
Some Applications of Lattice Based Root Finding

Techniques

Santanu Sarkar and Subhamoy Maitra

Applied Statistics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India.
{santanu r, subho}@isical.ac.in

Abstract. In this paper we present some problems and their solutions exploiting lattice based root
finding techniques.
In CaLC 2001, Howgrave-Graham proposed a method to find the Greatest Common Divisor (GCD) of
two large integers when one of the integers is exactly known and the other one is known approximately.
In this paper, we present three applications of the technique. The first one is to show deterministic
polynomial time equivalence between factoring N (N = pq, where p > q or p, q are of same bit size) and
knowledge of q−1 mod p. Next, we consider the problem of finding smooth integers in a short interval.
The third one is to factorize N given a multiple of the decryption exponent in RSA.
In Asiacrypt 2006, Jochemsz and May presented a general strategy for finding roots of a polynomial.
We apply that technique for solving the following two problems. The first one is to factorize N given an
approximation of a multiple of the decryption exponent in RSA. The second one is to solve the implicit
factorization problem given three RSA moduli considering certain portions of LSBs as well as MSBs of
one set of three secret primes are same.

Keywords: CRT-RSA, Greatest Common Divisor, Factorization, Implicit Factorization,
Lattice, LLL, RSA, Smooth Integers.

1 Introduction

It is well known that given two large integers a, b (a > b), one can calculate the GCD
efficiently in O(log2 a) time. In [HOW01], Howgrave-Graham has shown that it is possible to
calculate the GCD efficiently when some approximations of a, b are available. This problem
was referred to as Approximate Common Divisors problem. Coron and May [COR07] used the
strategy of [HOW01] to proved the deterministic polynomial time equivalence of computing
the RSA secret key and factoring. In this paper we present three other interesting applications
of the technique presented in [HOW01].

First, we use the idea of [HOW01] to prove that factoring N is deterministic polyno-
mial time equivalent to finding q−1 mod p when p > q or p, q are of same bit size. In the
presentation of a recent paper [HEN09] at Crypto 2009, it has been asked how one can use
q−1 mod p towards factorization of N as q−1 mod p is stored as a part of the secret key in
PKCS #1 [PKCS].

In this direction, let us briefly explain RSA [RSA78] first. One needs to generate two large
primes p, q, with (in general) q < p < 2q. Then we have N = pq and φ(N) = (p− 1)(q − 1).
Further, e, d are identified such that ed = 1 + kφ(N), k ≥ 1. N, e are publicly available
and the plaintext M ∈ ZN is encrypted as C ≡ M e mod N . The secret key d is required to
decrypt the ciphertext as M ≡ Cd mod N .

To make the decryption process faster, the Chinese Remainder Theorem has been ex-
ploited and the model is well known as CRT-RSA [QUI82,WIE90]. The encryption technique
is same as RSA, but the decryption process is little different. Instead of one decryption expo-
nent as in standard RSA, two decryption exponents (dp, dq) are required in this case, where
dp ≡ d mod (p − 1) and dq ≡ d mod (q − 1). To decrypt the ciphertext C, one needs to
calculate both Cp ≡ Cdp mod p and Cq ≡ Cdq mod q. From Cp, Cq one can get the plaintext
M by the application of CRT using q−1 mod p. This is the reason, q−1 mod p is stored in the
secret key part of PKCS #1 [PKCS].

One may be tempted to consider the following method to factorize N from the knowledge
of q−1 mod p, which does not actually work. Consider q1 = q−1 mod p. Given N , one can
easily calculate q2 = q−1

1 mod N using Extended Euclidean Algorithm. Now q2q1 − 1 is
divisible by N and hence q2q1 − 1 is divisible by p. Thus, q2 ≡ q−1

1 mod p ≡ q mod p. If q2

would have been less than p, then q2 = q and the factorization will be immediate. However,
in general, q2 is of O(N) and not less than p. Thus this method does not work and we need
to look for a lattice based strategy which we explain in Section 2.1.

Next we consider the problem of finding smooth integers in a small interval [BON00].
Finding smooth numbers is important for application in the well known factorization al-
gorithms such as quadratic sieve [POM84] and number field sieve [LEN93]. We study the
results of [BON00] and show that slightly improved outcome could be achieved using a
different strategy following the idea of [HOW01]. This is presented in Section 2.2.

The paper [RSA78] itself presents a probabilistic polynomial time algorithm that, on
input N, e, d, provides the factorization of N . It has been proved that [MAY04,COR07]
given N, e, d, one can factor N in deterministic poly(log N) time provided ed ≤ N2. In
Section 2.3, we consider a slightly different scenario when a multiple of d say µd is known,
but d is not known. Given that µ is very large, it is not possible to factorize µd easily. Thus
to factorize N in such a scenario, we need to consider different approach. We exploit the
idea of [HOW01] again and prove that given µd, e, N , one can factor N provided µ < N .
The time complexity of our deterministic algorithm is e ·O(log N). Indeed, the algorithm is
not feasible for large e. However, the most popular mode of RSA considers small e, say of
the order of 216 + 1. In such a scenario, the algorithm works in poly(log N) time.

To extend the problem little further, in Section 3.1, we assume that instead of µd, some
approximation of it is available. We note that the idea of finding roots of a polynomial as
described in [ELL06] can be suitably exploited here.

Finally, in Section 3.2, we study the implicit factorization problem introduced in [MAY09].
Consider N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and q1, q2, . . . , qk are
primes. It is also considered that p1, p2, . . . , pk are of same bit size and so are q1, q2, . . . , qk.
Given that certain portions of bit pattern in p1, p2, . . . , pk are common, the question is
under what conditions it is possible to factor N1, N2, . . . , Nk efficiently. Several results in
this direction are presented in [MAY09,SAR09,SAR09A,FAU10]. Here we consider the case
for k = 3, when certain portions of MSBs as well as LSBs of p1, p2 and p3 are same. This
case has not been covered earlier.

2 Applications of Approximate Integer Common Divisor
Problem [HOW01]

For our purpose we need the following two results. We first state the following one due to
Howgrave-Graham [HOW97].

Lemma 1. Let h(x) ∈ Z[x] be the sum of at most ω monomials. Suppose that h(x(0)) ≡
0 mod Nm where |x(0)| ≤ X and ||h(xX)|| < Nm

√
ω
. Then h(x(0)) = 0.

We also note that the basis vectors of an LLL-reduced basis fulfill the following prop-
erty [LLL82].

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm applied on L
outputs a reduced basis of L spanned by {v1, . . . , vω} with

||v1|| ≤ ||v2|| ≤ . . . ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω,

in polynomial time of dimension ω and the bit size of the entries of L.

2.1 Equivalence of finding q−1 mod p and factorization

The following theorem proves the main result towards the equivalence.

Theorem 1. Assume N = pq, where p, q are primes and p ≈ Nγ. Suppose an approximation
p0 of p is known such that |p−p0| < Nβ. Given q−1 mod p, one can factor N deterministically
in poly(log N) time when β − 2γ2 < 0.

Proof. Let q1 = q−1 mod p. So we can write qq1 = 1 + k1p for some positive integer k1.
Multiplying both sides by p, we get q1N = p + k1p

2. That is, we have q1N − p = k1p
2. Let

x0 = p − p0. Thus, we have q1N − p0 − x0 = k1p
2. Also we have N2 = p2q2. Our goal is to

recover x0 from q1N − p0 and N2.
Note that p2 is the GCD of q1N−p0−x0 and N2. In this case q1N−p0 and N2 is known,

i.e., one term N2 is exactly known and the other term q1N−p0−x0 is approximately known.
This is exactly the Partially Approximate Common Divisor Problem (PACDP) [HOW01] and
we follow a similar technique to solve this as explained below. This will provide the error
term −x0, which added to the approximation q1N − p0, gives the exact term q1N − p0 − x0.

Take X = Nβ as an upper bound of x0. Then we consider the shift polynomials

gij(x) = xi(q1N − p0 + x)jN2(m−j) (1)

for i = 0, 0 ≤ j ≤ m and j = m, 1 ≤ i ≤ t,

where m, t are fixed non-negative integers. Clearly, gij(−x0) ≡ 0 mod (p2m).
We construct the lattice L spanned by the coefficient vectors of the polynomials gij(xX)

in (1). One can check that the dimension of the lattice L is ω = m+t+1 and the determinant
of L is

det(L) = X
(m+t)(m+t+1)

2 N2
m(m+1)

2 = X
(m+t)(m+t+1)

2 Nm(m+1). (2)

Using Lattice reduction on L by LLL algorithm [LLL82], one can find a non-zero vector b

whose norm ||b|| satisfies ||b|| ≤ 2
ω−1

4 (det(L))
1
ω . The vector b is the coefficient vector of the

polynomial h(xX) with ||h(xX)|| = ||b||, where h(x) is the integer linear combination of
the polynomials gij(x). Hence h(−x0) ≡ 0 mod (p2m). To apply Lemma 1 and Lemma 2 for
finding the integer root of h(x), we need

2
ω−1

4 (det(L))
1
ω <

p2m

√
ω

. (3)

Neglecting small constant terms, we can rewrite (3) as det(L) < p2mω. Substituting the
expression of det(L) from (2) and using X = Nβ, p ≈ Nγ we get

(m + t)(m + t + 1)

2
β + m(m + 1) < 2m(m + t + 1)γ. (4)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (4) as

τ 2β

2
+ (β − 2γ)τ +

β

2
− 2γ + 1 < 0. (5)

Now, the optimal value of τ to minimize the left hand side of (5) is 2γ−β
β

. Putting this optimal

value in (5), we get β − 2γ2 < 0.
Our strategy uses LLL [LLL82] algorithm to find h(x) and then calculates the integer root

of h(x). Both these steps are deterministic polynomial time in log N . Thus the result. ut

Corollary 1. Factoring N is deterministic polynomial time equivalent to finding q−1 mod p,
where N = pq and p > q.

Proof. When no approximation of p is given, then β in the Theorem 1 is equal to γ. Putting
β = γ in the condition β − 2γ2 < 0, we get γ > 1

2
. This requirement forces the condition

that p > q. Also, it is trivial to note that if the factorization of N is known then one can
efficiently compute q−1 mod p. Thus the proof. ut

Corollary 2. Factoring N is deterministic polynomial time equivalent to finding q−1 mod p,
where N = pq and p, q are of same bit size.

Proof. The proof of the case p > q is already taken care in Corollary 1. Now consider q > p.

When p, q are of same bit size and p < q, then p < q < 2p, i.e.,
√

N
2

< p <
√

N and
√

N < q <
√

2N .

Now if we take p0 =
√

N then |p − p0| < (1 − 1√
2
)
√

N < N
1
2

2
= N

1
2
− log 2

log N . Also p >

N
1
2
− log 2

2 log N . So in this case we can take β = 1
2
− log 2

log N
and γ > 1

2
− log 2

2 log N
. Thus, β − 2γ2 <

1
2
− log 2

log N
− 2(1

2
− log 2

2 log N
)2 = − log2 2

2 log2 N
< 0. Hence in this situation one can factor N following

Theorem 1. ut

It needs to be studied how the situation can be tackled when p is significantly smaller
than q.

Now let us describe the experimental result. We have implemented the program in SAGE
4.1 over Linux Ubuntu 8.10 on a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83
GHz, 2 GB RAM and 2 MB Cache. Note that our result in Theorem 1 holds when the
lattice dimension approaches to infinity. Since in practice we use finite lattice dimension, we
may not reach the bound presented in Theorem 1. For experiments, we consider that small
amount of Most Significant Bits (MSBs) of p is known. In Table 1, we provide some practical
results. In the first three experiments, we take N as 1000-bit integer with p, q of the same bit
size and p > q. Then in the next three experiments, we swapped p, q, i.e., q becomes larger
than p. Given q−1 mod p, we could successfully recover p in all the cases.

p ? q # MSBs of p known Lattice Parameters (m, t) Lattice Dimension Time (in sec.)

p > q 46 (5, 5) 11 1.41

p > q 24 (10, 10) 21 66.33

p > q 20 (11, 11) 23 119.72

q > p 47 (5, 5) 11 1.42

q > p 24 (10, 10) 21 66.56

q > p 20 (11, 11) 23 120.00

Table 1. Experimental results following Theorem 1.

2.2 Finding smooth integers in a short interval

Following [BON00], let us first formally define two notions of smoothness.

Definition 1.

– An integer N is called B smooth if N has no prime divisor greater than B.
– An integer N is called strongly B smooth if N is B smooth and pm can not divide N for

any m for which pm > B.

Let us denote the n-th prime by pn, e.g., p1 = 2, p2 = 3 and so on. Suppose we want to find
a strongly B smooth integer (as written in Definition 1) N in the interval [U, V].

Now let us present our result.

Theorem 2. Let S =
∏n

i=1 pai
i where ai = b log B

log pi
c and p1, . . . , pn are all distinct primes not

exceeding B. Let I = [U, V]. One can find all strongly B smooth integers N ∈ I for which

gcd(N, S) > d in poly(log S) time when |I| < 2d
log d
log S and V < 2d.

Proof. We will try to find N such that gcd(N, S) > d. Let us take take a0 = bU+V
2
c. We

consider a0 as an approximation of N . Thus we will try to find the GCD of S, N , by knowing
exactly S and some approximation of N , which is a0 (but N is not known). Here we follow the

idea of solving the Partially Approximate Common Divisor Problem (PACDP) as explained
in [HOW01].

Let x0 = N − a0. We want to calculate x0 from a0, S. Assume X = dβ is an upper
bound of x0. Let S = dδ. Using the same approach as in the proof of Theorem 1, we get the
condition as

(m + t)(m + t + 1)

2
β +

m(m + 1)

2
δ < m(m + t + 1). (6)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (6) as

β

2
τ 2 + (β − 1)τ +

β

2
+

δ

2
− 1 < 0. (7)

Now, the optimal value of τ to minimize the left hand side of (7) is 1−β
β

. Putting this optimal

value in (7), we get β < 1
δ
. Now δ = log S

log d
. So x0 should be less than d

log d
log S .

Thus, we get x0 and hence N in poly(log S) time. As, V < 2d, we have N < 2d (since
U ≤ N ≤ V). When gcd(N, S) > d, then gcd(N, S) = N as N < 2d. Hence N divides S,
i.e., N is strongly B smooth. ut

B log2 d log2(V − U) LD (Our), Time (sec.) LD ([BON00]), Time (sec.)

1000 450 130 36, 15.51 32, 21.33

1000 496 156 29, 3.77 26, 8.06

1000 496 161 45, 36.88 41, 64.71

Table 2. Comparison of our experimental results with that of [BON00]. We have implemented the ideas of [BON00]
for experimental comparison. LD denotes Lattice Dimension.

Asymptotically, our result is 8 times better than that of [BON00, Theorem 3.1], as that bound

was |I| < 1
4
d

log d
log S . We present a few experimental results, where we find improved outcomes

(in terms of execution time) using our strategy than that of [BON00]. One should also note,
that the method of [BON00] requires the implementation of CRT on several primes, which
is not included in the time mentioned in Table 2. Our strategy using the idea of [HOW01]
does not require such computation.

2.3 Factorization of N when a multiple of d is known

In this section we analyse how N can be factorized when a large multiple of d is available.

Theorem 3. Let d be order of N and ed < N2. Suppose a multiple of the decryption exponent
d, say µd is known. Then one can factor N deterministically in e·O(log N) time when µ < N .

Proof. We have ed = 1+ k(N +1− p− q). Since k < e, one can try every integer in [1, e− 1]

as k. Let, d0 = 1+kN
e

. Then |d0 − d| = k(p+q−1)
e

< p + q. Since p + q = O(
√

N), one can find
the bits in the most significant half of d in e many trials.

Let x0 = d0 − d, i.e., |x0| <
√

N . Further µd is known. From µd and d0 we try to find
out d following the solution strategy of the Partially Approximate Common Divisor Problem
(PACDP) [HOW01].

Let µ ≈ Nα. Using the same approach as in the proof of Theorem 1, we get the condition
as

(m + t)(m + t + 1)

2

1

2
+

m(m + 1)

2
(1 + α) < m(m + t + 1). (8)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (8) as

1

4
τ 2 − 1

2
τ +

1

2
α− 1

4
< 0. (9)

The optimal value of τ to minimize the left hand side of (9) is 1. Putting this optimal value
in (9), we get α < 1. After finding d one can deterministically factor N using the idea
of [COR07]. ut

For the experiments, we consider p, q of 500 bits each. We take e = 216 +1. Theoretically
we should get results for µ < N , i.e., µ can be of 1000 bits. In experiments, we could reach
940 bits for µ.

Bits of µ Lattice Parameters (m, t) Lattice Dimension Time (in sec.)

900 (10, 10) 21 7.88

925 (14, 14) 29 44.91

940 (20, 20) 41 356.14

Table 3. Experimental results following Theorem 3.

3 Applications of finding Integer roots using the idea of [ELL06]

Next we consider a more general scenario when some approximation of a multiple of d is
known. The approach presented in [ELL06] can be nicely exploited to this problem. Further,
we also use the idea of [ELL06] to solve an instance of implicit factorization problem.

For the two results in this section, we need the following assumption.

Assumption 1 Consider a set of polynomials {f1, f2, . . . , fi}(i ≥ n) on n variables having
the root of the form (x1,0, x2,0, . . . , xn,0) after lattice reduction using the idea of [ELL06].
Then we can collect the root (x1,0, x2,0, . . . , xn,0) from f1, f2, . . . , fi.

3.1 Factorization of N when an approximation of a multiple of d is available

We assume that an approximation of µd is known. Let, A = µd − z0 is known, where
µ ≈ Nα, z0 ≈ Nβ. We first state the following result due to Boneh el. al. [BON98].

Lemma 3. Let |p− q| >
√

N
4

and e < N
1
4

8
. Given log2 N

4
many bits of d in the positions log2 N

4

to log2 N
2

, one can deterministically factor N in e2O(log N) time.

Based on this, we get following result.

Lemma 4. Given e < N
1
4

8
, d of O(N), |p − q| >

√
N
4

, α < 1
2

and β − α < 1
4
, one can

deterministically factor N in e2O(log N) time.

Proof. Similar to the proof of Theorem 3, one can find find an integer d0 in e many trials
such that |d − d0| <

√
N . Since, µ = Nα, we have A ≈ N1+α, considering d ≈ N and

|z0| < |µd|. Let, µ1 = b A
d0
c. Then

|µ− µ1| ≈ |A(d0 − d) + z0d0

dd0

| ≈ Nα− 1
2 .

Thus, as long as α ≤ 1
2
, we have µ = µ1. Now, | z0

µ
| ≈ Nβ−α < N

1
4 as β − α < 1

4
. Then

|d− bA
µ
c| ≈ | z0

µ
| < N

1
4 . So, we find an approximation d2 = bA

µ
c of d such that d, d2 matches

every bits except lower log2 N
4

bits. In such a situation, one can factor N using the method
of [BON98, Theorem 3.3] in e2O(log N) time. ut

When α > 1
2
, the approach of Lemma 4 cannot be used immediately. However, in such a

situation, a heuristic solution is possible following the idea of [ELL06].

Theorem 4. Given e, N and µd− z0, one can factor N in e ·O(log N) time if α2 + 2αβ −
3β2 + 2β − 1 < 0 and 1− α− β ≥ 0, under Assumption 1.

Proof. Let, x0 = d− d0 and y0 = µ− µ1. Then, we have A = (d0 + x0)(µ1 + y0)− z0. Hence,
we are interested to find the root of f(x, y, z) = A− (d0 +x)(µ1 +y)+ z, which is (x0, y0, z0).

Let, X =
√

N, Y = Nα− 1
2 , and Z = Nβ. Clearly, X,Y, Z are the upper bounds of (x0, y0, z0).

Following the “Extended Strategy” of [ELL06, Page 274], we get

S =
⋃

0≤j1≤t

{xiyj+j1zk : xiyjzk is a monomial of fm},

M = { monomials of xiyjzkf : xiyjzk ∈ S}.

It follows that,

xixjzk ∈ S ⇔


k = 0, . . . ,m,
i = 0, . . . ,m− k,
j = 0, . . . ,m− k + t,

and

xixjzk ∈ M ⇔


k = 0, . . . ,m + 1,
i = 0, . . . ,m + 1− k,
j = 0, . . . ,m + 1− k + t,

We exploit t many extra shifts of y where t is a non-negative integer. Our aim is to find
two more polynomials f0, f1 that share the root (x0, y0, z0) over the integers.

From [ELL06], we know that these polynomials can be found by lattice reduction if

Xs1Y s2Zs3 < W s, (10)

where s = |S|, sj =
∑

xi1yi2zi3∈M\S ij, for j = 1, 2, 3, and W = ‖f(xX, yY, zZ)‖∞ ≥ µ1X =

Nα+ 1
2 .

One can check that

s1 =
m3

2
+

5

2
m2 + 4m + t +

1

2
m2t +

3

2
mt + 2,

s2 =
1

2
m3 +

5

2
m2 + 4m + 3t + m2t +

7

2
mt +

1

2
mt2 + t2 + 2,

s3 =
1

3
m3 +

3

2
m2 +

13

6
m + t +

3

2
mt +

1

2
m2t + 1,

s =
1

3
m3 +

3

2
m2 +

13

6
m + t +

3

2
mt +

1

2
m2t + 1.

Let t = τm, where τ is a non negative real number. Neglecting the lower order terms and
putting the values of X, Y, Z and the lower bound of W from (10), we get the condition as

1

2
ατ 2 +

1

2
ατ − 1

4
τ 2 +

1

2
τβ +

1

6
α− 1

2
τ +

1

3
β − 1

6
< 0. (11)

The optimal value of τ , to minimize the left hand side of (11), is 1−α−β
2α−1

. Putting this
optimal value, the required condition becomes α2 + 2αβ − 3β2 + 2β − 1 < 0. Since τ ≥ 0, so
we need 1− α− β ≥ 0.

That is, when these conditions hold, according to [ELL06], we get two polynomials f0, f1

such that f0(x0, y0, z0) = f1(x0, y0, z0) = 0. Under Assumption 1, we can extract x0, y0, z0 in
poly(log N) time. ut

Now we describe a few experimental results and we consider that the primes are of 500 bits
and e = 216+1. In all the experiments, we observe that f, f0, f1 are algebraically independent
that support Assumption 1 and we could successfully collect the root using the method of
resultants.

α β Lattice Parameters (m, t) Lattice Dimension Time (in sec.)

0.63 0.2 (1, 1) 20 2.58

0.55 0.39 (2, 1) 40 41.79

0.65 0.2 (2, 1) 40 51.89

Table 4. Experimental results following Theorem 4.

3.2 An instance of Implicit Factorization problem

Here we study a special case of the implicit factorization problem introduced in [MAY09].
Consider N1 = p1q1, N2 = p2q2, and N3 = p3q3, where p1, p2, p3 and q1, q2, q3 are primes. It is
also considered that p1, p2, p3 are of same bit size and so are q1, q2, q3. We also assume that
some amount of LSBs as well as some amount of MSBs of p1, p2, p3 are same. To the best of
our knowledge, this is the first attempt to the solution of this instance.

Theorem 5. Let q1, q2, q3 ≈ Nα. Consider that γ1 log2 N many MSBs and γ2 log2 N many
LSBs of p1, p2, p3 are same. Let β = 1 − α − γ1 − γ2. Then, under Assumption 1, one can
factor N1, N2, N3 in polynomial time if 10α + 5β − 4 ≤ 0.

Proof. It is given that γ1 log2 N many MSBs and γ2 log2 N many LSBs of p1, p2, p3 are same.
Thus, we can write p1 = N1−α−γ1P0 + Nγ2P1 + P2, p2 = N1−α−γ1P0 + Nγ2P ′

1 + P2 and
p3 = N1−α−γ1P0 +Nγ2P ′′

1 +P2. Thus, p1−p2 = Nγ2(P1−P ′
1). Since N1 = p1q1 and N2 = p2q2,

putting p1 = N1

q1
and p2 = N2

q2
, we get

N1q2 −N2q1 = Nγ2(P1 − P ′
1)q1q2. (12)

Similarly, we have
N1q3 −N3q1 = Nγ2(P1 − P ′′

1)q1q3. (13)

Now, multiplying Equation 12 by N3 and Equation 13 by N2 and then subtracting, we
get N1N3q2 −N1N2q3 −Nγ2(P1 − P ′

1)q1q2N3 + Nγ2(P1 − P ′′
1)q1q3N2 = 0.

Thus we need to solve f ′(x, y, z, w, t) = N1N3y − N1N2z − N3N
γ2xyw + N2N

γ2xzt = 0
whose roots corresponding to x, y, z, w, t are q1, q2, q3, P1 − P ′

1, P1 − P ′′
1 . Since there is no

constant term in f ′, we define a new polynomial f(x, y, z, w, t) = f ′(x, y + 1, z, w, t) =
N1N3 +N1N3y−N1N2z−N3N

γ2xyw−N3N
γ2xw +N2N

γ2xzt. The root (x0, y0, z0, w0, t0) of
f is (q1, q2 − 1, q3, P1 − P ′

1, P1 − P ′′
1). The idea of modifying the polynomial with a constant

term was introduced in [COR04, Appendix A] and later used in [ELL06] which we follow
here.

Let X, Y, Z, W, T be the upper bounds of q1, q2 − 1, q3, P1 − P ′
1, P1 − P ′′

1 respectively. As
given in the statement of this theorem, one can take X = Nα, Y = Nα, Z = Nα, W =
Nβ, T = Nβ. Following the “Basic Strategy” of [ELL06, Page 274],

S =
⋃
{xi1yi2zi3wi4ti5 : xi1yi2zi3wi4ti5 is a monomial of fm},

M = { monomials of xi1yi2zi3wi4ti5f : xi1yi2zi3wi4ti5 ∈ S}.

It follows that,

xi1yi2zi3wi4ti5 ∈ S ⇔


i3 = 0, . . . ,m,
i5 = 0, . . . , i3,
i4 = 0, . . . ,m− i3,
i2 = 0, . . . ,m− i3,
i1 = i4 + i5,

and

xi1yi2zi3wi4ti5 ∈ M ⇔


i3 = 0, . . . ,m + 1,
i5 = 0, . . . , i3 + 1,
i4 = 0, . . . ,m + 1− i3,
i2 = 0, . . . ,m + 1− i3,
i1 = i4 + i5.

From [ELL06], we know that these polynomials can be found by lattice reduction if

Xs1Y s2Zs3W s4T s5 < W s
1 , (14)

where s = |S|, sj =
∑

xi1yi2zi3wi4 ti5∈M\S ij,

for j = 1, 2, 3, 4, 5, and W1 = ‖f(xX, yY, zZ, wW, tT)‖∞ ≥ N1N3Y ≈ N2+α.
One can check that

s1 =
5

24
m4 +

7

4
m3 +

127

24
m2 +

27

4
m + 3,

s2 =
1

8
m4 +

13

12
m3 +

27

8
m2 +

53

12
m + 2,

s3 =
1

6
m4 +

4

3
m3 +

23

6
m2 +

14

3
m + 2,

s4 =
1

8
m4 +

13

12
m3 +

27

8
m2 +

53

12
m + 2,

s5 =
1

12
m4 +

2

3
m3 +

23

12
m2 +

7

3
m + 1,

s =
1

12
m4 +

2

3
m3 +

23

12
m2 +

7

3
m + 1.

Neglecting the lower order terms and putting the values of X, Y, Z, W, T as well as the lower
bound of W1, from (14), we get the condition as

5

12
α +

5

24
β − 1

6
< 0 i.e., 10α + 5β − 4 < 0. (15)

That is, when this condition holds, according to [ELL06], we get four polynomials f0, f1, f2, f3

such that
f0(x0, y0, z0, w0, t0) = f1(x0, y0, z0, w0, t0) = f2(x0, y0, z0, w0, t0) = f3(x0, y0, z0, w0, t0) = 0.
Under Assumption 1, we can extract x0, y0, z0, w0, t0 in poly(log N) time. ut

Now we describe a few experimental results.
In Theorem 5, we consider the Assumption 1. Let us now clarify how it actually works.

In the proof of Theorem 5, we consider that we will be able to get at least four polynomials
f0, f1, f2, f3 along with f , that share the integer root. In experiments we found more than
4 polynomials (other than f) after the LLL algorithm that share the same root, and let
us name them f0, f1, f2, f3. Let R(f, f0) be the resultant of f, f0 and so on. We calculate

α γ1 γ2 β (Theory) Time β (Experimental Values)
our (in sec.) our [MAY09] [SAR09A] [FAU10]

0.25 0.2 0.175 0.3 1.64 0.375 0.372 0.383 0.372

0.3 0.225 0.225 0.2 1.55 0.25 0.248 0.269 0.246

0.35 0.28 0.26 0.1 1.52 0.11 0.125 0.151 0.123

Table 5. Theoretical and experimental values of α, β for which N1, N2, N3 can be factored efficiently. Results using
our technique are obtained with the lattice dimension 20.

f4 = R(f, f0), f5 = R(f, f1) and then f6 = R(f4, f5). We always find a factor − t0
gcd(t0,w0)

w +
w0

gcd(t0,w0)
t of f6. In all the cases, we find gcd(t0, w0) ≤ 2. After getting t0, w0, we define a

new polynomial f7(y, z) = f4(y, z, w0, t0). We always find a factor q3y − q2z + q3 of f7. From
this we can find (y0, z0) = (q2 − 1, q3). Finally, putting the values of y0, z0, w0, t0 in f , we
obtain x0 = q1.

From Table 5 it may be noted that we get much better results in the experiments than
the theoretical bounds. This is because, for the parameters we consider here, the shortest
vectors may belong to some sub-lattice. However, the theoretical calculation in Theorem 5
cannot capture that and further, identifying such optimal sub-lattice seems to be difficult.
This kind of scenario, where experimental results perform better than theoretical estimates,
has earlier been observed in [ELL06, Section 7.1], too.

Our experimental results show that the total number of bits to be shared in the primes
for implicit factorization is of similar order to the requirements in [MAY09,SAR09A,FAU10]
for k = 3.

4 Conclusion

In this paper we use the method of finding approximate common divisor, as proposed
in [HOW01], for approaching three problems. The first one is to show the deterministic poly-
nomial time equivalence between factorization of the RSA moduli and finding q−1 mod p. To
the best of our knowledge, this equivalence has not been studied earlier. We also do not find
any trivial method to prove it. Next, we revisit the problem of finding smooth integers in
an interval as explained in [BON00]. We find slightly improved results than that of [BON00]
using the technique presented by [HOW01]. Further, using the technique of [HOW01], we
identify how N can be factored when a multiple of the RSA secret exponent d is available.

We also exploit the technique of [ELL06] and solve two more problems in related areas.
The first one is to show how N can be factored when some approximation of a multiple of the
RSA secret exponent d is available. Next we consider an instance of the implicit factorization
problem which has not been solved earlier.

References

[BON98] D. Boneh, G. Durfee and Y. Frankel. Exposing an RSA Private Key Given a Small Fraction of its Bits.
Available at http://crypto.stanford.edu/∼dabo/abstracts/bits of d.html. [last accessed 25 March, 2010].

[BON00] D. Boneh. Finding smooth integers in short intervals using CRT decoding. Proceedings of STOC 2000,
pages 265–272, 2000.

[COP97] D. Coppersmith. Small Solutions to Polynomial Equations and Low Exponent Vulnerabilities. Journal of
Cryptology, 10(4):223–260, 1997.

[COR04] J.-S. Coron. Finding small roots of bivariate integer equations revisited, Eurocrypt 2004, LNCS 3027, pp.
492–505, 2004.

[COR07] J. -S. Coron and A. May. Deterministic polynomial-time equivalence of computing the RSA secret key and
factoring. Journal of Cryptology, 20(1):39–50, 2007.

[FAU10] J-C. Faugere, R. Marinier and G. Renault. Implicit Factoring with Shared Most Significant and Middle
Bits. Accepted in PKC 2010.

[HEN09] N. Heninger and H. Shacham. Reconstructing RSA Private Keys from Random Key Bits. Proceedings of
Crypto 2009, Lecture Notes in Computer Science, Volume 5677, pages 1–17, Springer, 2009. The presen-
tation is available at http://www.iacr.org/conferences/crypto2009/slides/p001-rsa-keys.pdf

[HOW97] N. Howgrave-Graham. Finding Small Roots of Univariate Modular Equations Revisited. Proceedings of
Cryptography and Coding, Lecture Notes in Computer Science, Volume 1355, pages 131–142, Springer,
1997.

[HOW01] N. Howgrave-Graham. Approximate integer common divisors. Proceedings of CALC 2001, Lecture Notes
in Computer Science, Volume 2146, pages 51–66, Springer, 2001.

[ELL06] E. Jochemsz and A. May. A strategy for finding roots of multivariate polynomials with new applications
in attacking RSA variants, Asiacrypt 2006, LNCS 4284, pp. 267–282, 2006.

[LLL82] A. K. Lenstra, H. W. Lenstra and L. Lovász. Factoring Polynomials with Rational Coefficients. Mathe-
matische Annalen, 261:513–534, 1982.

[LEN93] A. K. Lenstra and H. W. Jr. Lenstra. The Development of the Number Field Sieve. Springer-Verlag, 1993.
[MAY04] A. May. Computing the RSA secret key is deterministic polynomial time equivalent to factoring. Crypto

2004, LNCS 3152, pp. 213–219, 2004.
[MAY09] A. May and M. Ritzenhofen. Implicit factoring: on polynomial time factoring given only an implicit hint,

PKC 2009, LNCS 5443, pp. 1–14,2009.
[PKCS] http://www.rsa.com/rsalabs/node.asp?id=2125
[POM84] C. Pomerance. The Quadratic Sieve Factoring Algorithm. Proceedings of Eurocrypt 1984, Lecture Notes

in Computer Science, Volume 209, pages 169–182, 1985.
[QUI82] J. -J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-key cryptosystem. Elec-

tronic Letters, volume 18, pages 905–907, 1982.
[RSA78] R. L. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public Key

Cryptosystems. Communications of ACM, 21(2):158–164, February 1978.
[SAR09] S. Sarkar and S. Maitra. Further Results on Implicit Factoring in Polynomial Time. Advances in Mathe-

matics of Communications, 3(2):205–217, 2009.
[SAR09A] S. Sarkar and S. Maitra. Approximate Integer Common Divisor Problem relates to Implicit Factorization.

Available at http://eprint.iacr.org/2009/626.
[WIE90] M. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions on Information Theory,

36(3):553–558, 1990.

