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Abstract. Statistical tests of random sequences are often used in cryptogra-
phy in order to perform some routine checks for random and pseudo-random
number generators. Most of the test suites available are based on the theory
of hypothesis testing which allows one to decide whether a sample has been
drawn following a certain distribution. In this article, we develop a theoretical
foundation of statistical tests of random sequences and hypothesis testing with
a focus on cryptographic applications and we draw some interesting practical
consequences.

1. Introduction

Random sequences are often used in cryptography in order to diversify the behav-
ior of algorithms, to generate secret keys, or to provide random seeds for instance.
As a consequence, random number generators constitute a critical part of many
cryptographic protocols and consequently of any hardware or software implemen-
tation of these protocols. It is then important to be able to assess the randomness
of the generators in order to avoid any failure which would immediately impact
the security. In order to do so, it is quite usual to perform statistical tests on a
cryptographic device in order to check if the output behaves in a certain sense like a
random sequence. This can be done in different circumstances : to validate a device
during its design, to qualify a device during the production phase or to detect a
failure of a device in use.

This subject is related to an important literature dealing with the definition of
general test suites [7], [11], with the theoretical definition of random sequences [6],
[8], [5] and more recently with the definition of a test associated to some general
statistical models [9], [2].

Broadly speaking, in order to define a statistical test one must clarify several
things :

– what property of randomness is involved by the test. This means giving a
proper definition of a random sequence and defining what superset of the set
of random sequences will pass the test.

– the link between the property of randomness and the device that we want to
test. In order to do so, one must define a mathematical model for the device
and discuss its validity;

– the defining of a test function which outputs yes or no given a finite output
of the device.
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In order to define a test function, it is usual to use the general framework of
hypothesis testing (see [11] or [7]). Basically, hypothesis testing [10] aims at decid-
ing whether a sample behaves like a certain distribution contained in a statistical
model i.e. in a family of distributions depending of some parameters. In order to
use this theory, it is necessary to give a precise definition of what a statistical model
attached to a test is. Unfortunately, in the literature dealing with statistical tests
and hypothesis testing, this important matter is often overlooked. For instance,
in [11], the statistical models associated to the presented statistical tests are not
always clearly defined. Some other authors describe some general statistical models
associated to a test [9] or some general test suite justified by some empirical defini-
tion of a random sequence [5]. The aim of this paper is to give a precise and general
definition of a statistical test which includes all usual tests and to explain how to
attach a specific statistical model to each test. Then we give a classification of all
the statistical models attached to statistical tests with respect to their capacity to
distinguish certain types of deviation from a true random behavior. This classifi-
cation appears to be new. One of the benefits of this general approach based on
information theory is that it provides a formalism to compare the different statisti-
cal tests. For instance one would like to know if two tests are independent, i.e. that
they provide different statistical information or on the contrary, if a test is more
general than an other. The results of section 3.3 will be very helpful to answer
that kind of question. On a theoretical side, we deduce from our classification some
analogs of well-known results about equidistributed sequences. We derive also some
interesting practical consequences.

Organisation of the paper. In section 2.2, we give a definition a random
sequence. We use it in section 2.3 to link the classical cryptographic definition
based on unpredictability [3] with the definition given in [5] used in the random
sequences literature. In section 3.1, we give a definition of a finite statistical test
and explain what the statistical model attached to a finite statistical test is. Next,
in section 3.2, we classify the finite statistical tests with respect to their strength
: we say that a finite statistical test A is stronger than another one B if all the
sequences that pass test A pass test B. In other words, A is stronger than B if
A discriminates more sequences than B does, i.e. A is more selective. In section
3.3, we state a sufficient condition for a family of finite statistical tests to ensure
that a sequence that passes all the tests of the family also pass all the other finite
tests. We draw some interesting consequences of this result: for instance we obtain
immediately discrete analogs of well-know results. In section 4, we explain the link
of the previous theory with the practical matter of testing the randomness of a
device.

2. Source of randomness and unpredictability

We fix some notations to be used in the rest of the section. Let Σ be an alphabet.
We denote by Σ∗ the set of all sequences with terms in Σ. An element u of Σ∗ is
given by a sequence (un) of elements of Σ indexed by n ∈ N. In the same way, for
k ∈ N, we denote by Σk the set of finite sequences of length k with terms in Σ. An
element u of Σk will be written as:

u = u0 . . . uk−1

with ui ∈ Σ for i = 0 . . . k − 1. Note that Σn is a finite set and then can be
considered itself as an alphabet.
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2.1. Statistical model of a device. It is quite usual in cryptography to think
of a random number generator as a way to produce a distribution which may be
described for instance by a sequence of binary random variables. In this paper,
in order to clarify the link with some usual definitions of random sequences often
referred to in the literature [5] about tests of randomness, we adopt a slightly differ-
ent approach by saying that a random number generator outputs an infinite binary
sequence. This situation corresponds to an idealisation of the reality where one
can operate the device during a infinite period of time. From an infinite random
sequence it is easy to recover a distribution by the computation an empirical prob-
ability as explained in section 2.2. It is also easy to produce a random sequence
which behaves accordingly to a certain distribution, so that there is an easy way
back and forth between the two point of views.

We suppose that a source of randomness ST is a mapping from a parameter space
T in the set Σ∗. The parameter space T may be either discrete or continuous . In
the case of a physical generator T , there can be a set of continuous variables that
describes the state of the RNG (temperature of the circuit, position of each of the
bits). For a LFSR, T is the discrete space describing the initialization vector, the
feedback polynomial and the filtering function.

In practice, the set of parameters can take into account the normal operation of
the source as well as flaws. It is possible that the source produces sequences with
good statistical properties for some values of the parameter in T and poor statistical
properties for the other values of T . For instance, a physical random generator may
be built such that it outputs bits with a bias p independent of the preceding draws.
It outputs “1” with a probability of p and a “0” with a probability of q = 1 − p.
A hard to control production process may influence the parameter p. Therefore, a
method is needed to assess the generator and reject any source that has a parameter
p too far from 1

2 . A solution to this problem is provided by the theory of hypothesis
testing.

Next, we would like to have a definition of the sequences produced by the nor-
mal operation of the source. There are various definitions of a random sequence
more or less adapted to cryptographic applications. The most general definition is
due to Kolmogorov [6]. It is based on the length of the smallest program which
outputs a certain finite binary sequence. In [8], Martin-Löf shows that a random
sequence in Kolmogorov’s sense passes all possible statistical tests. He also extends
Kolmogorov’s definition to the case of infinite sequences. Here, we use a more prac-
tical definition following Knuth’s survey [5] and show how to adapt this definition
in order to grasp the usual cryptographic unpredictability property.

Let W k be the map from Σ∗ to the set of sequences with terms in Σk, which
maps u ∈ Σ∗ to the unique sequence (wn) = (W k(u)n) ∈ (Σk)∗, such that:

u = w0|w1| . . . |wq| . . .

with | the concatenation.
In the following, a sequence of events is defined as a sequence (un)n∈N with terms

in a finite set Ω. For instance, Ω can be the alphabet Σ. For x ∈ Ω, the empirical

probability of the event x, denoted by

Pe[(un) = x],

is defined by the following limit, if it exists:

(1) lim
k→∞

Sk(x)

k
,
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with Sk = ♯{n < k|un = x}. It should be understood that the notation Pe[(un) = x]
assumes that this last limit is well-defined. When this limit is not well-defined, it is

possible to define P sup
e and P inf

e as respectively lim supk→∞
Sk(x)

k or lim infk→∞
Sk(x)

k .
It is also possible to define conditional empirical probabilities by considering sub-
sequences of (un) having a certain property. We leave the details to the reader.

To an infinite binary sequence one can associate for all n ∈ N
∗ a probability

distribution on Σk given by the empirical probability of W k(u)n. In particular,
a source defines a map from the set of parameters T to the set of probability
distributions on Σk for all k that is a statistical model on Σk.

2.2. Definition of a random sequence. The definition due to Borel following
[5] can now be stated.

Definition 1. Let l ∈ N
∗, a sequence u ∈ Σ∗ is l-distributed, if for all x ∈ Σl,

Pe[(W
l(u)n) = x] = ( 1

♯Σ)l. A sequence u ∈ Σ∗ is ∞-distributed if it is l-distributed

for all l ∈ N
∗.

Following [5], it can be stated as a first approximation that a sequence is random
if it is ∞-distributed. In particular, if u is a random sequence then for all k ∈ N

∗,
(W k(u)n) is an equidistributed sequence of words of Σk. If a finite subsequence of
length k is picked up from a random sequence then the probability of selecting a
given subsequence is the same for all words in Σk. This illustrates well the intuitive
idea of a random phenomenon. A consequence is that it is not possible in principle
to precisely decide whether a finite sequence has been generated by a truly random
process.

We will see in the course of this paper that this definition due to Borel grasps
a lot of important properties of randomness. However, as explained in [5], it is
not tight enough to take into account all the properties that one expects from a
sequence which would be truly drawn by the way of a random process.

Example 2. Let u ∈ Σ∗ be an ∞−distributed sequence and let v the sequence
deduced from u by forcing to zero all the bits of rank n2, n ∈ N. One easily sees
that the sequence v is also ∞−distributed and although not a random sequence
because it is possible to predict easily the value of certain of its bits.

In order to take into account the unpredictability property, following [6], we
introduce the following definition:

Definition 3. Let Σ be an alphabet. A “subsequence rule” R(f) or simply R if no

confusion is possible, is a computable function f from ∪∞
k=1Σ

k into {0, 1}.
Such a subsequence rule defines a subsequence (un)R of an infinite sequence (un)

in the following manner : the nth term of (un) is in the sequence (un)R if and only
if f(u0, . . . , un−1) = 1.

By computable function, we mean that there exists an algorithm f which inputs
any finite number of elements of Σ with an extra termination symbol and determines
the value of f(x0, . . . , xn−1). For instance, we can choose a certain computational
model M which can be that of Turing machines and say that an algorithm is an
element of this computational model. It is moreover possible to suppose that this
f is taken from a certain family F of elements of M. This family may be obtained
by adding some restriction to the time or memory consumption of the algorithm in
our given computational model. In particular, we can force f to be an algorithm in
polynomial time with respect to the length of the input.
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Using this notion of subsequence rule, we can then assess the following definition:

Definition 4. Let F be a family of elements of a computational model M. A
sequence (un) ∈ Σ∗ is R4(F) if for all subsequence rules R defined by a certain
element f of F , (un)R is 1−distributed. We simply say R4 for R4(M).

It is easy to see that a R4 sequence is ∞−distributed. Moreover, one can see at
once that this definition excludes the pathological preceding example.

By a result of Wald [5] p. 164, it is known that there exists R4-sequences. In
fact there are actually uncountably many of them.

In order to show the connection with the usual cryptographic notion of unpre-
dictability we introduce a new definition. Let (sn) be a sequence with terms in
{0, 1}. The density d(sn) of (sn) is the limit if it exists:

(2) d(sn) = lim
n→∞

∑n−1
i=0 si

n
.

If d(sn) = 0 (resp. d(sn) > 0) we say that (sn) is non dense (resp. dense). Again
if the limit in (2) does not exist it is possible to use a lim sup or lim inf but in the
course of this paper we only consider sequences with a well-defined density. Now let
(un) ∈ Σ∗ and R(f) a subsequence rule for (un), we say that R is non dense (resp.
dense) with respect to (un) if the sequence sn = f(u0, . . . , un−1) is non dense (resp.
dense).

We can now formulate our definition of a random sequence.

Definition 5. Let F be a family of elements of M a computational model. A
sequence (un) ∈ Σ∗ is R7(F) if for all dense subsequence rule R(f) defined by a
certain element f of F , (un)R is 1−distributed. The notation R7 will stand for
R7(M).

2.3. Randomness and unpredictability. In order to justify this definition, we
show that it grasps the unpredictability notion usual in cryptography (see [3]). To
see that, let M be the computational model of Turing machines.

Definition 6. Let F be a family of elements in M, a F -predictor is an algorithm
in F which inputs a finite number (u0, . . . , un) of elements of Σ and outputs an
element of Σ. In order to take into account the fact that some elements of M may
have a limited amount of memory, we moreover impose the following restriction on
a F -predictor represented by a Turing machine: the head on the tape containing
the input elements (u0, . . . , un) can only go in one direction.

With this last assumption we do not loose generality because an algorithm with
enough memory can copy the input tape on another regular memory tape. On the
other side we can allow an algorithm with finite memory to have access to a tape
with a limitless number of elements of Σ stored on it.

One can define the advantage of a predictor P with respect to a sequence (un) ∈

Σ∗ as : AdvP ((un)) = |Pe[P (u0, . . . , uk−1) = uk] − 1/♯Σ|.

Definition 7. Let (un) ∈ Σ∗, we say that (un) is F -predictable (resp. F -unpredic-

table) if there exists (resp. does not exists) P a F -predictor such that AdvP ((un)) 6=
0.

We have the following proposition, which should be compared to Theorem 3.3.7
of [3]
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Proposition 8. Let F be either the family of polynomial time Turing machines or
the family of finite memory Turing machines. A sequence (un) ∈ Σ∗ is in R7(F) if
and only if it is F -unpredictable.

Proof. If P is a predictor and s ∈ Σ is a symbol, we denote by Ps the subsequence
rule defined by Ps(u0, . . . , un−1) = 1 if and only if P (u0, . . . , un−1) = s.

First assume that (un) is F−predictable. Suppose that for all F -predictor P
and all symbol s ∈ Σ such that Ps is dense and we have Pe[P (u0, . . . , un−1) =
un|P (u0, . . . , un−1) = s] = 1/♯Σ. Then we have Pe[P (u0, . . . , un−1) = un] = 1/♯Σ
which gives a contradiction with the hypothesis. So there exists s ∈ Σ and a F -
predictor P such that Ps is dense and

|Pe[P ((u0, . . . , un−1)) = un|P ((u0, . . . , un−1)) = s] − 1/♯Σ| 6= 0.

This means that (un)RPs
is not 1−distributed.

Now suppose that there exists a subsequence rule R(P ) with density d > 0 given
by an algorithm P in F . It means that (un)R(P ) is not 1-distributed. Then there
exists ǫ > 0 and s ∈ Σ such that |Pe[(un)R(P ) = s]− 1/♯Σ| > ǫ and we can suppose
that ǫ and s are chosen such that

(3) Pe[(un)R(P ) = s] > 1/♯Σ + ǫ.

Let P ′ be the algorithm which takes as input a finite sequence u0, . . . , un−1 of
elements of Σ and outputs s if P ((u0, . . . , un−1)) = 1 and a random element of Σ if
P ((u0, . . . , un−1)) = 0. Clearly, P ′ is in F . We have then, using (3):

Pe[P
′((u0, . . . , un−1) = un)]

= Pe[P
′((u0, . . . , un−1) = un)|P ((u0, . . . , un−1) = 1)].d

+ Pe[P
′((u0, . . . , un−1) = un)|P ((u0, . . . , un−1) 6= 1)](1 − d)

> (1/♯Σ + ǫ).d + (1/♯Σ)(1 − d) = 1/♯Σ + ǫd,

with ǫd > 0. This means that the sequence (un) is predictable.

3. Theory of finite statistical tests

3.1. Definition of a statistical test. In this section, we give a definition for
a statistical test. We focus on the particular case of finite tests and show how to
associate a statistical model to a finite test. Then, we explain how to derive a
certain class of predictors out of a statistical test and we give an entropy criterion
for a sequence to be unpredictable.

We recall that the classical definition of a statistical test [13] is just an algorithm
which receives as input a finite binary sequence of length n and returns a finite
binary sequence of length l(n) with l(n) ≤ n. Such an algorithm transforms a
distribution on the sequences of length n into a distribution on the sequences of
length l(n). From now on, in order to simplify the notations, we suppose that
Σ = {0, 1} i.e. Σ∗ is the set of all binary sequences.

In our context, we have the following definition.

Definition 9. Let F be a family of elements of M a computational model. Let
k ∈ N

∗, a statistical test of length k in F or a (F , k)-test is an algorithm in F
which takes as input any finite number u0, . . . , un of elements of Σ and returns an
elements of Σk. We say k-test for (M, k)-test.

Given a k-test F and (un) ∈ Σ∗, one can define a distribution P on Σk by setting
for u ∈ Σk, P (u) = Pe[F (u0, . . . , un) = u].
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Note that a F -predictor is precisely a (F , 1)-test.

In order to take into account the fact that a statistical test represented by a
Turing machine may have a finite memory, we put on the restriction that the head on
the tape which contains the input elements u0, . . . , un can only go in one direction.

In the rest of this paper, we study the particular case of finite statistical tests
and finite predictors. By a finite statistical test (resp. a finite predictor), we mean
a statistical test (resp. predictor) given by a Turing machine with a finite amount
of memory.

It should be noted that any k-bit pattern produced by a finite memory Turing
machine M can be computed by another finite Turing machine M ′ from the global
state of M which consists in the data of a dump of the memory (which does not
contain the infinite input tape) of the machine M plus the position of the head on
the tape and the internal state of the Turing machine coded in a suitable alphabet.
So the distribution that we obtain from a finite k-test F can be computed by another
finite Turing machine from the distribution obtained with the same test F which
would produce a dump of its global state. We can then suppose that the output of
the machine is simply its global state when the machine stops.

Now, let s0, . . . , sp be the global states a finite statistical test goes through be-
tween the reading of the input bits xi and xi+1. If we compute the distribution given
by the frequency of occurrences of the states of the machine, the states s0, . . . , sp

are equivalent since each of them entails the other and their number will only affect
the weighting of the distribution. So we may choose to identify the states s0, . . . , sp.
As a consequence, the machine being in a state s can reach only two states s′0 and
s′1 depending on the value of the input bit xi being read.

Moreover, if (un)n∈N is a binary sequence, and F is a finite statistical test which
outputs its global state, one can compute s′ = F (u0, . . . , un+1) from the data of
s = F (u0, . . . , un) and un+1. This property is an immediate consequence of the
hypothesis that the head of F on the input tape can only go in one direction.

As a result of this discussion we have that a finite statistical test is just a finite
automaton. Following the definition of a finite automaton [4], we have the

Proposition 10. There is a bijective correspondence between the set of finite
statistical tests and the set of finite state automata. As a consequence, we can
represent a finite statistical test F by the following triple (S, f, s0)

– S a finite set of states {s0, . . . , sk},
– f : S × Σ 7→ S a transition function,
– an initial state s0.

The transition function f is defined by: for si, sj ∈ S and σ ∈ Σ, f(si, σ) = sj if
the finite statistical test goes from state si to state sj upon the reading of σ on the
input tape. From this data, one can compute the map F : Σk+1 → S for all k with
the induction formula:

F (x0, . . . , xk) = f(F (x0, . . . , xk−1), xk).

A finite statistical test F = (S, f, s0) can be represented by an oriented graph
such that

– the nodes of the graph are the different states si ∈ S,
– the nodes si and sj are linked by an edge labelled by σ ∈ Σ if f(si, σ) = sj .

Example 11. Let F0 be the finite statistical test with two states s0 and s1 such
that F0 goes to state s1 (resp. s0) upon the reading of 1 (resp. 0). It is easy
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Figure 1. Frequency test
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to see that computing the mean value of occurrences of the states s0 or s1 is just
another definition of the frequency (monobit) test [11]. The figure 1 gives the graph
representation of this test.

More generally, for k ∈ N
∗, let Fk be the finite statistical test with 2k states

{s0, . . . , s2k−1}, the test being in state si upon the reading of the element ul of

the binary sequence (un) if we have i =
∑k

λ=1 un−k+λ2λ−1. The distribution that
we obtain on the set of states of Fk corresponds to the distribution computed by
frequency test on blocks of size k.

In the same way, one can describe the test of largest run of one [11] with a bound
on the size of the run with a finite state machine. More generally, all the usual tests
such as the matrix rank test, the Maurer’s test, the (non)-overlapping template
matching test belongs to the set of finite statistical tests ([11]).

We have an analogue definition for finite predictors.

Definition 12. A finite predictor P is given by the quadruple of (S, f, s0, p) where

– (S, f, s0) represents a finite statistical test,
– p : S 7→ {0, 1} is a function such that p(si) gives the output of the predictor

when in state si.

Definition 13. A finite statistical test F = (S, f, s0) (resp. P = (S, f, s0, p) a finite
predictor) is unifilar if for σ, σ′ two different elements of Σ and for all si ∈ S, we
have f(si, σ) 6= f(si, σ

′).

We remark that a finite statistical test (or predictor) is unifilar if and only if each
element of the associated family of Markov chains is unifilar [1] pp. 187. It is clear
that we do not lose generality if we suppose from now on that all finite statistical
tests are unifilar adding if necessary some extra states to the test. The unifilar
condition is used when invoking the Theorem 6.4.2 from [1] in the proposition 19
and in order to simplify the definition of the map Φ in the following paragraph.

There exists a map Φ from the set of finite statistical tests to the set of fi-
nite Markov chains parametrised by Λ = (λs0 , . . . , λsk

) ∈ [0, 1]k+1 that we de-
note by MF (Λ). Φ maps F = (S, f, s0) with S = {s0, . . . , sk} onto MF (Λ) =
{(S, M(Λ), Z0), Λ = (λs0 , . . . , λsk

) ∈ [0, 1]k+1} given by

– S a set of states.
– a transition matrix M(Λ) = [mij(Λ)], 0 ≤ i, j ≤ k with mij = λsi

if f(si, 1) =
sj , mij = 1 − λsi

if f(si, 0) = sj and mij = 0 otherwise. One can check

immediately that M(Λ) is a stochastic matrix i.e. we have
∑k

j=0 mij = 1.
– an initial distribution Z0 which is the distribution with total weight 1 on the

state s0.

Definition 14. Let F = (S, f, s0) be a finite statistical test. Let si ∈ S, si is said
to be aperiodic if the greatest common divisor of the length of all the paths in the
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graph representation of F starting in si and coming back to si is 1. We say that F
is aperiodic if all its states are aperiodic.

The statistical test F is said to be indecomposable if there does not exist a proper
subset W ⊂ S such that ∪σ∈Σf(W, σ) ⊂ W .

We say that F is ergodic if it is aperiodic and indecomposable.

Remark 15. By definition, if a statistical test F = (S, f, s0) is not indecomposable,
then the set of states S can be decomposed into a disjoint union of proper subsets
Wi such that ∪σ∈Σf(Wi, σ) ⊂ Wi plus some other states T . Moreover, starting
from the state s0 ∈ S, the statistical test will ultimately go into one of the Wi upon
the reading of a random sequence. This means that the test F is equivalent to one
of its restriction to the states Wi, the choice being made depending only on the
first few bits of the random sequence. As a consequence, we do not loose generality
by supposing that all the finite statistical tests are indecomposable. We make this
assumption for the rest of this paper.

Lemma 16. A finite statistical test F = (S, f, s0) is indecomposable (resp.) ergodic
if and only if all elements of the family of Markov chains Φ(F ) are indecomposable
(resp. ergodic) apart from a finite subset of the parameter set.

Proof. A Markov chain is ergodic if and only if it is aperiodic and indecomposable.
The result follows immediately from the definitions, when we consider the subset of
the parameter set of all non null parameters.

Definition 17. Let Λ be a set of parameters, and Ω be a probability space. A
statistical model on Ω is a probability distribution on Ω depending on the parameters
Λ.

Let F = (S, f, s0) be a finite statistical test with set of states {s0, . . . , sk} that
we consider as an equidistributed probability space. Let Φ(F ) = {(S, M(Λ), s0),
Λ ∈]0, 1[k+1} be the family of Markov chains associated to F . These Markov chains
have a unique stationary state of probability by [1] theorem 6.3.3 W = [w0, . . . , wk]
on S which can be computed using the Chapman-Kolmogorov relation:

WM(Λ) = W.

In this way, we have provided S with a statistical model with set of parameters Λ.

Example 18. The statistical model associated to the frequency (monobit) test as
described in example 11 has two parameters λs0 and λs1 linked by the relation
λs0 + λs1 = 1 (see figure 1). This is nothing but the statistical model of a binary
memoriless source (BMS).

Next, we introduce a well-known fundamental invariant which measures the un-
certainty of a sequence relatively to a statistical test. Let F = (S, f, s0) be a finite
statistical test with S = {s0, . . . , sk} and T = (S, M(Λ), Z0) ∈ Φ(F ). By definition,
T gives a sequences of random variables Z0, Z1, . . . , Zn, . . . over the set of states S.
We define the entropy of T as the limit:

(4) H(T ) = lim
n→∞

H(Z0, . . . , Zn)

n + 1
,

where H , the usual entropy function is defined by

H(Z0, . . . , Zn) = −
∑

0≤i0,...,in≤k

p(z0,i0 , . . . , zn,in
) log(p(z0,i0 , . . . , zn,in

))
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with p(z0,i0 , . . . , zn,in
) = P [Z0 = si0 , . . . , Zn = sin

].
In the rest of this section, we let ♯ be the index function from S into {0, . . . , k}

defined by i = ♯(si).

Proposition 19. Let F be a finite statistical test with set of states S. Let T =
(S, M(Λ), s0) ∈ Φ(F ). Then H(T ) = 1 if and only if Λ = (1/2, . . . , 1/2).

Proof. Let [w0, . . . , wk] be the stationary state of probability of T . As T is unifilar,
by [1] Theorem 6.4.2, we have

H(T ) =

k
∑

i=0

wiH(mi♯(f(si,1)), mi♯(f(si,0))).

As
∑k

i=0 wi = 1, H(T ) = 1 if and only if for all i, H(mi♯(f(si,1)), mi♯(f(si,0))) = 1
but this is only the case when mi♯(f(si,1)) = 1/2 for all i.

If (un) is an element of Σ∗ then it defines a map that we also denote by (un)
from the set of finite statistical tests F = (S, f, s0) to their associated family of
Markov chains (S, M(Λ), s0). For this we have to explain how to compute Λ =
(λs0 , . . . , λsk

) ∈ [0, 1]k. We just set λsi
= Pe[un = 1|F ((u0, . . . , un−1)) = si].

Corollary 20. Let F = (S, f, s0) be a finite ergodic statistical test and let (un) ∈
Σ∗. We have H((un)(F )) < 1 if and only if there exists a function p : S → Σ such

that if we consider the predictor P = (S, f, s0, p) then AdvP ((un)) > 0.

Proof. Let T = (un)(F ) ∈ Φ(F ) and let M = [mij ] be the transition matrix of
T . Let mi = mij with j such that f(si, 1) = sj. We define the function p such
that p(si) = 1 if mi > 1/2 and p(si) = 0 if mi ≤ 1/2 and consider the predictor
P = (S, f, s0, p). Let I ⊂ {0, . . . , k} be such that ∀i ∈ I, mi > 1/2 and let
J = {0, . . . , k}\I. We set wi = Pe[F ((u0, . . . , un−1)) = si]. By definition

AdvP ((un)) ≥

(

∑

i∈I

wimi +
∑

i∈J

wi1/2

)

− 1/2 =
∑

i∈I

wi(mi − 1/2).

The result follows from this last formula and proposition 19.

The meaning of the following corollary is that a sequence is unpredictable by all
finite predictors if and only if its entropy is maximal.

Corollary 21. Let M0 be the set of finite Turing machines, then a sequence (un)
is in R7(M0) if and only if for all finite statistical test F , H((un)(F )) = 1.

Proof. The result follows from corollary 20 and proposition 8.

3.2. Classification of finite statistical tests. In this section, we define an
order relation on the set of finite ergodic statistical tests. Basically, let F and F ′

be finite statistical tests, if F is stronger than F ′ then every sequence that passes
the test F also passes F ′.

Definition 22. Let F = (S, f, s0) and F ′ = (S′, f ′, s′0) be two finite ergodic statis-
tical tests. A morphism between F and F ′ is a map χ : S → S′ such that χ(s0) = s′0
and compatible with the transition functions i.e. for all s ∈ S and σ ∈ Σ, we have

χ(f(s, σ)) = f ′(χ(s), σ).
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A morphism χ : F → F ′ of finite ergodic statistical tests induces a map χM :
Φ(F ) → Φ(F ′) on the associated family of Markov chains defined as follows: if
Φ(F ) = (S, M(Λ), s0) and Φ(F ′) = (S′, M ′(Λ′), t0), then we set

χM ((S, M(λs0 , . . . , λsk
), s0)) = (S′, M ′(λ′

t0 , . . . , λ
′
tl
), t0)

with for i = 0, . . . , l,

(5)
(

∑

sj∈χ−1(ti)

wsj

)

λ′
ti

=
∑

sj∈χ−1(ti)

wsj
λsj

,

where [ws0 , . . . , wsk
] is the stationary state of probability of (S, M((λs0 , . . . , λsk

)), s0).

Proposition 23. Let χ : F → F ′, be a morphism of statistical tests and χM the
associated morphism on Markov chains. Let (S, M(Λ), s0) be an element of the
family Φ(F ) then

H((S, M(Λ), s0)) ≤ H(χM (S, M(Λ), s0))

Proof. Denote by ζ : [0, . . . , k] → [0, . . . , l] the map such that χ(si) = tζ(i). Let
[w0, . . . , wk] and [w′

0, . . . , w
′
l] be the stationary states of probability of F and F ′.

From the Chapman-Kolmogorov relation and (5), we deduce that

(6) w′
j =

∑

i∈ζ−1(j)

wi.

Next, set λi0 = mi♯(f(si,0)), λi1 = mi♯(f(si,1)) for i = 0, . . . , k and in the same
manner, λ′

i0 = m′
i♯(f ′(ti,0))

, λ′
i1 = m′

i♯(f ′(ti,1))
for i = 0, . . . , l. We have

(7) H(T ) =
k
∑

i=1

wiH(λi0, λi1) =
l
∑

j=0

∑

i∈ζ−1(j)

wiH(λi0, λi1),

On the other hand, write

(8) H(T ′) =

l
∑

j=0

w′
jH(λ′

j0, λ
′
j1).

So the proposition will be achieved if we have the following inequality

w′
jH(λ′

j0, λ
′
j1) ≥

∑

i∈ζ−1(j)

wiH(λi0, λi1),

which can be rewritten following equations (5) and (6), as

H(
1

W

∑

i∈ζ−1(j)

wiλi0,
1

W

∑

i∈ζ−1(j)

wiλi1) ≥
1

W

∑

i∈ζ−1(j)

wiH(λi0, λi1),

where W =
∑

i∈ζ−1(j) wi. But this inequality is an immediate consequence of the

convexity of the function x 7→ x lnx on R
∗
+.

Definition 24. Let F and F ′ be two finite statistical tests. If there exists a
morphism χ : F → F ′, we say that F is stronger than F ′ and we denote F ≥ F ′. If
F ≥ F ′ and F ′ ≥ F , we say that F and F ′ are isomorphic.

Proposition 25. If F and F ′ are isomorphic statistical tests then Φ(F ) and Φ(F ′)
are the same family of Markov chains.

Proof. It suffices to remark that if F and F ′ are isomorphic then the graph repre-
sentation of F and F ′ are isomorphic.
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Proposition 26. The relation ≥ is an order relation in the set F of all finite
statistical tests modulo isomorphism.

Proof. The relation ≥ is clearly transitive and reflexive. Moreover by definition if
we have F ≥ F ′ and F ′ ≥ F then F ≃ F ′.

Proposition 27. If χ : F → F ′ is a morphism between two finite statistical tests
then we have χM ((un)(F )) = (un)(F ′).

Proof. Let [s0, . . . , sk] and [t0, . . . , tl] be respectively the set of states of F and F ′.
Let W = [w0, . . . , wk] and W ′ = [w′

0, . . . , w
′
l] be the stationary states of probability

of (un)(F ) and (un)(F ′). Then, we have

P [W ′ = ti] =
∑

j∈ζ−1(i)

P [W = sj] =
∑

j∈ζ−1(i)

wi.

This last formula defines uniquely the stationary state of probability of (un)(F ′).
From this and the Chapman-Kolmogorov equalities, we deduce that (un)(F ′) =
χM ((un)(F )).

The following corollary means that if a test F is stronger than a test F ′ then
every sequence that passes the test F also passes the test F ′.

Corollary 28. If χ : F → F ′ is a map between two finite statistical tests then for
any sequence (un) ∈ Σ∗, H((un)(F )) ≤ H((un)(F ′)).

Proof. This is an immediate consequence of propositions 23 and 27.

3.3. Complete families of tests. At this point, we have introduced a certain
order relation on the set of all finite statistical tests. We have seen that if a test
F is stronger and F ′ then every sequence that pass the test F also pass the test
F ′. A natural question is the following: is there any finite statistical test in the
set of all finite statistical tests which is stronger than all the others. The answer
to this question is clearly no since if such a test would exist its number of states
would be greater than the number of states of all other finite statistical test. This
is not possible. But then, one would like to describe a certain infinite sequence
of finite statistical tests Fi, that we call complete family of tests, such that if a
sequence passes all the Fi then it will pass all the finite statistical tests. We see in
the following that an answer to this question can be deduced from the seminal work
of Shannon on information theory [12]. We give here some precise statements.

Definition 29. Let F = (Si, fi, s0i) i ∈ I, be a family of finite statistical tests.
Consider the transition function ×i∈Ifi on the Cartesian product of the set of
states ×i∈ISi defined by (×i∈Ifi)((si)i∈I , σ) = (fi(si, σ))i∈I with (si)i∈I ∈ ×i∈ISi

and σ ∈ Σ. Let W in ×i∈ISi be the smallest set among the one which contains
(s0i)i∈I and stable by the action of ×i∈Ifi i.e. we have (×i∈Ifi)(W ) ⊂ W .

If I is a finite set (W,×ifi, (s0i)i∈I) is a finite statistical state called the product
of (Fi)i∈I and denoted ×i∈IFi.

Lemma 30. Let F and F ′ be two finite statistical tests. Then there exist two
natural morphisms of statistical tests p : F × F ′ → F and p′ : F × F ′ → F ′ given
by the first (resp. the second) projection of S × S′ onto S (resp. onto S′).

Proof. This is a simple verification.
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Proposition 31. The product of finite statistical tests is associative and commu-
tative. Moreover, if F and F ′ are two statistical tests we have F × F ′ ≃ F if and
only if there exists a morphism of finite statistical tests χ : F → F ′.

Proof. The first assertion is a direct consequence of the definitions. For the second, if
F ×F ′ ≃ F then by the preceding lemma there exists a morphism from F ≃ F ×F ′

to F ′. Reciprocally, if there exists a morphism χ : F → F ′ then we have the
following sequence of morphisms :

F ≃ F × F → F × F ′ → F

from which we deduce that F ≃ F × F ′.

One question which often arises when dealing with statistical tests is to be able
to decide whether a certain set of tests are independent i.e. do they cover a great
variety of unrelated statistical properties? Our definition of a finite statistical test
cast some new light on this problem. We have embedded all the finite tests in a big
statistical model with an infinite set of parameters and it is now possible to decide
if two statistical tests are independent. Let F and F ′ be two finite statistical tests
then the bigger their product is, the more independent they are. Their are two
extreme interesting cases:

– when F × F ′ = F then there is a morphism from F to F ′ and the set of
parameters of Φ(F ) is contained in the set of parameters of Φ(F ′).

– when the set of states of F × F ′ is the Cartesian product of the set of states
of F and F ′, then F and F ′ are completely independent.

Let F = (Si, fi, s0i), i ∈ I be a family of finite statistical test. If we do not
suppose I finite then ×i∈IFi is not anymore a finite statistical test since we obtain
an automaton with an infinite number of states. Nevertheless we can consider
×i∈IFi as an infinite directed graph. We have the

Theorem 32. Let (Fi), i ∈ I be a family of finite statistical tests. If ×i∈IFi is a
tree, i.e. a graph without cycle then for all binary sequences (un), and all finite
statistical tests F , we have

H((un)(F )) ≥ inf{H((un)(Fi)), i ∈ I}.

Proof. Let (Fi), i ∈ I be a family of finite statistical tests such that ×i∈IFi is a tree.
Let F be any finite statistical test and (un) be a binary sequence. We know that
(un)(F ) (resp. for all i ∈ I, (un)(Fi)) is a Markov chain which gives in particular a
sequence XF

n (resp XFi
n ) of random variables. As (un)(F ) and (un)(Fi) are unifilar,

we can moreover assume that XF
n and XFi

n have value in Σ (see [1] pp. 188).
The hypothesis that ×i∈IFi is a tree implies that for all n there exists a l(n)

such that for all k ≥ l(n) the subgraph of the graph representation of Fk given
by all the nodes which are at distance less than n from s0 is a tree. As a con-
sequence, for all n there exists l(n) such that for all k ≥ l(n), the knowledge of

the value XFk

0 , . . . , XFk
n is equivalent to the knowledge of u0, . . . , un. We have then

H(XFk

n+1|X
Fk

0 , . . . , XFk
n ) ≤ H(XF

n+1|X
F
0 , . . . , XF

n ).
By definition,

H(XF ) = lim
n→∞

H(XF
n+1|X

F
0 , . . . , XF

n ),

and we know by [1] pp.186 that the sequence H(X
Fl(n)

n+1 |X
Fl(n)

0 , . . . , X
Fl(n)
n ) is non-

increasing so
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H(XFl(n)) ≤ H(X
Fl(n)

n+1 |X
Fl(n)

0 , . . . , X
Fl(n)
n ) ≤ H(XF

n+1|X
F
0 , . . . , XF

n ).

For a ǫ > 0, taking n such that H(XF
n+1|X

F
0 , . . . , XF

n ) − H(XF ) < ǫ, we obtain

that for all ǫ > 0 there exists an n0 such that H(XFn0 ) ≤ H(XF ) + ǫ and this
complete the proof.

A consequence of theorem 32 is the following: if we have found a family (Fi)i∈I

of finite statistical tests such that ×i∈IFi is a tree then every sequence (un) that
pass all the tests (Fi)i∈I also pass all the finite statistical tests.

Example 33. Let (un) ∈ Σ∗. Let (Gi)i∈N∗ be the family of finite ergodic statistical
tests such that the state s of Gi upon the reading of the kth element of the sequence
(un) is given by the vector of size i (u⌊k/i⌋i, u⌊k/i⌋i+1, . . . , u⌊k/i⌋i+r , 0, . . . , 0) where
r = k mod i. It is clear that a sequence passes the tests Gi if and only if it
is i−distributed. Moreover the family of tests (Gi)i∈N∗ verifies the condition of
theorem 32.

As a consequence of the preceding example, we have the

Corollary 34. Let (un) ∈ Σ∗, we have the following equivalent propositions

1. (un) is ∞-distributed,
2. (un) passes all the finite statistical tests,
3. (un) is unpredictable for all finite predictors.

This corollary may be viewed as an analog the theorem B of [5] pp. 153 which
states that all distributions computed in a certain way from a ∞−distributed se-
quence are the same.

4. Testing a device

We remark that all statistical models associated to a finite statistical test describe
for certain values of their parameters a distribution which is verified when the input
random variables are Bernoulli with parameter 1/2. The connection between the
theory of hypothesis testing and random test is then the following: one chooses a
statistical model adapted to the device to be tested, then takes for H0 the value of
the parameter of the model which corresponds to the distribution given by Bernoulli
law with parameter 1/2 and as alternative hypothesis the contrary case.

For example, if we know that the statistical model of the device is a binary
memoriless source (BMS) then one can use the only monobit frequency test [5]: one
can prove that this test is the best possible for this model.

We have seen that some statistical models are more general than others. For
instance the (BMS) model is contained in the general model of an ergodic stationary
source with memory. The advantage of the more specific test is that it will be in
general more sensitive to a given bias. But it will be useless to detect some other
non random behavior.

In a general manner, the practice of statistical test in order to check the random
behavior of a device is characterized by

– the choice of a statistical model adapted to the device;
– the choice of a restricted set of statistical tests associated to this statistical

model.
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In practice, the choice of a statistical model used to describe the device is based
on the some heuristic hypothesis. The experience shows that most of the time, the
problems which arise in the design of a random device will affect its behavior in
some very precise manner : for instance, it may be the duplication of some bits or a
kind of stuttering which correspond to the repetition of the same pattern at periodic
intervals or also the production of unbalanced patterns of bits. This kind of non
random behavior may be easily identified using the frequency test, Maurer’s test
or the collision tests. These tests should always be part of a routine random test
suite. However if one of these tests detects a deviation it is very difficult to decide
if this is due to a failure of the device in the absence of a systematic explanation.

In the process of selecting a test suite for a device, one should also keep in mind its
cryptographic purpose. For instance, in order to generate some initialisation vector,
one can use a linear feedback shift register because it will produce a long sequence
of non repeating blocks, but by definition this random generator will behave poorly
with respect to the linear complexity test.

Last but not least, one should also take care of the fact that in some circumstances
random tests may jeopardise the quality of a random generator : for instance, if a
statistical test with a none well adjusted rejection rate is used to select blocks of
data at the output of a generator then it will induce a bias easy to detect using
the same test on a sample of the output. This may be of some consequences in
some applications where the output of the random number generator has to be
indistinguishable from a truly random sequence.
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