CPC and similar methods based on maximizing
mutual information, and concluded that the experimental successes presented in those
papers are mostly due to similarities of these methods to deep metric learning (the triplet
loss, hard negative mining etc.) and not because of the quality of mutual information
maximization [Tschannen et al., 2019]. Later, this direction resulted in SimCLR, a more
sophisticated contrastive learning framework [Chen et al., 2020].

5.2 Semi-supervised Self-supervised Learning

Another complicated, multi-stage algorithm was described in [Zhai et al., 2019], pub-
lished in ICCV 2019. They suggest to integrate self-supervised learning techniques into
semi-supervised learning. In particular, they focus on two known self-supervised learning
methods:

1. Rotation. Each unlabeled image is rotated by 90, 180 and 270 degrees and along
with the original one are given to a classifier which attempts to predict the rotation
angle (4-class classification). The classifier has a ResNet backbone, so it learns to
extract useful features.

2. Exemplar. Two augmented versions of the same image are passed through the
classifier and the learned representations are trained to be similar. Triplet loss is
used to avoid collapse of representations.
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These methods produce representations without using any labels. The new method
suggested in this paper, called semi-supervised self-supervised learning (S4L) adds a
regular classification loss term to the loss function, which is computed only for labeled
examples. At each iteration, two equal sized batches are sampled: one from the set of
labeled examples, another one from the set of unlabeled examples. The loss for rotation
prediction or exemplar is computed either on unlabeled batch only, or on both batches.
This choice does not affect the final performance of these models.

In the last part of the paper the authors describe a three-stage system which brings
state-of-the-art results on ImageNet:

1. Train a semi-supervised model using Virtual Adversarial Training (along with en-
tropy minimisation) with an additional classifier to predict rotation of the image.

2. Use the model obtained from the first stage to generate pseudo labels for all images
of ImageNet. The labels are generated by taking the average of predictions across
five random crops and four rotations of the same image. Train the same algorithm
on the dataset using the predicted labels. Initalize the weights from the network
obtained in the first stage, and then train for 18 epochs while decaying the learning
rate after 6th and 12th epochs.

3. Fine tune the model obtained in the second stage by using only the original labels.
This step is trained with weight decay 3 · 10−3 and learning rate 5 · 10−4 for 20
epochs. Learning rate is decayed 10x every 5 epochs.

The resulting model is called MOAM (mix of all models). The number of design choices
made in MOAM make it impractical to use for other datasets.

5.3 CoMatch

In CoMatch [Junnan Li, 2020b], the ideas of consistency regularization, entropy min-
imization and contrastive learning converge into a single architecture. Additionally,
CoMatch integrates ideas of graph-based SSL. The authors interpret contrastive learning
as a form of class-agnostic consistency regularization, which enforces the same image
with different augmentations to have similar embeddings, while different images have
different embeddings.

CoMatch jointly learns the encoder f(·), the classification head h(·), and the pro-
jection head g(·). Each image has two compact representations: a class probability p
produced by the classification head and a low-dimensional embedding z produced by
the projection head. Each of these two representations is trained with the help of the
other. The classification head is trained using ground-truth labels and memory-smoothed
pseudo-labels of (weakly supervised versions of) unlabeled images. Pseudo-labels are
smoothed by aggregating information from nearby samples in the embedding space.
The projection head is trained using contrastive learning on a pseudo-label graphWq,
where samples with similar pseudo labels are encouraged to have similar embeddings.
Pseudo-label graphWq is the target to train an embedding graphWz . Embeddings are
computed on strongly augmented versions of the images.

CoMatch jointly optimizes three losses: a supervised classification loss on labeled
data Lx, an unsupervised classification loss on unlabeled data, which is defined as the
cross-entropy between the pseudo-labels qb and the model’s predictions, and a graph-
based contrastive loss on unlabeled data Lctr

u .
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Figure 1: Error rate on CIFAR-10 with 4000 and 40 labeled examples over time.

L = Lx + λclsL
cls
u + λctrL

ctr
u

Lcls
u = 1

µB

µB∑
b = 1

1(max qb ≥ τ)H(qb, p(y|Augs(ub)))

whereAugs refers to strong augmentations,B is the batch size for labeled images, µB is
the batch size for unlabeled images, λcls and λctr are scalar hyperparameters to control
the weight of the unsupervised losses. Note that, similar to FixMatch, pseudo-labels with
low confidence are not used for supervision. Please refer to the paper for more details.
The authors also report the performance of this architecture followed by self-supervised
pretraining based on SimCLR.

5.4 SelfMatch

SelfMatch [Byoungjip Kim et al., 2021] is a more simple approach to combine con-
sistency regularization and contrastive self-supervised learning. SelfMatch consists of
two stages: self-supervised pre-training based on contrastive learning followed by semi-
supervised fine-tuning with consistency regularization. For the first stage, SelfMatch
adopts SimCLR [Chen et al., 2020]. For data augmentation in the this stage SelfMatch
uses random crop and color distortion. The second stage is essentialy the FixMatch
algorithm with RandAugment for strong augmentations. This approach reaches 4.06%
error rate on CIFAR-10 with 4000 labeled examples, compared to 4.13% error rate of a
fully supervised baseline.

6 Discussion

6.1 Towards the performance of fully supervised methods

As seen in Table ??, the performance of semi-supervised algorithms on all major bench-
marks improved significantly over the past four years.
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CIFAR-10 CIFAR-10 SVHN STL-10

Method 4k labels 40 labels 1k labels 1k labels

Π-Model 12.36 ± 0.31 4.82 ± 0.17

Temporal ensembling 12.16 ± 0.24 4.42 ± 0.16

Mean Teacher 12.31 ± 0.28 3.95 ± 0.19

VAT 11.36 ± 0.34 5.42 ± 0.22

VAT + EntMin 10.55 ± 0.05 3.86 ± 0.11

MixMatch 6.24 ± 0.06 47.54 ± 11.50 3.27 ± 0.31 10.18 ± 1.46

ReMixMatch 5.14 ± 0.04 19.10 ± 9.64 2.83 ± 0.30 6.18 ± 1.24

UDA 4.32 ± 0.08 29.05 ± 5.93 2.23 ± 0.07

FixMatch (RA) 4.26 ± 0.05 13.81 ± 3.37 2.28 ± 0.11 7.98 ± 1.50

FixMatch (CTA) 4.31 ± 0.15 11.39 ± 3.35 5.17 ± 0.63

AlphaMatch 8.65 ± 3.38

CoMatch 8.49 ± 2.15

CoMatch + SimCLR 7.45 ± 1.02

SelfMatch 4.06 ± 0.08 6.81 ± 1.08 2.51 ± 0.07

Table 1: Error rates of the described algorithms on CIFAR-10, SVHN and STL-10.

Method Top-1 Top-5

UDA 31.22 11.20

FixMatch 28.54 10.87

CPC v2 (fixed) 9.50

CPC v2 (fine-tuned) 8.80

S4L MOAM 30.27 11.20

S4L MOAM + pseudo label 28.44 10.04

S4L MOAM full 26.79 8.77

Table 2: Error rate of the described algorithms on ImageNet with 10% labels.

Fig. 1 shows the advancement on CIFAR-10 with 4000 and 40 labeled examples over
time. Current methods essentially repeat the success of the fully supervised baseline with
the same network architecture (50K labeled examples) using just 8% of the labels. On
SVHN, which is arguably an easier task, similar performance is achieved with roughly
1.5% of the labels. Note that it is not known whether this success will easily translate to
more complicated neural architectures which achieve around 1% error rate on the fully
labeled CIFAR-10 (e.g. [Wang et al., 2019]).

For ImageNet, S4L paper reports 5.9% Top-5 (21.43% Top-1) error rate for a fully
supervised baseline with a version of ResNet-50 backbone. As seen in Table ??, the
described models have yet to reach such performance with 10% of the labels.

6.2 Evaluation challenges

The number of variables in semi-supervised setups is so large that is quite hard to compare
different algorithms. In [Oliver et al., 2018], a serious attempt has been made to create a
fair comparison setup for CIFAR-10 and SVHN. In particular, the authors:

– Re-implemented the best known methods in a single code repository
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– Fixed the backbone classifier network: WideResNet-28-2 with batch normalization
and leaky ReLU

– Fixed the optimizer: Adam with fixed β1 and β2

– Used fixed data augmentation and preprocessing strategy, (except that SVHN does
not use horizontal flips).

– Used equal hyperparameter tuning budget for all algorithms. This is implemented
by running 1000 trials of Gaussian-Process-based black box optimization in Google
Cloud.

The model selection was performed on the full validation set, which is not a realistic
scenario, and it is acknowledged by the authors. Their hyperparamater search resulted in
different initial learning rates for Adam optimizer for different methods. Also, in case
of VAT, the best value for ε (which controls the magnitude of adversarial perturbation)
turned out to be different for CIFAR-10 and SVHN.

The authors report the following issues they discovered in their analysis:

1. Fully-supervised baselines trained on limited labels are not tuned correctly in many
papers. The authors suggest to use the same budget for tuning the hyperparameters
of the fully supervised setup. They discover that with more fair experimental setup,
the difference between the supervised baselines and the new algorithms is actually
lower. The authors also showed that with much stronger regularization it is possible
to reach 13.4% error rate on CIFAR-10 with 4000 labels.

2. Transfer learning from (resized) ImageNet is a strong baseline, and it is ignored in
most papers. The best result they got from transfer learning (12.09% error) is better
than the best result in semi-supervised learning (13.13% error).

3. All models assume that the distribution of unlabeled examples follows the distribution
of labeled examples. It is shown that when this assumption does not hold, using
unlabeled examples might hurt the performance.

4. To analyze the role of additional unlabeled examples, the authors use SVHN-Extra
dataset and monitor the performance on SVHN given different number of unlabeled
examples. They show that some methods get worse performance when exposed to
too many unlabeled examples. The authors also analyze the effect of the number of
labeled examples.

5. Finally, the authors show that in a more realistic treatment of validation data, when
the size of the validation set is just 10% of the (labeled) training set, then it is not
feasible to reliably distinguish between strongly and weakly performing models.

This work had some positive impact on further research in semi-supervised learning.
Almost all subsequent papers working on CIFAR-10 and SVHN used the same underlying
architecture, most authors re-implemented previous best models in the same codebase.
Unfortunately, this is still not the case with experiments on ImageNet, experimental
setups still vary a lot.

There is less progress with respect to other problems highlighted in this paper. For
example, the authors still continue to use full validation sets for model selection and for
comparing different algorithms. S4L paper is the only one we could find that devotes a
special section on the discussion of this issue.

Transfer learning from larger image datasets is also ignored in most papers. The
synergy of transfer learning and semi-supervised learning is not yet explored.
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MixMatch ReMixMatch FixMatch (RA)

ReMixMatch paper 84.92

FixMatch paper 52.46 80.90 86.19

CoMatch paper 52.90 83.02

Table 3: Accuracy of various implementations of the same algorithm on CIFAR-10 with

40 labels.

6.3 Re-implementations of the algorithms

As recommended in [Oliver et al., 2018], several authors have re-implemented previously
introduced algorithms in their own codebase, and reported the performance of their
versions. This is a good practice, which helps to highlight how different implementations
can change the final scores.

We demonstrate this on a setup with a relatively high variance: CIFAR-10 with
just 40 labels. This setup was first studied in ReMixMatch paper. Later, the authors of
FixMatch algorithm ran the same setup with their own implementation of it, along with
MixMatch, which was never tried on this setup before. Finally, CoMatch paper reports
the results using their own implementations of MixMatch and FixMatch. The results are
reported in Table ??. Although most papers report the median of five runs, the difference
in scores across implementations ranges from 0.5 to 4 percentage points.

6.4 Augmentation strategies

As demonstrated above, data augmentation has a critical role in most semi-supervised
learning algorithms. Table 4 shows the evolution of augmentation strategies used for
consistency regularization. RandAugment, which was developed for general-purpose
image classification task, was the first augmentation which was demonstrated to improve
the performance in UDA [Xie et al., 2019]. Many coefficients used in RandAugment
have been originally tuned on the full datasets, which was not fair in the SSL setup.
CTAugment was developed in the ReMixMatch paper [Berthelot et al., 2019] for the
needs of semi-supervised learning. FixMatch showed that CutOut provides significant
boost on top of other strong augmentation methods.

6.5 Ignoring examples

One of the challenges in semi-supervised learning algorithm is to identify samples which
will harm the training process and ignore them. The first condition under which a sample
might be ignored is when there are very few labeled examples and there is a risk that the
model will overfit on them. UDA is the only algorithm we know that explicitly ignores
those labeled examples for which the network gives predictions with a confidence higher
than a threshold. UDA decreases this threshold over time.

The second condition applies to unlabeled images. The prediction of a model on
an unlabeled example might be incorrect and can harm the training. Pi-model attempts
to solve this by having very small coefficient for the consistency regularization in the
early phases of training, and gradually increasing it later. Newer algorithms keep this
coefficient fixed. Instead, in FixMatch, the unlabeled images for which the predictions
have low confidence are simply ignored. CoMatch uses the same strategy.
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Method
Augmentation on

labeled examples

Augmentation on

unlabeled examples

Π-model Weak Weak

Mean Teacher Weak Weak

Virtual Adversarial Training None Adversarial

UDA Weak RandAugment

MixMatch Weak MixUp + Weak

ReMixMatch Weak MixUp + CTAugment

FixMatch Weak RandAugment/CTAugment + CutOut

AlphaMatch Weak CTAugment

CoMatch Weak RandAugment

SelfMatch Weak RandAugment

Table 4: Augmentation strategies of SSL algorithms which include a form of consistency

regularization.

AlphaMatch develops the “softer” version of this idea from FixMatch. They show
that when α in the alpha-divergence term is greater than 1, the samples with larger
confidence get more weight in the training.

7 Applications of semi-supervised learning

The success of the consistency regularization in semi-supervised learning algorithms mo-
tivated its applications in other machine learning problems. Here we show two examples.

7.1 Learning with noisy labels (DivideMix)

Supervised learning with a dataset with noisy labels is an interesting problem in machine
learning research. DivideMix [Junnan Li, 2020a] is a recently proposed strategy to learn
with noisy labels using semi-supervised learning. DivideMix trains two networks in
parallel. At the end of each epoch, both networks model their per-sample loss distributions
with a Gaussian Mixture Model to divide the dataset into a clean labeled set which is
assumed to have correct labels, and an unlabeled set which is assumed to have noisy
labels. Each of the networks is trained with the two (labeled and unlabeled) defined by
the other network using a slightly modified version of the MixMatch algorithm described
above. The split between clean and noisy sets induced by one network is not used by
itself to avoid confirmation bias.

7.2 Stabilizing Generative Adversarial Networks (CR-GAN)

Generative Adversarial Networks [Goodfellow et al., 2014a] (GANs) are the dominant
method for image generation. A GAN consists of two neural networks: a generator and a
discriminator, which are trained together in a minimax game. Discriminator’s role is to
detect whether the given image is real (comes from the dataset) or it is generated by Gen-
erator. Essentially, discriminator performs binary classification of images. The biggest
problem with GANs is the stability of their training. In [Zhang et al., 2020] a remedy
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to this problem is proposed based on consistency regularization. The authors propose
an additional loss term for the Discriminator’s training objective which encourages it to
have similar internal representations for an image and its augmented version. They show
that this simple change leads to significant performance and stability improvements in
many kinds of GANs.

8 Conclusion

In this paper we have reviewed the recent developments in semi-supervised learning
algorithms designed for image classification tasks. Most of the methods are based on
consistency regularization and actively use various data augmentation strategies. Few
methods attempt to combine these with ideas from unsupervised representation learning
and metric learning. A significant progress in terms of accuracy on several benchmarks
has been observed, which motivated applications of consistency regularization in other
tasks. Still most semi-supervised learning methods suffer from instability with respect to
hyperparameters and implementation details, and fail when the distribution of unlabeled
samples is shifted. We expect the future work in this area to focus on making the methods
more stable for increased usage in real-world applications.
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