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Abstract

In this note we introduce the concept of group convolutional code.

We make a complete classification of the minimal S3-convolutional

codes over the field of five elements by means of Jategaonkar’s theo-

rems.

Mathematics subject classification (2000): 16S36, 94B10.

Keywords: skew polynomial rings, Jategaonkar’s theorem, convolu-

tional codes, group codes.

1 Introduction

Block codes as left ideals in group algebras were introduced by S. D. Bermann
in [1]. After that, several papers of MacWilliams, Landrock, Damgard,
Lieber, Ward, Zimmermman and others gave more credit to this theory ([3],
[10], [11],[12],[13],[18]). In the context of convolutional codes, P. Piret [15],
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studied the H-codes, which can be seen as a generalized version of the group
block codes in the convolutional case.

On the other hand, the concept of cyclic convolutional codes and their
first properties were proposed by P. Piret and C. Roos in [14] and [16],
respectively. More recently, H. Gluesing-Luerssen et al. ([5], [6]) continue
the study of cyclic convolutional codes. In the present paper, we give a
definition of group convolutional code, which is a generalization of cyclic
convolutional code and group block code. We introduce some important
techniques in non-commutative algebra, concretely, the structure theorems
of skew polynomials rings given in [9] by Jategaonkar.

The paper is organized as follows. In Section 2 we make the necessaries
definitions related with convolutional codes we will use throughout the paper.
Then we introduce the concept of group convolutional code and minimal one,
this last will be the main object of our study since they are the building
blocks for the rest of the codes. Next we summarize Jategaonkar’s result
on the structure of skew polynomial rings over semisimple rings, that we
will use in the last section. Finally, Section 3 deals with the classification
of the minimal S3-convolutional codes over the field of five elements. The
isomorphism established between the skew polynomial ring and certain direct
sums of rings of matrices over simplest skew polynomial rings will be crucial.
Note that these codes are the smallest non-commutative group convolutional
codes to consider. This result opens the way to consider more complicated
examples.

2 Preliminaries and first results

Throughout this paper, IF denotes a finite field and n a positive integer such
that the characteristic of IF , char(IF ), does not divide n. This assumption
guarantees that for any group G of order n, the group algebra IF [G] is semi-
simple.

This paper deals with convolutional codes with additional algebraic struc-
ture. We adopt the following definition of convolutional code from [6].

Definition 1 A convolutional code of length n and dimension k is a direct
summand C of IF [z]n of rank k as IF [z]-module.
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Let r be a positive integer. Any matrixM ∈Mr×n(IF [z]) with rows given
by a generating set of C as IF [z]-module is called generating matrix of the
code C. If r = k, then M is called generator matrix or encoder of C.

The maximal degree of the k-minors of an encoder M is called the com-
plexity of the code. A code of complexity zero is said to be a block code.

The free distance of a convolutional code is defined as follows. First,
given v =

∑m
i=0 viz

i ∈ IF [z]n where vj ∈ IF n, we define its weight as wt(v) =∑m
i=0wt(vi), where wt(vi) is the usual Hamming weight of the vector vi ∈ IF n.

Then, the free distance of a convolutional code C ⊆ IF [z]n is defined as,
dist(C) = min{wt(v) | v ∈ C − {0}}.

We call (n, k, δ)-convolutional code a code with length n, dimension (or
rank) k and complexity δ. We say that a (n, k, δ)-convolutional code with free
distance d, C, is a MDS code (maximal distance separable) if d = S(n, k, δ),
where S(n, k, δ) is the generalized Singleton bound, S(n, k, δ) = (n−k)(⌊ δ

k
⌋+

1) + δ + 1. For a given size field q, we have the so called Griesmer bound for
convolutional codes over the field of q elements. It is defined as
G(n, k, δ;m)q = max

{
d′ ∈ {1, ..., S(n, k, δ)} |

∑k(m+i)−δ−1
l=0 ⌈d′

ql
⌉ ≤ n(m+ i)

for all i ∈ ÎN
}
.

Here m denotes the maximum taken over the Forney indices of a (n, k, δ)-
convolutional code, and it is called the memory of the code. Also, ÎN denotes
{1, 2, ...} if km = δ or {0, 1, 2, ...} if km > δ. A convolutional code over a
field of q elements is said to be optimal if it reaches the Griesmer bound (see
[7] ).

Let G = {g1, ..., gn} be a finite group of order n. We consider the
group IF -algebra A = IF [G] and the IF -isomorphism β : IF n → A given by
β(v1, ..., vn) :=

∑n
i=1 vigi. On the other hand, we have the canonical isomor-

phism ψ : IF [z]n → IF n[z]. Given y ∈ IF [z]n, let ψ(y) =
∑

j≥0 z
jwj ∈ IF n[z].

Then we define ρ : IF [z]n → A[z] by ρ(y) =
∑

j≥0 z
jβ(wj). It is clear that ρ

is a IF [z]-isomorphism. We identify the IF [z]-submodules of IF [z]n with the
IF [z]-submodules of A[z] via ρ.

Now, let σ be an IF -automorphism of A and R = A[z; σ] be the skew
polynomial ring. The multiplication rule in R is given by az = zσ(a) for
all a ∈ A. The map ρσ : IF [z]n → A[z; σ] defined just like ρ is the key for
the next definitions ( in [5] essentially appears the respective definitions in
the particular case of a cyclic group). Note that ρσ is an isomorphism of left
IF [z]-modules.
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Definition 2 Let C ⊆ IF [z]n be a convolutional code. We say that C is a
(G, σ)-convolutional code if ρσ(C) is a direct summand left ideal of R.

We will see that this definition coincides with the usual one where only
is required that ρσ(C) is a direct summand as IF [z]-module.

Proposition 1 Let C ⊆ IF [z]n be a convolutional code. The following con-
ditions are equivalent.

a) C is a (G, σ)-convolutional code.
b) ρσ(C) is a left ideal of R and there is an IF [z]-submodule K of R such

that ρσ(C)⊕K = R.

Proof. a) ⇒ b) is obvious since any left ideal of R is, in particular, a
IF [z]-submodule.

b) ⇒ a) Suppose ρσ(C) ⊕ K = R as IF [z]-modules. Then there is an
IF [z]-linear map π : R → ρσ(C) such that π(x) = x for all x ∈ ρσ(C). Define
π : R → ρσ(C) by π(a) = 1

m
(
∑

d∈U d π(d
−1a)), where U = U(IF [G]) is the

group of units of IF [G] and m is its order. It is clear that π(x) = x for all
x ∈ ρσ(C). We will show that π is R-linear and so ρσ(C) would be a direct
summand of R as left R-modules. It is enough to prove that π(ha) = ha and
π(za) = zπ(a) for all h ∈ G, a ∈ R. Now, π(ha) = 1

m
(
∑

d∈U d π(d
−1ha)) =

1
m
(
∑

d∈U hh
−1d π(d−1ha)) = h( 1

m
(
∑

d∈U h
−1d π(d−1ha))) = hπ(a).

Also, π(za) = 1
m
(
∑

d∈U d π(d−1za)) = z( 1
m
(
∑

d∈U σ(d) π(σ(d)
−1a))) =

zπ(a), (the last equality holds because σ produces a permutation on the
elements in U). ✷

Definition 3 We say that a (G, σ)-convolutional code C is minimal if ρσ(C)
is indecomposable as left A[z; σ]-module.

Proposition 2 a) Any minimal (G, σ)-convolutional code does not contain
any other proper (G, σ)-convolutional code.

b) Any (G, σ)-convolutional code is a direct sum of minimal (G, σ)-con-
volutional codes.

Proof. a) Let C be a minimal (G, σ)-convolutional code and L ⊆ C a (G, σ)-
convolutional code different from C. Then R = ρσ(L)⊕K as left R-modules
for some K ≤ R. This implies that ρσ(C) = ρσ(L)⊕ (K ∩ ρσ(C)) which is a
contradiction with the minimality of C.
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b) Let C be a (G, σ)-convolutional code. Then I = ρσ(C) is a direct
summand left ideal of R. If I is indecomposable then it is done. In the
contrary case, I = I1 ⊕ I2 where Ii is a nonzero left ideal of R for i =
1, 2. Again if both Ii are indecomposable it is done. This procedure can be
repeated and must stop since the ideal I has finite rank as IF [z]-module and
the Ii’s are free IF [z]-modules.

It is standard that any minimal (G, σ)-convolutional code is generated as
left A[z; σ]-module by a primitive idempotent element of A[z; σ]. This paper
mainly deals with the problem of finding these primitive idempotents. We
are interested in the matrix approach of A[z; σ]. Next, we make an account
of results on the interpretation of the elements of A[z; σ] as matrices in some
matrix ring. We use Jategaonkar’s results (cf. [9]) in order to give an explicit
isomorphism of rings between A[z; σ] and the rings constructed via matrix
rings.

For the rest of this section, let A be a finite ring (non necessarily com-
mutative), σ : A → A be an automorphism and z an indeterminate. The
skew polynomial ring R = A[z; σ] admits a variable change in z such that
R is again a skew polynomial ring: let u be a unit in A and u the inner
automorphism of A defined by u(a) = u−1au, a ∈ A. It is easy to check that
A[z; σ] = A[zu; uσ].

The following rings are intimately related to the skew polynomial rings.
Let K be a ring and ρ : K → K an automorphism. Let D = K[x; ρ], m > 0
and P the subring of Mm(D) consisting of all the matrices (dij) satisfying
the next two conditions: (1) dij ∈ D ∀i, j; (2) dij ∈ xD if i > j. We denote
the subring P by {K,m, ρ, x}. We also denote by In the set {1, ..., n}.

We recall the concept of set of matrix units that appears is [8, P. 52]. Let
A be a ring. A finite subset {eij : i, j ∈ In} in A is called set of matrix units
in A if verifies the following two conditions:

n∑

i=1

eii = 1 and eijekl = δjkeil

where δjk is the Kronecker delta. In particular, eij 6= 0 for all i, j ∈ In.
A central idempotent element f in A is called semiprimitive if f is primi-

tive in the center of A.
The following fact will be used frequently in the next section. Let A

be a semisimple finite ring and {f1, ..., fm} a complete set of semiprimitive
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idempotent elements in A. Assume that σ : A → A is an automorphism
such that σ(fi) = fπ(i) where π is the cycle over Im given by π = (1 2...m).
Let R = A[z; σ]. Then, by [9, Lemma 3.1], there exists a finite field K,
an automorphism ρ : K → K and a positive integer n such that R ∼=
Mn({K,m, ρ, x}) for some indeterminate x.

Note that the above positive integer n is the cardinality of a complete set
of matrix units in Af1.

3 S3-convolutional codes

In this section we are going to determinate the minimal S3-convolutional
codes over the field with five elements via Jategaonkar’s theorems [9]. We fix
the field with 5 elements IF5 and let A = IF5[S3]. The ring A is semisimple by
Maschke Theorem. First, we calculate a complete set of primitive orthogonal
idempotents elements of A by means of theory of Young diagrams (see [2,
pg. 190]). The list of the four idempotent is the following:

ε1 = I + (1 2) + (1 3) + (2 3) + (1 2 3) + (1 3 2),

ε2 = I + 4(1 2) + 4(1 3) + 4(2 3) + (1 2 3) + (1 3 2),

ε3 = 2I + 3(1 2) + 2(2 3) + 3(1 2 3),

ε4 = 2I + 2(1 2) + 3(2 3) + 3(1 3 2).
Then A = ε1A⊕ε2A⊕ε3A⊕ε4A, where ε1A ∼= ε2A ∼= IF5 and ε3A⊕ε4A ∼=

M2(IF5) as rings. The corresponding semiprimitive idempotents are f1 = ε1,
f2 = ε2 and f3 = ε3 + ε4.

We consider two classes of IF5-automorphism of A attending to the fea-
sible permutation that produces over the set {f1, f2, f3}. One class will be
represented by the identity permutation and the other by the permutation
(1 2). By [9, Theorem 3.3], two automorphisms that produce the same per-
mutation also produce isomorphic skew polynomial rings. Moreover, we will
prove later that they are isometric, in the sense that there is ring isomor-
phisms between them that preserve the weight of the elements. So we only
take in our study the identity automorphism (for the identity permutation)
and any automorphism σ ∈ AutIF5

(A) such that σ(f1) = f2, σ(f2) = f1 and
σ(f3) = f3 (note that any automorphism maps f1 to f1 or f2, f2 to f2 or f1
and f3 to f3).
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3.1 The case of the permutation (1 2)

We begin with the second type of automorphism. We take the automorphism
σ such that σ(I) = I, σ(1 2) = 4(1 2), σ(1 3) = 4(1 3), σ(2 3) = 4(2 3),
σ(1 2 3) = (1 2 3), σ(1 3 2) = (1 3 2). It can be checked that σ verifies the
above conditions over {f1, f2, f3}.

By [9, Lemma 3.2], A[z; σ] = Ag1[zg1; σ1]⊕Ag2[zg2; σ2], where g1 = f1+f2,
g2 = f3, σ1 = σ|Ag1 and σ2 = σ|Ag2.

Let b1 = I, b2 = (1 2), b3 = (1 3), b4 = (2 3), b5 = (1 2 3) and b6 = (1 3 2).
Given h ∈ A[z; σ], we have

h =
m∑

i=0

zi(
6∑

j=1

aijbj) =
6∑

j=1

(
m∑

i=0

ziaij)bj

with aij ∈ IF5. Then,

h = hg1 + hg2 =
6∑

j=1

(
m∑

i=0

(zg1)
iaij)bjg1 +

6∑

j=1

(
m∑

i=0

(zg2)
iaij)bjg2.

We study separately hg1 and hg2.
By [9, Theorem 2.1], there exists an isomorphism φ1 : Ag1[zg1; σ1] → S,

where S = {IF5, 2, ρ, x} ⊆ M2(IF5[x; ρ]), ε2A ∼= IF5, x = (zg1)
2 and ρ = σ2

1 =
idε2A : ε2A → ε2A. Hence, the ring S is simply the subring of M2(IF5[x])

given by S = {

(
p11 p12
xp21 p22

)
| pij ∈ IF5[x]}. To understand φ1(hg1) is

enough to calculate φ1((zg1)) and φ1(bjg1), for all j ∈ I6. It is easy to see
that bjg1 is equal to 2(I + (1 2 3) + (1 3 2)) or 2((1 2) + (1 3) + (2 3)) for all

j ∈ I6. Then, by the proof of [9, Theorem 2.1], we have φ1(zg1) =

(
0 1
x 0

)
,

φ1(((1 2) + (1 3) + (2 3))g1) =

(
3 0
0 2

)
and φ1((I + (1 2 3) + (1 3 2))g1) =

(
3 0
0 3

)
.

Note that φ1(ε1g1) =

(
1 0
0 0

)
, φ1(ε2g1) =

(
0 0
0 1

)
and by applying φ1

to the sum ((1 2) + (1 3) + (2 3))g1 + (I + (1 2 3) + (1 3 2))g1 = ε1g1 we get

precisely

(
3 0
0 2

)
+

(
3 0
0 3

)
=

(
1 0
0 0

)
.
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Now we focus our attention on the direct summand Ag2[zg2; σ2]. By [9,
Lemma 3.1], there exists an isomorphism ψ : Ag2[zg2; σ2] →M2(IF5[zg2u; uσ2]),
where u is a unit in Ag2. We will make effective this isomorphism.

First we find an isomorphism δ : Ag2 → M2(IF5). Let ε33 = ε3, ε44 = ε4,
ε34 = (1 3)ε4 and ε43 = (1 3)ε3. Then, by the theory of Young diagrams,
the set {ε33, ε34, ε43, ε44} is a set of matrix units for Ag2 (see [8]). Hence

the assignation ε33 7→

(
1 0
0 0

)
, ε34 7→

(
0 1
0 0

)
, ε43 7→

(
0 0
1 0

)
, ε44 7→

(
0 0
0 1

)
, will produce the isomorphism δ. Concretely, given ag2 ∈ Ag2, we

define aij =
∑4

k=3 εkiag2εjk with j, i ∈ {3, 4}. Then aij belongs to the center
of Ag2 ([8]), Cent(Ag2) ∼= IF5, and δ(ag2) = (aij) verifies the above.

Now we need to know how σ2 : Ag2 → Ag2 is induced in M2(IF5), i.e., we
must find an automorphism σ̂2 :M2(IF5) →M2(IF5) such that the diagram

Ag2
σ2 ✲Ag2

δ

❄

δ

❄

M2(IF5)
σ̂2✲M2(IF5)

is commutative. It is clear that σ̂2 = δσ2δ
−1. Then, easy calculations show

that σ̂2

(
a b

c d

)
= B

(
a b

c d

)
B−1, where B =

(
4 3
2 1

)
.

Hence we have the isomorphism induced by δ in the obvious manner:
δ : Ag2[zg2; σ2] → M2(IF5)[y; σ̂2], zg2 7→ y, δ|Ag2 = δ. On the other hand,
M2(IF5)[y; σ̂2] =M2(IF5)[yB;Bσ̂2] =M2(IF5)[yB]. Taking yB = x, we finally
get

M2(IF5)[y; σ̂2] =M2(IF5)[x] ∼=M2(IF5[x]),

with the last isomorphism the canonical one. Let

φ2 : Ag2[zg2; σ2] →M2(IF5[x])

be the composition of δ with the canonical isomorphism. Then, it is clear
that φ2(zg2) = xB−1 and given α = a33ε33 + a44ε44 + a34ε34 + a43ε43 ∈ Ag2,

φ2(α) =

(
a33 a34
a43 a44

)
.
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Once we have completely described the isomorphisms φ1 and φ2, we have
the ring isomorphism φ = φ1 ⊕ φ2 : A[z; σ] = Ag1[zg1; σ1]⊕ Ag2[zg2; σ2] −→
S ⊕ M2(IF5[x]). This isomorphism will allow us to make calculations in
S ⊕M2(IF5[x]) and then to reflect them in A[z; σ]. We are interested in the
S3-convolutional codes, these are obtained by means of the direct summands
left ideals of A[z; σ]. Hence, we get the primitive idempotents of S and
M2(IF5[x]), and then we apply φ−1 to them. Note that it is easy to see that
any idempotent in S or M2(IF5[x]) is primitive.

The idempotent matrices of S are of the form A =

(
r s

xt 1− r

)
with

r(1−r) = xts. First we suppose that r is different from 0 and 1. We have two
possibilities: x|r or x|(1−r). If x|r, we call r = kxd, s = dq, xt = kxp, 1−r =

pq. Then

(
p −d
xk q

)
·A = C, where C =

(
0 0
kx q

)
, and

(
p −d
xk q

)
has

(
q d

−xk p

)
as inverse in S. Hence • < A >=•< C > . If xk =

∑n
i=0 αix

i+1

and q =
∑m

i=0 βix
i, then φ−1

1 (C) = ε2(δ + γ) = u where δ =
∑n

i=0 αiz
2i+1,

γ =
∑m

i=0 βiz
2i. Since biε2 = ε2 or 4ε2, we get a convolutional code of rank

1, with the IF5[z]-basis {(δ + γ, δ + 4γ, δ + 4γ, δ + 4γ, δ + γ, δ + γ)}, and
complexity max{2deg(k) + 1, 2deg(q)}.

In the second case, that is, when x|(1 − r), we have • < A >=•< C >,

where C is now C =

(
k q

0 0

)
. In the same way as above, we get a convolu-

tional code of rank 1, with basis {(δ+ γ, δ+4γ, δ+4γ, δ+4γ, δ+ γ, δ+ γ)},
and complexity max{2deg(k), 2deg(q) + 1}, where δ =

∑n
i=0 αiz

2i, γ =∑m
i=0 βiz

2i+1.
Finally, we compute rank, basis, and complexity of the codes that we get

when r = 0, 1:(
0 s

0 1

)
: rank 1, with basis {(1, 4, 4, 4, 1, 1)}, and complexity zero.

(
1 s

0 0

)
: rank 1, with basis {(1+ γ, 4γ+1, 4γ+1, 4γ+1, 1+ γ, 1+ γ)},

and complexity 2deg(s) + 1. (If s =
∑n

i=0 αix
i, then γ =

∑n
i=0 αiz

2i+1).
(

0 0
xt 1

)
: rank 1, with basis {(1 + γ, 4 + γ, 4 + γ, 4 + γ, 1 + γ, 1 + γ)},
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and complexity 2deg(t) + 1. (If t =
∑n

i=0 αix
i, then γ =

∑n
i=0 αiz

2i+1).
(

1 0
xt 0

)
: rank 1, with basis {(1, 1, 1, 1, 1, 1)}, and complexity zero.

We resume all the above by stating that any minimal S3-convolutional
code corresponding to an idempotent of S has the basis
{(f(z), f(−z), f(−z), f(−z), f(z), f(z))} or {(f(z),−f(−z),−f(−z),
−f(−z), f(z), f(z))}, where f(z) is a polynomial in IF5[z], f(z) =

∑n
i=0 aiz

i,
with

∑
a2iz

2i and
∑
a2i+1z

2i+1 coprime (or, equivalently, f(z) and f(−z)
coprime), or

∑
a2iz

2i = 1 and
∑
a2i+1z

2i+1 = 0. Hence the complexity is
always deg(f). In both cases, these codes can be seen as codes of length 2
by concatenation.

For several small deg(f) we can compute the free distance of some of
these codes. For example, if f(z) = bz + a with a, b 6= 0 the code generated
by (f(z), f(−z), f(−z), f(−z), f(z), f(z)) has free distance 12 and so is a
MDS code. It is also easy to see that if f(z) = a + bz + cz2 with a, b, c 6= 0,
then the code generated by (f(z), f(−z), f(−z), f(−z), f(z), f(z)) has free
distance 18 and so is a MDS code too.

Now we focus our attention into the idempotents of M2(IF5[x]). Set d =
φ−1
2 (B) = 4(1 2 3) + (1 3 2) ∈ Ag2. Note that d2 = 2g2, hence d

2t = 2tg2 and
d2t+1 = 2tdg2.

We consider an idempotent matrix in M2(IF5[x]):

(
r s

t 1− r

)
with r 6=

0, 1. Since r(1− r) = ts, we call r = ah, s = hc, t = ab, 1− r = bc. Then we
have the following equalities:

(
a c

−b h

)
·

(
r s

t 1− r

)
·

(
h −c
b a

)
=

(
1 0
0 0

)
,

where (
a c

−b h

)−1

=

(
h −c
b a

)
.

Then (
a c

−b h

)
·

(
r s

t 1− r

)
=

(
a c

0 0

)
.
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Hence the left ideals generated by

(
r s

t 1− r

)
and

(
a c

0 0

)
are the same.

So we only have to transform

(
a c

0 0

)
into an element of A[z; σ] and then

calculate the associated convolutional code.
Let a =

∑n
i=0 αix

i, c =
∑m

i=0 βix
i ∈ IF5[x]. Then,

(
a c

0 0

)
=

(
a 0
0 0

)
+

(
0 c

0 0

)
=

∑n
i=0

(
xi 0
0 xi

)(
1 0
0 0

)
αi +

∑m
i=0

(
xi 0
0 xi

)(
0 1
0 0

)
βi.

Hence,

φ−1
2

(
a c

0 0

)
=

n∑

i=0

(zg2)
idiε3αi +

m∑

i=0

(zg2)
idiε34βi

and so

φ−1

(
a c

0 0

)
=

n∑

i=0

zidiε3αi +
m∑

i=0

zidiε34βi = u.

(Note that g2 is the identity in Ag2).
Set a′ =

∑n
i=0 z

iαid
i, c′ =

∑m
i=0 z

iβid
i. Breaking a′ and c′ according

to the parity of the z-degree of the monomials we write: a1 =
∑
z2iα2i2

i,
a2 =

∑
z2i+12iα2i+1,c1 =

∑
z2iβ2i2

i, c2 =
∑
z2i+12iβ2i+1. Then u = (a1 +

da2)ε3 + (c1 + dc2)ε34 ∈ A[z; σ].
In order to determinate the associated S3-convolutional code, we must

calculate biε3, biε34,biε3d and biε34d, and then calculate biu. The final ex-
pression of each biu will be of the form biu = a1ui1 + a2ui2 + c1ui3 + c2ui4,
with uij ∈ A. This happens since σ2

2 = I. Taking this into account, with the
help of GAP software [19], we get the generating matrix whose files are the
following:

b1u 7→ w1 = (2a1 + 3a2 + 4c2, 3a1 + 3a2 + 4c2, 4a2 + 2c1 + 3c2, 2a1+
3a2 + 3c1 + 3c2, 3a1 + 3a2 + 2c1 + 3c2, 4a2 + 3c1 + 3c2),

b2u 7→ w2 = (3a1 + 2a2 + c2, 2a1 + 2a2 + c2, a2 + 3c1 + 2c2, 3a1 + 2a2+
2c1 + 2c2, 2a1 + 2a2 + 3c1 + 2c2, a2 + 2c1 + 2c2),
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b3u 7→ w3 = (a2 + 2c1 + 2c2, 3a1 + 2a2 + 2c1 + 2c2, 2a1 + 2a2 + c2, a2+
3c1 + 2c2, 3a1 + 2a2 + c2, 2a1 + 2a2 + 3c1 + 2c2),

b4u 7→ w4 = (2a1 + 2a2 + 3c1 + 2c2, a2 + 3c1 + 2c2, 3a1 + 2a2 + 2c1 + 2c2,
2a1 + 2a2 + c2, a2 + 2c1 + 2c2, 3a1 + 2a2 + c2),

b5u 7→ w5 = (4a2 + 3c1 + 3c2, 2a1 + 3a2 + 3c1 + 3c2, 3a1 + 3a2 + 4c2,
4a2 + 2c1 + 3c2, 2a1 + 3a2 + 4c2, 3a1 + 3a2 + 2c1 + 3c2),

b6u 7→ w6 = (3a1 + 3a2 + 2c1 + 3c2, 4a2 + 2c1 + 3c2, 2a1 + 3a2 + 3c1+
3c2, 3a1 + 3a2 + 4c2, 4a2 + 3c1 + 3c2, 2a1 + 3a2 + 4c2).

It is easy to see that w1 = −w2, w4 = −w2 − w3, w5 = −w3 and w6 =
w2+w3. Therefore the code has rank 2, {w2, w3} is a basis and the complexity
is max{2deg(a), 2deg(c)}.

When the idempotent matrix of M2(IF5[x]) has r = 0 or r = 1, we can
reduce its study to the above case. Concretely, we have

(
0 1
−1 s

)
·

(
0 s

0 1

)
=

(
0 1
0 0

)
,

(
0 1
1 0

)
·

(
0 0
t 1

)
=

(
t 1
0 0

)
,

(
1 0
−t 1

)
·

(
1 0
t 0

)
=

(
1 0
0 0

)
,

where the left side matrices of the product are invertible in M2(IF5[x]), (the

matrix

(
1 s

0 0

)
is not necessary to be reduced).

Therefore, all the minimal S3-convolutional codes corresponding to idem-
potents in the component M2(IF5[x]) have the basis

{(3a1 + 2a2 + c2, 2a1 + 2a2 + c2, a2 + 3c1 + 2c2, 3a1 + 2a2 + 2c1 + 2c2,
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2a1 + 2a2 + 3c1 + 2c2, a2 + 2c1 + 2c2),

(a2 + 2c1 + 2c2, 3a1 + 2a2 + 2c1 + 2c2, 2a1 + 2a2 + c2, a2 + 3c1 + 2c2,

3a1 + 2a2 + c2, 2a1 + 2a2 + 3c1 + 2c2)}

where a1 =
∑
z2iα2i2

i, a2 =
∑
z2i+12iα2i+1,c1 =

∑
z2iβ2i2

i, c2 =∑
z2i+12iβ2i+1, and a =

∑
αiz

i, c =
∑
βiz

i are any coprime polynomials in
IF5[z], or a = 0, c = 1, or a = 1, c = 0. The rank is always 2 and the
complexity is always max{2deg(a), 2deg(c)}. Note that, in the above basis,
the second vector is obtained from the first one by permuting the components
with (1 5 6)(2 3 4).

3.2 The case of the identity permutation

Now we study the S3-convolutional codes that are obtained when the auto-
morphism maps f1 to f1. We can take, without lost of generality, σ = idA.
Then

A[z; σ] = A[z] = Ag1[z]⊕Ag2[z] = (Aε1[z]⊕Aε2[z])⊕Ag2[z] ∼= (IF5[z]⊕
IF5[z])⊕M2(IF5)[z] ∼= (IF5[z]⊕ IF5[z])⊕M2(IF5[z]).

Hence Ag1[z] has only two idempotents different from 0 and 1, concretely,
ε1 and ε2, which generate two direct summand left ideals of Ag1[z]. The S3-
convolutional code associated to ε1 has rank 1, a basis is {(1, 1, 1, 1, 1, 1)},
that is, it is a block code. The S3-convolutional code associated to ε2 has
also rank 1, a basis is {(1, 4, 4, 4, 1, 1)}, i.e., it is a block code too. These are
the only minimal codes to consider in the component Ag1[z].

Next, we study the component Ag2[z]. In the same way that in the case
σ 6= idA above, we find idempotent elements in Ag2[z] corresponding to the
respective idempotent matrices in M2(IF5[z]).

We start with the same situation that in the case σ 6= id. We consider an

arbitrary idempotent matrix

(
r s

t 1− r

)
with r(1 − r) = ts and r 6= 0, 1.

We will reach to the same conclusion that in the case σ 6= id: it is enough

to work with the matrix

(
a c

0 0

)
. Then, this matrix is performed into

the element aε3 + cε34 of Ag2[z]. The associated generating matrices of the
minimal S3-convolutional codes are obtained in a similar way to the case
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σ 6= idA: we only have to put in those matrices a2 = c2 = 0 and consider
a1 = a, c1 = c as arbitrary coprime polynomials in IF5[z]. The generating
matrix of the code has the following rows:

w1 = (2a, 3a, 2c, 2a+ 3c, 3a+ 2c, 3c),
w2 = (3a, 2a, 3c, 3a+ 2c, 2a+ 3c, 2c),
w3 = (2c, 3a+ 2c, 2a, 3c, 3a, 2a+ 3c),
w4 = (2a+ 3c, 3c, 3a+ 2c, 2a, 2c, 3a)
w5 = (3c, 2a+ 3c, 3a, 2c, 2a, 3a+ 2c)
w6 = (3a+ 2c, 2c, 2a+ 3c, 3a, 3c, 2a).
Then

w1 = −w2, w4 = −w2 − w3, w5 = −w3, w6 = w2 + w3

Therefore the code has rank 2, {w2, w3} is a basis and the complexity is
max{2deg(a), 2deg(c)}.

When r = 0 or r = 1, we can also reduce the matrices to reach out the
above case and then we get some particular cases.

We can compute, by comparing column and row distances of the gener-
ator matrices and using GAP software [19], all the optimal minimal (6, 2, 2)
S3-convolutional codes which are obtained by means of the identity permu-
tation. Note that the Griesmer bound for the field IF5 and memory m = 1 is
G5(6, 2, 2; 1) = 10 which is less than the Singleton bound (which is 11). In
the following table appears all the possible values for a and c that produce
non equivalent optimal codes in this situation.

a z + 1 z + 1 z + 1 z + 1 z + 1 z + 1 z + 2 z + 2

c 2z + 1 3z + 1 4z + 1 z + 2 z + 3 z + 4 z + 1 2z + 2

a z + 2 z + 2 z + 2 z + 2 z + 3 z + 3 z + 3 z + 3

c 3z + 2 4z + 2 z + 3 z + 4 z + 1 z + 2 2z + 3 3z + 3

a z + 3 z + 3 z + 4 z + 4 z + 4 z + 4 z + 4 z + 4

c 4z + 3 z + 4 z + 1 z + 2 z + 3 2z + 4 3z + 4 4z + 4

Table 1: Optimal minimal (6, 2, 2; 1)5 S3-convolutional codes for the identity
permutation
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3.3 Weight-preserving ring automorphisms

We will show that two different IF5-automorphisms of A that produce the
same permutation on the set {f1, f2, f3} also produce isometric skew poly-
nomial rings. This is a very important issue for guaranteing a complete
classification of S3-convolutional codes with controlled free distances into a
concrete skew polynomial ring.

Any IF5-automorphism σ of A verifies σ(g) = kh with k ∈ IF5 − {0}
and g, h ∈ S3. More precisely, σ((i j)) = u · (l m) with u ∈ {1,−1} and
σ((i j m)) = (j im). Hence we get six automorphisms for the case σ(f1) = f2
and six for the case σ(f1) = f1.

Let σ, τ two IF5-automorphisms verifying σ(f1) = f2 τ(f1) = f2. We will
define a ring isometry χ : A[z; σ] → A[z; τ ]. We have

A[z; σ] = (Ag1)[zg1; σ1]⊕ (Ag2)[zg2; σ2]

and A[z; τ ] = (Ag1)[zg1; τ1] ⊕ (Ag2)[zg2; τ2], where σi, τi are the restriction
automorphisms to Agi, i = 1, 2.

The ring Ag1 is generated as, IF5-vector space, by c1 = I+(1 2 3)+(1 3 2)
and c2 = (1 2) + (1 3) + (2 3). Therefore σ1(c1) = c1 = τ1(c1) and σ1(c2) =
−c2 = τ1(c2). Let χ1 : (Ag1)[zg1; σ1] → (Ag1)[zg1; τ1] be simply the identity
map.

Now we will define a ring isometry χ2 : (Ag2)[zg2; σ2] → (Ag2)[zg2; τ2].
Since Ag2 ∼=M2(IF5) there is u, v ∈ U(Ag2) such that σ2(ag2) = u−1ag2u and
τ2(ag2) = v−1ag2v, for all a ∈ A. Let χ2(zg2) = zg2v

−1u and χ2|Ag2 = idAg2.

Since v−1u is a unit in Ag2, then g1+v
−1u is a unit in A and so g1+v

−1u = k·g
for some k ∈ IF5−{0} and g ∈ S3. Hence zg2v

−1u = zg2(g1+v
−1u) = (zg2)kg,

i.e., χ2 is weight-preserving. In order to see that χ2 is a ring isomorphism
we only have to check that χ2(czg2) = χ2(zg2)χ2(σ2(c)) for all c ∈ Ag2.
But, χ2(czg2) = czg2v

−1u = zg2τ2(c)v
−1u = zg2(v

−1cv)v−1u = zg2v
−1cu =

zg2v
−1u(u−1cu) = χ2(zg2)χ2(σ2(c)).
Now it is clear that the sum χ = χ1 + χ2 : A[z; σ] → A[z; τ ] is a well-

defined ring isometry.
When σ(f1) = f1, τ(f1) = f1 we have

A[z; σ] = (Aε1)[zε1; σ1]⊕ (Aε2)[zε2; σ2]⊕ (Ag2)[zg2; σ3]

and
A[z; τ ] = (Aε1)[zε1; τ1]⊕ (Aε2)[zε2; τ2]⊕ (Ag2)[zg2; τ3]
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where σi and τi are the corresponding restriction automorphisms. However
it is easy to see that σi = idAεi, τi = idAεi for i = 1, 2. Therefore, we simply
take χi = id(Aε1)[zε1] for i = 1, 2. On the other hand, Ag2 ∼= M2(IF5) so we can
use the above idea to build an isometry χ3 : (Ag2)[zg2; σ3] → (Ag2)[zg2; τ3].
Then χ = χ1 + χ2 + χ3 is the desired isometry.

4 Conclusions

All the minimal S3-convolutional codes over IF5 have the parameters (6, 1, t)
or (6, 2, 2t) (t an arbitrary positive integer). If we compare this with the
parameters of minimal ZZ6-convolutional codes (that is, σ-cyclic convolutional
codes) we get the same result (see [5, Theorem 3.8]). Hence all minimal
group convolutional codes of length 6 over the field of five elements have
parameters (6, 1, t) or (6, 2, 2t). The positive integer t corresponds with the
(constant) Forney indices of the code. Also note that general group codes
are significantly more complicated than σ-cyclic convolutional ones. When
σ = id, cyclic convolutional codes are always block codes, however, this is
not the case for S3-convolutional codes. Finally, some free distances have
been computed for these minimal S3-convolutional codes. The calculations
show that MDS-convolutional codes (or optimal codes) appear frequently in
this setting. It would be interesting to give some information on the free
distance of group convolutional codes in terms of the algebraic structure of
the groups.
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