
The Asymptotic Behavior of N -Adic Complexity

Andrew Klapper∗

Abstract

We study the asymptotic behavior of stream cipher security measures associ-
ated with classes of sequence generators such as linear feedback shift registers and
feedback with carry shift registers. For nonperiodic sequences we consider normal-
ized measures and study the set of accumulation points for a fixed sequence. We
see that the the set of accumulation points is always a closed subinterval of [0, 1].
For binary or ternary FCSRs we see that this interval is of the form [B, 1− B], a
result that is an analog of an earlier result by Dai, Jiang, Imamura, and Gong for
LFSRs.
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1 Introduction

The purpose of this paper is to study the asymptotic behavior of security or randomness
measures for infinite sequences. The kinds of measures we are interested in arise in the
following manner. There is a class G of finite state devices that generate infinite sequences
over some alphabet Σ, such that every eventually periodic sequence is generated by at
least one element of G. We also assume there is a notion of the size of a generator in
G, a positive real number. In general this measure should be close to the number, n,
of elements of Σ needed to represent a state of the generator. Typically “close” means
differing from n by at most O(log(n)). Examples of such classes of generators include the
linear feedback shift registers (LFSRs), where the size of an LFSR is the number of cells,
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and feedback with carry shift registers (FCSRs) [6], where the size of an FCSR is the log
of the connection number (the log with base equal to the size of the output alphabet).

We denote by λG(S) the minimum size of a generator in G that outputs the eventually
periodic sequence S. In many cases there is an algorithm that efficiently finds the
minimum size generator of S given a prefix of S whose length is a small (typically linear)
function of λG(S). We call this a G-synthesis algorithm. Examples include the Berlekamp-
Massey algorithm for LFSRs [9] and the 2-adic rational approximation algorithm for
FCSRs [6]. When a G-synthesis algorithm exists, the quantity λG(S) is a measure of the
security of S.

For sequences that are not eventually periodic, such measures are undefined. How-
ever, we can apply the measure to the various prefixes of S and try to understand the
asymptotic behavior. For n > 0, let λGn(S) denote the minimum size of a generator from
G that outputs the first n symbols of S as its first n outputs. The sequence of numbers
(λGn(S) : n = 1, 2, · · · ) is called the G-complexity profile of S. For a sequence that is not
eventually periodic, the limit of the λGn(S) is infinite, so we normalize the measure by
letting δGn(S) = λGn(S)/n. For the typical measures we are interested in we have

λGn(S) ≤ n+O(log(n)),

so that
0 ≤ δGn (S) ≤ 1 + o(n).

In general the δGn(S) do not have a single limit, but rather have a set T (S) of accumulation
points. Our goal is to determine what sets of accumulation points are possible.

It is immediate for such a measure λGn(S) that

λGn+1(S) ≥ λGn(S)

for all n ≥ 1, so that

δGn+1(S) ≥ n

n+ 1
δGn(S) ≥ δGn(S)− 1

n+ 1
. (1)

This allows us to show that the set of accumulation points is a closed interval.

Theorem 1.1 Let {λn : n = 1, 2,∞} be a sequence of integers, 1 ≤ λn ≤ n, satisfying
λn ≤ λn+1 for all n = 1, 2, · · · . Let δn = λn/n ∈ [0, 1]. Then the set T of accumulation
points of the δn is a closed interval [B,C].
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Proof: First note that under these hypotheses, for any n we have

δn − δn+1 =
λn
n
− λn+1

n+ 1

≤ λn(
1

n
− 1

n+ 1
)

=
λn

n(n+ 1)

<
1

n
.

Let B and C be the least and largest accumulation points of T , respectively. Then there
are sequences of integers n1 < n2 < · · · and m1 < m2 < · · · so that

lim
i→∞

δni
= B and lim

i→∞
δmi

= C.

By deleting some integers, we may assume that m1 < n1 < m2 < n2 < · · · and that

|B − δni
| > |B − δni+1

|

and
|C − δmi

| > |C − δmi+1
|

for all i. Let B < D < C. Take i sufficiently large that

δni
< D and δmi

> D.

Let ki be the largest index between mi and ni so that

δki
≥ D.

Then
δki+1 < D

and
δki
− δki+1 ≤ 1/ki

by equation (1). It follows that
lim
i→∞

δki
= D.

That is, every real number in the interval [B,C] is an accumulation point, which proves
the theorem. 2

Dai, Jiang, Imamura, and Gong studied this problem in the case when G is the set of
LFSRs over F2, the finite field with two elements, and λG is linear complexity [2]. They
showed that in this case T (S) is an interval of the form [B, 1 − B], with 0 ≤ B ≤ 1/2.
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They also showed that for every such B there are sequences S with T (S) = [B, 1 − B].
Dai, Imamura, and Yang, and Feng and Dai have also studied this problem for vector
valued non-periodic sequences [1, 3]. In this setting, however, there are much more
limited results. They showed that there is a number associated with the generalized
continued fraction expansion of a multisequence that is a lower bound for the maximum
accumulation point and an upper bound for the minimum accumulation point. One
might ask whether T (S) is a closed interval centered at this number. Theorem 1.1 shows
that the set is a closed interval but leaves open the remainder of this question.

The primary goal of this paper is to do a similar analysis for N -adic complexity,
where N is an integer greater than 1. In fact we show that if N is a power of 2 or 3, then
exactly the same theorem holds, although we use different techniques. For more general
N we obtain weaker results.

Consider the alphabet Σ = {0, 1, · · · , N − 1}. Recall that N -adic complexity is the
security measure for N -ary sequences associated with the set G of N -ary feedback with
carry shift registers (FCSRs) [6, 7, 8]. Such a register (with a particular initial state)
can be identified with a rational number a/b with gcd(b,N) = 1 in much the same way
that a linear feedback shift register can be identified with a rational function a(x)/b(x).
The output sequence is then the N -adic expansion of a/b,

a

b
=
∞∑
i=0

siN
i. (2)

We denote the set {
∞∑
i=0

siN
i : si ∈ {0, 1, · · · , N − 1}

}
of N -adic numbers by ZN . It is well-known that ZN is an algebraic ring. If Φ(a, b) =
max(|a|, |b|), then the size of the register (measured by the number of N -ary memory cells
needed) differs from λ(a, b) = logN(Φ(a, b)) by at most a constant times logN(λ(a, b)).
Thus we take λ(a, b) as our security measure. That is, we let Φn(S) denote the least
Φ(a, b) so that

a

b
≡

∞∑
i=0

siN
i (mod Nn)

and let λn(S) = logN(Φn(S)). Let δn(S) = λn(S)/n. Also, we let Φ(S) denote the
least Φ(a, b) so that equation (2) holds, if such a pair a, b exists. We let Φ(S) = ∞
otherwise. Let λ(S) = logN(Φ(S)), the N-adic complexity of S. The set of numbers
{λn(S) : n = 1, 2, · · · } is sometimes called the N-adic complexity profile of S. Note that
Φn(S) ≤ Nn − 1 since we can take

a =
n−1∑
i=0

siN
i, b = 1.
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Thus λn(S) < n and 0 ≤ δn(S) < 1. It is known that there is an effective register
synthesis algorithm for the N -adic generalization of feedback with carry shift registers,
even if N is not a prime [8], so N -adic complexity is an important security measure for
N -ary sequences.

Dai, et al. [2] analyzed the asymptotic linear complexity by using known results
relating linear complexity to continued fraction expansions of power series. Although
there is a relationship between integer continued fractions and N -adic complexity, the
techniques used by Dai, et al. in the linear complexity case cannot apparently be used
to analyze the asymptotic properties of the N -adic complexity. Thus we use entirely
different methods here. As it turns out, these methods can also be used in the case of
linear complexity (even more simply than for N -adic complexity, in fact) and result in
much simpler proofs than were given by Dai, et al.

2 A Basic Lemma

Our goal is to show that the set T (S) of accumulation points of the normalized N -adic
complexity profile of an ultimately nonperiodic sequence S is a closed interval centered
at 1/2. In fact we see in the next section that this holds when N ≤ 4, and in general
when the least accumulation point is at most logN(2). In this section we develop the
technical tools needed to prove this.

Our goal is to understand the asymptotic behavior of δn(S). If S is ultimately
periodic, then Φn(S) is constant for n sufficiently large, so the limit of the δn(S) exists
and is zero. Therefore from here on in this section we assume that S is not ultimately
periodic.

We need a lemma to bound δn+1(S) in terms of δn(S).

Lemma 2.1 Suppose that Φn+1(S) > Φn(S). Then

1. For all N ≥ 2 we have

Nn

2Φn(S)
≤ Φn+1(S) ≤ NΦn(S)

2
+

Nn+1

2Φn(S)
.

2. For all N ≥ 2 we have

n− 1

n+ 1
− n

n+ 1
δn(S) ≤ δn+1(S).

3. For all N ≥ 2 and ε > 0, if n is sufficiently large and δn(S) > max(1/2 + ε, 1 −
logN(2/(1 + ε))), then δn+1(S) < δn(S).
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Proof: Let
a

b
≡

∞∑
i=0

siN
i (mod Nn) (3)

with gcd(b,N) = 1 and Φ(a, b) = Φn(S). By the assumption that Φn+1(S) > Φn(S),
equation (3) does not hold modulo Nn+1. Thus for some integer v with v not divisible
by N we have

a

b
≡ vNn +

∞∑
i=0

siN
i (mod Nn+1).

Suppose also that
c

d
≡

∞∑
i=0

siN
i (mod Nn+1)

with gcd(d,N) = 1 and Φ(c, d) = Φn+1(S). Then

a

b
≡ c

d
+ vNn (mod Nn+1).

It follows that ad− bc ≡ bdvNn (mod Nn+1). Since v is nonzero, we have

Nn ≤ |ad− bc| ≤ 2Φn(S)Φn+1(S).

This implies the lower bound in the first assertion. The lower bound on δn+1(S) in the
second assertion follows by taking logarithms and dividing by n+ 1.

To obtain an upper bound on Φn+1(S) we construct a “pretty good” rational ap-
proximation modulo Nn+1. Then Φn+1(S) is upper bounded by the value of Φ on this
approximation. Note that a and b are relatively prime: if they weren’t, then we could
factor out a common factor and reduce Φ(a, b).

First assume that 0 < |b| < |a|. Let u be an integer so that u ≡ bv (mod N) and
|u| ≤ N/2. Since aN and b are relatively prime, there exist integers e and f so that

aNe− bf = uNn − a. (4)

Let g = 1 +Ne, so that g ≡ 1 (mod N) and

ag − bf = uNn. (5)

It then follows that ag − bf = uNn ≡ bvgNn (mod Nn+1), so that

a

b
− f

g
≡ vNn (mod Nn+1).

Thus
f

g
≡

∞∑
i=0

siN
i (mod Nn+1),
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and gcd(g,N) = 1, so Φ(f, g) is an upper bound for Φn+1(S). In fact there are many
choices for (f, g) satisfying equation (5). By the relative primality of aN and b, the
solutions to equation (5) with g ≡ 1 (mod N) are exactly the pairs (f, g) = (f0, g0) +
(raN, rbN) where (f0, g0) is a fixed solution and r ∈ Z. In particular, we can take
|f | ≤ |a|N/2 = NΦn(S)/2. We then have ag = bf + uNn so that

|g| ≤ |bf |
|a|

+
|u|Nn

|a|

≤ N |b|
2

+
|u|Nn

|a|

<
NΦn(S)

2
+

Nn+1

2Φn(S)
.

Therefore

Φn+1(S) ≤ NΦn(S)

2
+

Nn+1

2Φn(S)
. (6)

This proves the upper bound in the first assertion when |b| < |a|.
Now let 0 < |a| < |b|. As in the previous case there are integers g = 1 + Ne and

f with ag − bf = uNn. By adding a multiple of (bN, aN) to the pair (g, f), we may
assume that |g| ≤ |b|N/2. It follows that

|f | < NΦn(S)

2
+

Nn+1

2Φn(S)
.

Finally we prove the third assertion. Let ε > 0 and suppose that δn(S) > max(1/2 +
ε, 1− logN(2/(1 + ε))). Take n large enough that

1

2
+ ε >

1

2
+

log(ε−1)

2n
. (7)

From δn(S) > (1/2) + ε and equation (7) it then follows that

Nn+1

2Φn(S)
< ε

NΦn(S)

2
.

Also, from δn(S) > 1− logN(2/(1 + ε)) it follows that

(1 + ε)
NΦn(S)

2
< Φn(S)(n+1)/n.

It then follows that

Φn+1(S) ≤ NΦn(S)

2
+

Nn+1

2Φn(S)

≤ (1 + ε)
NΦn(S)

2
< Φn(S)(n+1)/n.
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Taking logarithms and dividing by n+ 1 then gives δn+1(S) < δn(S) as desired. 2

This will suffice to characterize sets [B,C] of accumulation points of normalized N -
adic complexities of sequences when

1−B ≥ lim
ε→0

max

(
1

2
+ ε, 1− logN

(
2

1 + ε

))
= max

(
1

2
, 1− logN(2)

)
.

This is equivalent to having B ≤ min(1/2, logN(2)). If N ≤ 4, then 1 − logN(2) ≤
1/2, so this suffices to characterize all sets of accumulation points. For larger N the
characterization is incomplete.

3 Sets of Accumulation Points

Let S be an ultimately non-periodicN -ary sequence. In this section we show that in many
cases the set of accumulation points T (S) satisfies T (S) = [B, 1 − B] for some B. Let
T (S) = [B,C]. Let m1,m2, · · · be a sequence of indices such that B = limn→∞ δmn(S).
If λn+1(S) = λn(S), then δn+1(S) < δn(S). If we replace mn by the next index j so
that λj(S) < λj+1(S), then the resulting sequence will have a limit D ≤ B. Since B is
the minimal accumulation point of the δi(S), D = B. Therefore we may assume that
λmn(S) < λmn+1(S).

Lemma 3.1 Let N ≥ 2 and B < 1/2. Then

lim
n→∞

δmn+1 = 1−B.

Proof: Let ε > 0. Take n large enough that mn ≥ 4/ε and |B− δmn(S)| < min(ε/2, (1−
2B)/4). Then δmn(S) < 1/2 and by Lemma 2.1.2

1−B − δmn+1(S) ≤ 1−B −
(
mn − 1

mn + 1
− mn

mn + 1
δmn(S)

)
= (δmn(S)−B) +

2− δmn(S)

mn + 1
≤ ε.

Also, δmn(S) < 1/2 implies that Φmn(S) < Nmn/Φmn(S), so by Lemma 2.1.1 we have
Φmn+1(S) < Nmn+1/Φmn(S). Thus λmn+1(S) < mn + 1− λmn(S), so

δmn+1(S)− (1−B) ≤ mn + 1

mn + 1
− mn

mn + 1
δmn(S)− (1−B)

< (B − δmn(S)) +
1

mn + 1
δmn(S)

≤ ε.

Thus |1−B − δmn+1(S)| < ε for n sufficiently large, proving the lemma. 2
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Corollary 3.2 In general 1/2 ≤ C.

Proof: By Lemma 3.1, if B < 1/2, then 1 − B > 1/2 is an accumulation point. If
B ≥ 1/2, then C ≥ B ≥ 1/2. In either case C ≥ 1/2. 2

We can now prove our main result.

Theorem 3.3 Let S be an N-ary sequence and suppose that the set of accumulation
points of the set of δn(S) is the interval [B,C]. Then B ≤ max(1/2, 1 − logN(2)). If
B < logN(2) then C = 1−B.

Proof: There is a sequence of integers `1 < `2 < · · · such that limn→∞ δ`n(S) = C and
we can assume that |C − δ`n(S)| > |C − δ`n+1(S)| for all n. By possibly deleting some
of the `n and mn, we can assume that mn < `n < mn+1 for all n ≥ 1. For n sufficiently
large we have δmn < δ`n , so we can assume this holds for all n ≥ 1. Thus there is an
` ≤ `n so that δ`−1(S) < δ`(S). If we replace `n by the largest such `, then we still have
a sequence whose limit is C. So we can assume that δ`n−1(S) < δ`n(S) for all n. In
particular, Φ`n−1(S) < Φ`n(S). Then by Lemma 2.1, part 3, for every ε > 0 there is an
n so that

δ`n−1(S) < max(1/2 + ε, 1− logN(2/(1 + ε))).

This implies that there is an accumulation point of the δn(S) that is less than or equal
to max(1/2, 1 − logN(2)), so B ≤ max(1/2, 1 − logN(2)) = 1 −min(1/2, logN(2)). This
proves the first statement.

To prove the second statement, let us assume to the contrary that 1 − B < C and
that B ≤ logN(2). Thus C > 1 − logN(2). Also B ≤ 1/2 (since when N = 2 or 3,
max(1/2, 1− logN(2)) = 1/2 and when N ≥ 4, logN(2) ≤ 1/2), so 1/2 ≤ 1−B < C. By
part (1) of Lemma 2.1,

Φn+1(S) ≤ NΦn(S)

2
+

Nn+1

2Φn(S)
≤ max(NΦn(S), Nn+1/Φn(S)).

Thus

δ`n(S) ≤ max

(
1

`n
+
`n − 1

`n
δ`n−1(S), 1− 1

`n
δ`n−1(S)

)
. (8)

Suppose that δ`n−1(S) ≤ 1/2. Then the right hand side of equation (8) equals the
second term, so

δ`n−1(S) ≤ `n
`n − 1

− `n
`n − 1

δ`n(S).

If this occurs for infinitely many n, then the set {δ`n−1(S) : n ≥ 1} has an accumulation
point less than or equal to

lim
n→∞

`n
`n − 1

− `n
`n − 1

δ`n(S) = 1− lim
n→∞

δ`n(S) = 1− C < B.
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This is a contradiction, so (by possibly deleting finitely many `ns) we may assume that
δ`n−1(S) > 1/2 for every n. Thus the right hand side of equation (8) equals the first
term, and

C = lim
n→∞

δ`n(S) ≤ lim
n→∞

1

`n
+
`n − 1

`n
δ`n−1(S) = lim

n→∞
δ`n−1(S).

But C is the maximum accumulation point of the δi(S), so in fact limn→∞ δ`n−1(S) = C.
Again using part (3) of Lemma 2.1 and taking limits, we see that C ≤ max(1/2, 1−

logN(2)), which is a contradiction. 2

Corollary 3.4 Let N = 2, 3, or 4. Let S be an eventually non-periodic N-ary sequence.
Then T (S) = [B, 1−B] for some real number B.

Proof: For these values of N we have max(1/2, 1− logN(2)) = 1/2 and logN(2) ≥ 1/2,
so the first assertion of Theorem 3.3 says that B ≤ 1/2 for all such S and the second
assertion then says C = 1−B for all such S. 2

Now fix a positive integer k. Consider a sequence S = s0, s1, · · · with each si ∈
{0, 1, · · · , N − 1}. For each i, let

ti =
k−1∑
j=0

ski+jN
j ∈ {0, 1, · · · , Nk − 1}

and let T = t0, t1, · · · . Then the function Γ : ZN → ZNk defined by

Γ

(
∞∑
i=0

siN
i

)
=
∞∑
i=0

ti(N
k)i

is a ring isomorphism. By abuse of notation we also write Γ(S) = T .

Theorem 3.5 Let S = s0, s1, · · · with each si ∈ {0, 1, · · · , N − 1}. Then the set of ac-
cumulation points of {δn(S)} is identical to the set of accumulation points of {δn(Γ(S))}
(where we use Nk-adic complexity to define δn(Γ(S))).

Proof: First observe that if R is a ring, then there is a unique ring homomorphism from
Z into R, defined by mapping 1 to 1. This is called the canonical map from Z to R. If
U is any subring of the rational numbers, then there is at most one ring homomorphism
from U to R, since any such homomorphism is still determined by mapping 1 to 1. In
fact such a homomorphism exists if and only if the image of every invertible integer in
U under the canonical map is a unit in R.

When R = ZN , the maximal subring of the rational numbers that maps to R is
U = {a/b : gcd(N, b) = 1}. In his case the map is an injection. Since gcd(N, b) = 1
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if and only if gcd(Nk, b) = 1, U is also the maximal subring of the rational numbers
that maps to ZNk . By the uniqueness of these maps, they must be identified under the
identification of ZN and ZNk .

Now suppose that D is an accumulation point of the δn(S), say

D = lim
i→∞

δni
(S).

There is some j ∈ {0, · · · , k− 1} so that {ni ≡ j (mod k)} is infinite. Thus D is a limit
of δn(S)s with all n congruent to j.

Let α =
∑∞

i=0 siN
i. Suppose that k divides n. Then

α (mod Nn) = Γ(α) (mod (Nk)n/k).

Thus Φn(S) — the minimal Φ(a, b) among rational approximations of α modulo Nn —
is the same as Φn/k(Γ(S)) — the minimal Φ(a, b) among rational approximations of Γ(α)
modulo (Nk)n/k = Nn. Thus λn(S) = kλn/k(Γ(S)), and

δn(S) =
λn(S)

n
=
kλn/k(Γ(S))

n
=
λn/k(Γ(S))

n/k
= δn/k(Γ(S)).

Thus the set of accumulation points of the δn(S) that are limits of δn(S)s with k dividing
n coincides exactly with the set of accumulation points of the δn(Γ(S)). Thus it remains
only to show that if 1 ≤ j ≤ k − 1, then every accumulation point of {δn(S) : n ≡
j (mod k)} is also an accumulation point of {δn(Γ(S))}.

Let Sj denote the shift of S by j positions, Sj = sj, sj+1, · · · = sj0, s
j
1, · · · . We

claim that the set of accumulation points of {δn(S) : n ≡ j (mod k)} equals the set
of accumulation points of {δn(Sj) : k|n}. Indeed, letting α(j) =

∑∞
i=0 s

j
iN

i, we have
α = rj + N jαj with rj ∈ Z, 0 ≤ rj < N j. Thus if a and b are integers so that
a/b ≡ α (mod Nn) and gcd(b,N) = 1, then a − brj = N jc for some integer c and
c/b ≡ α(j) (mod Nn−j). We have |c| ≤ 2 max(|a|, |b|), so Φn−1(S

j) ≤ 2Φn(S). Therefore

δn−j(S
j) ≤ n

n− j
δn(S) +

logN(2)

n− j
.

Conversely, suppose that a and b are integers so that a/b ≡ αj (mod Nn−j). Then
α ≡ rj +N jαj ≡ (rjb+N ja)/b (mod Nn). We have |rjb+N ja| ≤ 2N j max(|a|, |b|), so
Φn(S) ≤ 2N jΦn−j(S

j). Therefore

n

n− j
δn(S)− 1 + logN(2)

n− j
≤ δn−j(S

j).

Thus the set of accumulation points of {δn(S) : n ≡ j (mod k)} equals the set of
accumulation points of {δn(Sj) : k|n}, as claimed.
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Let Γ(Sj) = v0, v1, · · · , with vi ∈ {0, 1, · · · , N2−1}. Note that Γ(Sj) is not in general
equal to Γ(S)j. The same argument as above shows that the set of accumulation points
of {δn(Sj) : k|n} equals the set of accumulation points of {δn(Γ(Sj))}. Let

β =
∞∑
i=0

ti(N
k)i and γ =

∞∑
i=0

vi(N
k)i.

Then β ≡ rj + N jγ (mod (Nk)n) for any n ≥ 1. Thus if a/b ≡ β (mod (Nk)n) with
gcd(b,N) = 1, then a− brj = N jc for some integer c, and

c

b
≡ γ (mod N−j(Nk)n)

≡ γ (mod (Nk)n−1).

Therefore Φn−jΓ(Sj)) ≤ 2Φn(Γ(S)), so

δn−j(Γ(Sj)) ≤ (n/(n− j))δn(Γ(S)) + logNk(2)/(n− j).

Similarly, if a/b ≡ γ (mod (Nk)n), then

(N ja+ rjb)/b ≡ β (mod (Nk)n).

Thus
Φn(Γ(S)) ≤ 2N jΦn(Γ(Sj)),

so that
δn(Γ(S)) ≤ δn(Γ(Sj)) + logNk(2N j)/n.

It follows that any infinite sequence of δn(Γ(Sj))s is upper bounded by one infinite
sequence of δn(Γ(S))s and lower bounded by another infinite sequence of δn(Γ(S))s.
Hence every accumulation point of the {δn(Γ(Sj))} is lower bounded and upper bounded
by accumulation points of the {δn(Γ(S))}. But from Theorem 1.1 we know that the set
of accumulation points of the {δn(Γ(S))} is a closed interval, so every accumulation
point of the {δn(Γ(Sj))} is an accumulation point of the {δn(Γ(S))}. In particular,
the accumulation points of {δn(S) : n ≡ j (mod k)} are all accumulation points of
{δn(Γ(S))}. This completes the proof of the theorem. 2

Corollary 3.6 Let N be a power of 2 or 3. Let S be an eventually non-periodic N-ary
sequence. Then T (S) = [B, 1−B] for some real number B.

Proof: The proof is immediate from Corollary 3.4 and Theorem 3.5. 2

12



4 All Balanced Intervals Occur as T (S)s

We denote by β the function that associates the real number B with the sequence S,
where T (S) = [B,C]. That is,

β : {S = s0, s1, · · · , si ∈ {0, 1, · · · , N − 1}} → [0,max(1/2, 1− logN(2))]

and β(S) is the least accumulation points of the set of N -adic complexities of prefixes
of S. In this section we see that the image of β contains [0, 1/2]. In particular, if N is a
power of 2 or 3, then β is surjective.

Theorem 4.1 For every N ≥ 2 and every B ∈ [0, 1/2] there is an N-ary sequence S
with T (S) = [B, 1−B].

Proof: Let 0 ≤ B < 1/2. We build S with β(S) = B in stages. Suppose that we have
chosen n1 ≤ n2 ≤ · · · ≤ nr ∈ Z+ and Snr = s0, · · · , snr−1 ∈ {0, 1, · · · , N − 1} so that

|δni
(S)−B| ≤ 1

ni
,

δni
(S) ≤ B < δj(S) for ni < j < ni+1, and

n1 > max

(
B + 1

1− 2B
,
2 logN(2)

1− 2B

)
. (9)

Choose snr so that Φnr+1(S) 6= Φnr(S). Some care must be taken here to see that this is in
fact possible. Suppose that a/b is the rational approximation to

∑r−1
i=0 siN

i modulo Nnr

so that Φ(a, b) is minimal. Suppose also that a/b ≡
∑nr−1

i=0 siN
i + s′nr

Nnr (mod Nnr+1).
We choose snr 6= s′nr

. Then the bound in equation (9) and the fact that Φ(a, b) < NnB

ensure that there are not integers c and d so that c/d ≡
∑nr

i=0 siN
i (mod Nnr+1) with

Φ(a, b) = Φ(c, d). That is, the N -adic complexity profile must increase at this point.
Now by Lemma 2.1, part (2),

δnr+1(S) >
nr − 1

nr + 1
− nr
nr + 1

δnr(S)

≥ nr − 1

nr + 1
− nr
nr + 1

B

> B,

where the last inequality follows from equation (9). Also, as in the proof of Lemma 3.1,
the limit of the δnr+1 is 1 − B. Choose nr+1 and snr+1, · · · , snr+1−1 so that Φnr+1(S) =
· · · = Φnr+1(S) and δnr+1(S) ≤ B < δnr+1−1(S). This is possible since the δj(S) are
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decreasing with limit 0 if the Φj(S) are unchanged. Moreover, for any j such that
Φj+1(S) = Φj(S), we have λj+1(S) = λj(S) and

δj(S)− δj+1(S) =
λj(S)

j
− λj(S)

j + 1

=
λj(S)

j(j + 1)

≤ 1

j + 1
.

It follows that B−1/nr+1 < δnr+1(S) < B. Thus B = limi→∞ δni
(S). It also follows that

B is the least accumulation point of the δj(S). Also, as in the proof of Lemma 3.1, the
limit of the δnr+1 is 1−B and this is the maximum accumulation point.

Finally, let B = 1/2. We construct S a term at a time as follows. If δr(S) < 1/2−2/r,
then choose sr so that Φr(S) 6= Φr+1(S). As before, we have made δr(S) small enough
that Φr(S) 6= Φr+1(S) if we choose the “wrong” sr. Otherwise choose sr so that Φr(S) =
Φr+1(S). We claim that limr→∞ δr(S) = 1/2, so that 1/2 is the only accumulation point.

Let r be an arbitrary index. If δr(S) ≥ 1/2 − 2/r, then δr+1(S) ≥ 1/2 − 3/r, which
guarantees that the least accumulation point is at least 1/2. If δr(S) < 1/2− 2/r, then

δr+1(S) >
r − 1

r + 1
− r

r + 1
δr(S)

>
r − 1

r + 1
− r

r + 1
(
1

2
− 2

r
)

=
1

2
+

1

2(r + 1)
.

On the other hand, suppose δr(S) > 1/2 + 1/r. Then

δr+1(S) =
r

r + 1
δr(S) >

1

2
+

1

2(r + 1)
.

If we apply our constructions and δj(S) > 1/2 − 2/j for j = r, r + 1, · · · , k for some k,
then

δk(S) =
r

k
δr(S).

Thus after finitely many steps we reach a k for which δk(S) < 1/2 − 2/k. (In fact
the first k for which δk(S) ≤ 1/2 is at most k = 2(r + 2).) We have shown that
δr(S) ∈ [1/2− 1/r, 1/2] for infinitely many r, and that δr(S) > 1/2− 1/r for all r. Thus
B = 1/2 is the least accumulation point. Again, as in the proof of Lemma 3.1, the
limit of the δr+1 for which Φr(S) 6= Φr+1(S) is 1 − 1/2 = 1/2 and this is the maximum
accumulation point. This completes the proof. 2
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Note that if we modify this construction so that the the N -adic complexity changes
when δnr(S) < δnr−1(S) < B < δnr−2(S), then B is still the least accumulation point. In
fact, at each phase we can either use this method or the one in the proof to determine
when to change the N -adic complexity. Since there are infinitely many phases, this gives
uncountably many sequences for which B is the least accumulation point.

Corollary 4.2 Every balanced interval [B, 1 − B] occurs uncountably often as a T (S)
with S an N-ary sequence.

5 Conclusions

We have characterized the sets of accumulation points of the normalized N -adic com-
plexities of non-periodic sequences. This gives us a fuller understanding of the properties
of these important security measures. It provides another in a growing list of ways that
feedback with carry shift registers are similar to linear feedback shift registers. There are
also practical implications to this and Dai, et al.’s work on linear complexity. Suppose a
stream cipher uses an infinite non-periodic sequence S as a keystream, and suppose that
the set of accumulation points of the normalized N -adic or linear complexity is [B, 1−B].
Now imagine a cryptanalyst who has observed a prefix of S and wants to predict the
next symbol. If the normalized complexity up to this point is close to B, the next symbol
is likely to change the complexity so the normalized complexity increases. Likewise, if
the normalized complexity up to this point is close to 1 − B, then the next symbol is
likely to leave the complexity unchanged so the normalized complexity decreases. In this
sense sequences for which the set of accumulation points is [0, 1] are the most random
sequences.

The methods used in this paper to analyze N -adic complexity can also be applied
to linear complexity, eliminating the need for continued fractions. In fact in the case
of linear complexity the proofs are significantly simpler than the ones in this paper
and than the ones originally given by Dai, et al. The pivotal fact is a lemma due to
Massey [9] that says that if λ′n(S) is the linear complexity of the length n prefix of S,
then λ′n+1(S) = max(λ′n(S), n+ 1−λ′n(S)). Thus we know more precisely how the linear
complexity changes. Modifying the proofs in this paper using this fact is straightforward.
Morever, it is straightforward to use this to prove the analogous theorems for the linear
complexity of sequences over arbitrary finite fields. Since this was not observed by Dai,
et al., we include it as a theorem without proof.

Theorem 5.1 Let S be a sequence over the finite field F . Let δ′n(S) = λ′n(S)/n be the
normalized linear complexity of S. Then the set of accumulation points of the set of
δ′n(S) is a closed interval [B, 1−B]. For every B, there are uncountably many sequences
over F for which the set of accumulation points is [B, 1−B].
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Various questions remain. If N is not a power of 2 or 3, and β(S) > logN(2), is
T (S) = [β(S), 1− β(S)]? Is there any (perhaps measure theoretic) sense in which some
least accumulation points are more likely than others? In the case of linear complexity
over a field Fq, Niederreiter showed that T (S) = [1/2, 1/2] with probability 1 (where
the set of infinite sequences is endowed with the infinite product measure arising from
the uniform measure on Fq) [10]. We do not have such a result for N -adic complexity.
For a fixed S, what can be said about the distribution of the δn(S) in [B, 1 − B]? If
the distribution is non-uniform, this might lead to better prediction methods than those
outlined in the first paragraph of this section.

Finally, we have treated, in varying detail, a number of generalizations of feedback
with carry shift registers and linear feedback shift registers [4, 5, 7]. Do the same results
hold in these settings?
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