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1 Introduction

Multidimensional (mD) convolutional codes are the higher dimensional (nontrivial) generalizations
of one-dimensional (1D) convolutional codes. These codes may prove useful in transmission of m-
dimensional data, such a 2D pictures, 3D animation, etc. (see [4, 13, 17]), or for the storage of digital
information, [14]. While 1D convolutional codes have been thoroughly understood, the literature
about mD convolutional codes is quite limited. Moreover, most of the existing research is focused on
algebraic aspects and fundamental issues. Fornasini and Valcher [2] introduced the general theory
for the study of two-dimensional (2D) convolutional codes constituted by sequences indexed on Z2,
and discussed issues such as the characterization of such codes in terms of their internal properties
and input-output representations. In [15] the same authors considered 2D convolutional codes in
which the codewords have compact support in Z2, and presented several properties of their encoders
and syndrome formers (parity-check matrices) under different hypotheses on the code structure.
They also introduced the dual codes of such codes. Multidimensional (mD) convolutional codes
having finite support in Nm were first studied by Weiner in [16], where he explored some connections
of mD convolutional codes with commutative algebra and algebraic geometry. In [3], Gluesing-
Luerssen, Rosenthal and Weiner analyzed the relation between multidimensional convolutional codes
and systems. In the same line, a different approach is given by Kitchens in [6], where he set a concept
of mD convolutional code from the symbolic dynamical point of view, establishing five different
equivalent notions. More recently, for the purpose of studying mD convolutional codes from a more
practical point of view, R. Lobo, in his dissertation [8] introduced the concept of locally invertible
encoders which lead to a particular class of basic convolutional codes. However crucial aspects of the
theory of convolutional codes such as the construction of good convolutional codes and of minimal
representations of a code have not been deeply studied by these authors. In particular, only Weiner
studied related problems in [16] for a very particular and simple class of multidimensional codes, the
unit memory codes, which are the ones whose encoders are constituted by polynomials of either first
or zero degree.

In this paper, we consider two-dimensional (2D) convolutional codes over a finite field F, consti-
tuted by polynomials in two indeterminates with coefficients in Fn,

v̂(z1, z2) =
∑

(i,j)∈N2

v(i, j)zi1z
j
2.

These codes are called 2D finite support convolutional codes. We study such codes by means of
state space representations. Rosenthal and collaborators [10, 12] defined input-state-output (ISO)
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representations for 1D finite support convolutional codes and used these representations in the con-
struction of good codes. We introduce such representations for 2D finite support convolutional codes,
considering the Fornasini-Marchesini state space model for 2D linear systems [1]. Minimality of such
representations is very important not only for an efficient implementation of the code but also for
the construction of good codes. However, minimality of the Fornasini-Marchesini state space models
is not completely characterized as it happens for 1D state space models [1, 5]. In this paper, we
define the complexity of a 2D finite support convolutional code, similarly to the 1D case, and show
that it is a lower bound on the dimension of such representations. In addition, we give a sufficient
condition to construct minimal ISO representations of 2D finite support convolutional codes. The
advantages of this approach is that ISO representations show how the encoding algorithm proceeds
by explicitly displaying the corresponding evolution of the state space (the memory of the code). In
particular, we take advantage of the nature of such representations to construct 2D finite support
convolutional codes with a designed distance.

The structure of the paper is as follows. We begin by introducing, in Section 2, some necessary
background on polynomial matrices in two indeterminates and on the Fornasini-Marchesini state
space models, centering around concepts such as reachability and observability. Section 3 is de-
voted to provide an overview of the theory of 2D finite support convolutional codes already available
in the literature. In Section 4 we introduce the ISO representations for 2D finite support convo-
lutional codes, study minimality and characterize the properties of such representations to obtain
non-catastrophic 2D finite support convolutional codes. We then consider, in Section 5, the restric-
tion of 2D finite support convolutional codes to the semi-axes N× {0} and {0} × N, and show that
they constitute 1D finite support convolutional codes. In Section 6 we relate the distance of a type
of 2D codes with the distance of its restriction to the axes. This allow us to present a construction
of 2D finite support convolutional codes with a designed distance.

2 Preliminaries

Denote by F[z1, z2] the ring of polynomials in 2 indeterminates with coefficients in F, by F(z1z2) the
field of fractions of F[z1, z2] and by F[[z1, z2]] the ring of formal powers series in 2 indeterminates
with coefficients in F.

In this section we start by giving some preliminaries on matrices over F[z1, z2] that will be needed
in the sequel. For more details see [7, 9].

Definition 2.1 G(z1, z2) ∈ F[z1, z2]n×k, with n ≥ k is,

1. unimodular if n = k and det(G(z1, z2)) ∈ F\{0};

2. right factor prime (rFP ) if for every factorization G(z1, z2) = G(z1, z2)T (z1, z2), G(z1, z2) ∈
F[z1, z2]n×k and T (z1, z2) ∈ F[z1, z2]k×k, then T (z1, z2) is unimodular;

3. right zero prime (rZP ) if the ideal generated by the k × k minors of G(z1, z2) is F[z1, z2].

A matrix is left factor prime (`FP ) / left zero prime (`ZP ) if its transpose is rFP / rZP respectively.
The following propositions give characterizations of right factor primeness and right zero primeness.

Proposition 2.1 Let G(z1, z2) ∈ F[z1, z2]n×k, with n ≥ k. Then the following are equivalent:

1. G(z1, z2) is right factor prime;

2. there exist polynomial matrices Xi(z1, z2) such that Xi(z1, z2)G(z1, z2) = di(zi)Ik, with

di(zi) ∈ F[zi]\{0}, for i = 1, 2;
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3. for all û(z1, z2) ∈ F(z1, z2)k, G(z1, z2)û(z1, z2) ∈ F[z1, z2]n implies û(z1, z2) ∈ F[z1, z2]k.

Proposition 2.2 Let G(z1, z2) ∈ F[z1, z2]n×k, with n ≥ k. Then the following are equivalent:

1. G(z1, z2) is right zero prime;

2. G(z1, z2) admits a polynomial left inverse.

It is well known that given a full column rank polynomial matrixG(z1, z2) ∈ F[z1, z2]n×k, there ex-
ists a square polynomial matrix V (z1, z2) ∈ F[z1, z2]k×k and an rFP matrix Ḡ(z1, z2) ∈ F[z1, z2]n×k

such that G(z1, z2) = Ḡ(z1, z2)V (z1, z2).
The following lemma will be needed in the sequel.

Lemma 2.1 [2] Let H(z1, z2) ∈ F[z1, z2]k×n and G(z1, z2) ∈ F[z1, z2]n×(n−k) be an `FP and an
rFP matrix, respectively, such that H(z1, z2)G(z1, z2) = 0. Then the corresponding maximal order
minors of H(z1, z2) and G(z1, z2) 1 are equal, modulo a unit of the ring F[z1, z2].

Next, we consider 2D linear systems and analyze their state space model representations. In
particular we consider the Fornasini-Marchesini state space model [1], which we will use to construct
2D finite support convolutional codes. In this model a first quarter plane 2D linear system, denoted
by Σ = (A1, A2, B1, B2, C,D), is given by the updating equations

x(i+ 1, j + 1) = A1x(i, j + 1) +A2x(i+ 1, j) +B1u(i, j + 1) +B2u(i+ 1, j)
y(i, j) = Cx(i, j) +Du(i, j), (1)

where A1 ∈ Fδ×δ, A2 ∈ Fδ×δ, B1 ∈ Fδ×k, B2 ∈ Fδ×k, C ∈ F(n−k)×δ, D ∈ F(n−k)×k, δ, n, k ∈ N,
n > k and with past finite support of the input and of the state (u(i, j) = x(i, j) = 0 for i < 0
or j < 0) and zero initial conditions (x(0, 0) = 0). We say that Σ = (A1, A2, B1, B2, C,D) has
dimension δ, local state x(i, j), input u(i, j) and output y(i, j), at (i, j).

For any 2D formal power series ŝ(z1, z2) =
∑

(i,j)∈N2 s(i, j)zi1z
j
2, let us define iŝ = min{i : s(i, k) 6=

0, for some k ∈ N}, jŝ = min{j : s(k, j) 6= 0, for some k ∈ N} and

SC(ŝ) = {(i, j) : i ≥ iŝ, j ≥ jŝ}.

Given an input trajectory û(z1, z2) =
∑

(i,j)∈N2 u(i, j)zi1z
j
2 of Σ with corresponding state x̂(z1, z2) =∑

(i,j)∈N2 x(i, j)zi1z
j
2 and output ŷ(z1, z2) =

∑
(i,j)∈N2 y(i, j)zi1z

j
2 trajectories, we have, by (1), that

SC(x̂) ⊂ SC(û) and SC(ŷ) ⊂ SC(û). (2)

Moreover, we have that the set of input-state-output trajectories of Σ is given by kerF[[z1,z2]]X(z1, z2) =
{r(z1, z2) ∈ Fn+δ[z1, z2] | X(z1, z2)r(z1, z2) = 0} where

X(z1, z2) =
[
Iδ −A1z1 −A2z2 −B1z1 −B2z2 0

−C −D In−k

]
. (3)

Reachability and observability properties of the system have been introduced for local states and
global states [1]. We will only consider local states, which are the ones that will be important for
our study. Next we present the reachability and observability properties that we will need later. To
simplify terminology, we use state instead of local state.

1Let H(z1, z2) ∈ F[z1, z2]k×n, G(z1, z2) ∈ F[z1, z2]n×(n−k), k < n, ci the ith column of H(z1, z2) and rj the jth
row of G(z1, z2). We say that det([ci1 , . . . , cik

]) and det([rj1 , . . . , rjn−k
]) are corresponding maximal order minors of

H(z1, z2) and G(z1, z2), if {i1, ..., ik} ∪ {j1, ..., jn−k} = {1, . . . , n} and {i1, ..., ik} ∩ {j1, ..., jn−k} = ∅.
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Definition 2.2 [1] Consider the system Σ = (A1, A2, B1, B2, C,D) with dimension δ.

1. A state x̄ ∈ Fδ is reachable if there exists {(x(i, j), u(i, j), y(i, j))}(i,j)∈N2 in Σ, and a pair
(i1, j1) ∈ N2 such that x̄ = x(i1, j1). The system Σ is locally reachable if the set of all
reachable states is Fδ.

2. Σ is modally reachable if the matrix [I −A1z1 −A2z2 | B1z1 +B2z2] is `FP .

3. Σ is modally observable if the matrix
[
I −A1z1 −A2z2

C

]
is rFP .

In the 1D case, these notions 1 and 2 of reachability are equivalent. Such equivalence is stated
in the PBH test [5]. However, in the 2D case there are systems which are locally reachable but not
modally reachable and vice-versa (see [1]).

3 Input-state-output representations of 2D finite support con-
volutional codes

In this section we recall the definition and properties of 2D finite support convolutional codes and
introduce the input-state-output representations of such codes considering the Fornasini-Marchesini
state space models. We characterize properties of such representations in order to obtain a non-
catastrophic 2D finite support convolutional code. We conclude the section by discussing minimality
issues. In particular we prove that the dimension of these input-state-output representations is lower
bounded by the complexity of the corresponding code and we give conditions to reach such a bound.
Finally we show that if the representation is not minimal, we can reduce dimension via Kalman
reachability form.

Definition 3.1 [15, 16] A 2D finite support convolutional code C of rate k
n is a free F[z1, z2]-

submodule of F[z1, z2]n, where k is the dimension of C. A full column rank matrix G(z1, z2) ∈
F[z1, z2]n×k whose columns constitute a basis for C, i.e., such that

C = ImF[z1,z2]G(z1, z2)

= {v̂(z1, z2) ∈ Fn[z1, z2] : ∃ û(z1, z2) ∈ Fk[z1, z2] v̂(z1, z2) = G(z1, z2)û(z1, z2)},

is called an encoder of C. The elements of C are called codewords.

Two full column rank matrices G(z1, z2), Ḡ(z1, z2) ∈ F[z1, z2]n×k are equivalent encoders if they
generate the same 2D finite support convolutional code, i.e., if ImF[z1,z2]G(z1, z2) = ImF[z1,z2]Ḡ(z1, z2),
which happens if and only if there exists a unimodular matrix U(z1, z2) ∈ F[z1, z2]k×k such that
G(z1, z2)U(z1, z2) = Ḡ(z1, z2) [15, 16]. Considering the usual definition of degree of a polynomial,
deg (p̂(z1, z2)) =max {i+ j : p(i, j) 6= 0}, we can introduce the notion of complexity of C as follows.

Definition 3.2 Let C be a 2D finite support convolutional code with an encoder G(z1, z2). The
complexity of C,represented by δC, is defined as the maximal degree of the full size minors of G(z1, z2).

Note that the fact that two equivalent encoders differ by unimodular matrices also implies that
the primeness properties of the encoders of a code are preserved, i.e., if C admits an rFP (rZP )
encoder then all its encoders are rFP (rZP ). A 2D finite support convolutional code that admits
rFP encoders is called noncatastrophic and is named basic if all its encoders are rZP .
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An important measure of robustness of a code is its distance. We define the notion of distance as
in [16]. The weight of v̂(z1, z2) =

∑
(i,j)∈N2 v(i, j)zi1z

j
2 ∈ F[z1, z2]n, with v(i, j) ∈ Fn for (i, j) ∈ N2, is

given by wt(v̂) =
∑

(i,j)∈N2 wt(v(i, j)), where wt(v(i, j)) is the number of nonzero elements of v(i, j).
The distance between v̂1(z1, z2), v̂2(z1, z2) ∈ F[z1, z2]n is dist(v̂1, v̂2) = wt(v̂1 − v̂2).

Definition 3.3 Given a 2D finite support convolutional code C, the distance of C, denoted by dist(C)
is defined as

min{dist(v̂1(z1, z2), v̂2(z1, z2)) : v̂1(z1, z2), v̂2(z1, z2) ∈ C, v̂1(z1, z2) 6= v̂2(z1, z2)}.

Note that the linearity of C implies that dist(C) = min{wt(v̂) : v̂(z1, z2) ∈ C, v̂(z1, z2) 6= 0}.

Let us now consider a first quarter plane 2D system Σ defined in (1). For (i, j) ∈ N2, define
v(i, j) = (u(i, j), y(i, j)) ∈ Fn to be the code vector. In this work we are interested in the finite
support input-output trajectories of (1), i.e., we want to consider

v̂(z1, z2) =
∑
i,j≥0

v(i, j)zi1z
j
2 ∈ F[z1, z2]n

as codewords. It is worth mentioning that this approach is different from the one adopted in [2]
where the codewords are constituted by the output trajectories ŷ(z1, z2) of a system.

Another important point to note here is that if the system (1) produces a finite support input-
output trajectory with corresponding state trajectory x̂(z1, z2) having infinite support, this would
make the system remain indefinitely excited, which is a situation that we want to avoid. Thus, we
want to restrict ourselves to finite support input-output trajectories (û(z1, z2), ŷ(z1, z2)) with cor-
responding state x̂(z1, z2) also having finite support. We call such trajectories (û(z1, z2), ŷ(z1, z2))
finite-weight input-output trajectories and the triple (x̂(z1, z2), û(z1, z2), ŷ(z1, z2)) finite-weight tra-
jectories. Note that not all finite support input-output trajectories have finite weight. The following
result asserts that the set of finite-weight trajectories of (1) forms a 2D finite support convolutional
code and therefore justifies its use for representing such codes.

Theorem 3.1 The set of finite-weight input-output trajectories of (1) is a 2D finite support convo-
lutional code of rate k

n .

Proof Let us denote by S and Sio the set of finite-weight trajectories and the set of finite-
weight input-output trajectories of (1), respectively. Then one has that S = kerF[[z1,z2]]X(z1, z2) ∩
F[z1, z2]n+δ = kerF(z1,z2)X(z1, z2)∩F[z1, z2]n+δ, whereX(z1, z2) is defined in (3). Since kerF(z1,z2)X(z1, z2)
has dimension k, there exists an rFP matrix such that kerF(z1,z2)X(z1, z2) = ImF(z1,z2)L̃(z1, z2), and
as L̃(z1, z2) is rFP , we use Proposition 2.1 to conclude that S = ImF[z1,z2]L̃(z1, z2). Representing

L̃(z1, z2) =
[
L̃1(z1, z2)
L̃2(z1, z2)

]
,

with L̃1(z1, z2) ∈ F[z1, z2]δ×k and L̃2(z1, z2) ∈ F[z1, z2]n×k, it follows that Sio = ImF[z1,z2]L̃2(z1, z2).
Let F (z1, z2) ∈ F[z1, z2]δ+n−k×δ+n−k be a nonsingular square matrix such that

X(z1, z2) = F (z1, z2)
[
M1(z1, z2) M2(z1, z2) M3(z1, z2)

]
,

M1(z1, z2) ∈ F[z1, z2](δ+n−k)×δ, M2(z1, z2) ∈ F[z1, z2](δ+n−k)×k, and the matrixM3(z1, z2) ∈ F[z1, z2](δ+n−k)×(n−k)

are in such a way that the resulting block matrix
[
M1(z1, z2) M2(z1, z2) M3(z1, z2)

]
is `FP .

Then [
M1(z1, z2) M2(z1, z2) M3(z1, z2)

] [ L̃1(z1, z2)
L̃2(z1, z2)

]
= 0. (4)
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Since det
[
Iδ −A1z1 −A2z2 0

−C In−k

]
is nonzero, it immediately follows that the det

[
M1(z1, z2) M3(z1, z2)

]
6=

0, and, by Lemma 2.1, the corresponding maximal order minor of L̃2(z1, z2) is also nonzero, which
implies that L̃2(z1, z2) is full column rank, and therefore Sio is a 2D finite support convolutional
code with rate k

n . �

We denote by C(A1, A2, B1, B2, C,D) the 2D finite support convolutional code whose codewords
are the finite-weight input-output trajectories of the system Σ = (A1, A2, B1, B2, C,D). Moreover,
Σ is called an input-state-output (ISO) representation of C(A1, A2, B1, B2, C,D). The following
theorem provides a condition to obtain a noncatastrophic 2D finite support convolutional code.

Theorem 3.2 Let Σ = (A1, A2, B1, B2, C,D) be a 2D system. If Σ is modally observable then
C(A1, A2, B1, B2, C,D) is noncatastrophic and its codewords are the finite support input-output tra-
jectories of Σ.

Proof Suppose that Σ has k inputs, n−k outputs and dimension δ. It follows from the proof of The-
orem 3.1 that there exist polynomial matrices L1(z1, z2) ∈ F[z1, z2]δ×k and G(z1, z2) ∈ F[z1, z2]n×k

such that [
Iδ −A1z1 −A2z2 −B1z1 −B2z2 0

−C −D In−k

] [
L1(z1, z2)
G(z1, z2)

]
= 0, (5)

where
[
L1(z1, z2)
G(z1, z2)

]
is rFP and G(z1, z2) is an encoder of C(A1, A2, B1, B2, C,D). Since the system

is modally observable, we have that
[
I −A1z1 −A2z2

−C

]
is rFP . Let us see that also G(z1, z2) is

rFP . Suppose by contradiction that G(z1, z2) is not rFP . Then, by Proposition 2.1, there exists a
nonpolynomial û(z1, z2) ∈ F(z1, z2)k such that G(z1, z2)û(z1, z2) is polynomial. So, by (5), we obtain
that [

Iδ −A1z1 −A2z2
−C

]
L1(z1, z2)û(z1, z2) = −

[
−B1z1 −B2z2 0

−D In−k

]
G(z1, z2)û(z1, z2)

is also polynomial. Then, since
[
Iδ −A1z1 −A2z2

−C

]
is rFP we have that the vector L1(z1, z2)û(z1, z2)

is polynomial and therefore so it is
[
L1(z1, z2)
G(z1, z2)

]
û(z1, z2), which contradicts the fact that

[
L1(z1, z2)
G(z1, z2)

]
is rFP . Thus, G(z1, z2) is rFP and consequently C(A1, A2, B1, B2, C,D) is noncatastrophic. �

For a given code C with ISO representation Σ, the following result establishes a lower bound
on the dimension of Σ, which, in turn, yields a sufficient condition for the minimality of such
representations.

Proposition 3.1 Let Σ = (A1, A2, B1, B2, C,D) be a system with k inputs, n − k outputs and
dimension δ, and let C(A1, A2, B1, B2, C,D) be the 2D finite support convolutional code obtained
from Σ with complexity δC. Then δC ≤ δ.

Proof Observe that every maximal order minor of X(z1, z2), defined in (3), has degree smaller or
equal than δ, since the elements of the first δ rows of X(z1, z2) have degree smaller or equal than 1
and the elements of its last n− k rows are constant.

Let L(z1, z2)=
[
L1(z1, z2)
G(z1, z2)

]
be an rFP matrix such that X(z1, z2)L(z1, z2) = 0, with L1(z1, z2) ∈

F[z1, z2]δ×k and G(z1, z2) ∈ F[z1, z2]n×k an encoder of the code C(A1, A2, B1, B2, C,D) (see proof of
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Theorem 3.1). Next we determine the matrix X̃(z1, z2) ∈ F[z1, z2](δ+n−k)×(δ+n) `FP and F (z1, z2) ∈

F[z1, z2](δ+n−k)×(δ+n−k) such that X(z1, z2) = F (z1, z2)X̃(z1, z2). Then X̃(z1, z2)
[
L1(z1, z2)
G(z1, z2)

]
=

0. If δ′ is the maximal degree of the maximal order minors of X̃(z1, z2), then δ ≥ δ′. Moreover,
by Lemma 2.1, the maximal order minors of G(z1, z2) have the same degree as the maximal order
minors of X̃(z1, z2) which include the first δ columns of X̃(z1, z2). Thus δ ≥ δC . �

Next corollary shows how to obtain a minimal ISO representation Σ of the corresponding code
C. It also proves that the dimension of Σ coincides with the complexity of C. We omit its proof since
it follows immediately from the arguments used in the proof of Proposition 3.1.

Corollary 3.1 Let Σ = (A1, A2, B1, B2, C,D) be a modally reachable 2D system with k inputs, n−k
outputs and dimension δ. Suppose that X(z1, z2), defined in (3), has a (δ+n−k)×(δ+n−k) minor
with degree δ, computed by picking up necessarily its first δ columns. Then Σ = (A1, A2, B1, B2, C,D)
is a minimal ISO representation of C = C(A1, A2, B1, B2, C,D), and δ = δC.

However, for general 2D convolutional codes we do not know how to obtain a minimal ISO rep-
resentation. But, if the ISO representation is not locally reachable, it is possible to obtain one with
smaller dimension, as we show in the next proposition. To this end observe that if S is an invertible
constant matrix, the systems Σ = (A1, A2, B1, B2, C,D) and Σ̃ = (SA1S

−1, SA2S
−1, SB1, SB2, CS

−1, D)
represent the same code. These systems are said to be algebraically equivalent [1]. Also in [1], For-
nasini and Marchesini generalized the Kalman reachability form for 2D systems, considered in the
next definition, and showed that every 2D system is algebraically equivalent to a system in the
Kalman reachability form.

Definition 3.4 [1, §4.2] A system Σ = (Ã1, Ã2, B̃1, B̃2, C̃, D̃) of dimension δ is in the Kalman
reachability form if

Ã1 =

[
Ã

(1)
11 Ã

(1)
12

0 Ã
(1)
22

]
, Ã2 =

[
Ã

(2)
11 Ã

(2)
12

0 Ã
(2)
22

]
,

B1 =
[
B̃

(1)
1

0

]
, B̃2 =

[
B̃

(2)
1

0

]
, C̃ = [C̃1 C̃2], (6)

where Ã
(1)
11 and Ã

(2)
11 are δ × δ matrices, B̃(1)

1 and B̃
(2)
1 are δ × k matrices, C̃1 is a (n − k) × δ

matrix, with the remaining matrices of suitable dimensions, and Σ1 = (Ã(1)
11 , Ã

(2)
11 , B̃

(1)
1 , B̃

(2)
1 , C̃1, D̃)

is a locally reachable system, which is the largest reachable subsystem of Σ.

Proposition 3.2 Let Σ = (A1, A2, B1, B2, C,D) be a system with the corresponding 2D finite sup-
port convolutional code C(A1, A2, B1, B2, C,D). Let S be an invertible constant matrix such that
Σ̃ = (SA1S

−1, SA2S
−1, SB1, SB2, CS

−1, D) is in the Kalman reachability form and let Σ̃1 =
(Ã(1)

11 , Ã
(2)
11 , B̃

(1)
1 , B̃

(2)
1 , C̃1, D) be the largest reachable subsystem of Σ̃, of dimension δ1. Then

C(A1, A2, B1, B2, C,D) = C(Ã(1)
11 , Ã

(2)
11 , B̃

(1)
1 , B̃

(2)
1 , C̃1, D).

Proof Observe that (û(z1, z2), ŷ(z1, z2)) ∈ C(SA1S
−1, SA2S

−1, SB1, SB2, CS
−1, D), with SA1S

−1,
SA2S

−1, SB1, SB2 and CS−1 given by (6), if and only if there exist vectors x̂1(z1, z2) ∈ F[z1, z2]δ1 ,
x̂2(z1, z2) ∈ F[z1, z2]δ−δ1 in such a way that (x̂1(z1, z2), x̂2(z1, z2), û(z1, z2), ŷ(z1, z2)) is in

ker

 I − Ã(1)
11 z1 − Ã

(2)
11 z2 −Ã(1)

12 z1 − Ã
(2)
12 z2 −B(1)

1 z1 −B(2)
1 z2 0

0 I − Ã(1)
22 z1 − Ã

(2)
22 z2 0 0

−C̃1 −C̃2 −D In−k

 ,
7



which happens if and only if there exists x̂1(z1, z2) ∈ F[z1, z2]δ1 such that

(x̂1(z1, z2), û(z1, z2), ŷ(z1, z2))∈ker

[
I − Ã(1)

11 z1 − Ã
(2)
11 z2 −B(1)

1 z1 −B(2)
1 z2 0

−C̃1 −D In−k

]

i.e., if and only if (û(z1, z2), ŷ(z1, z2)) ∈ C(Ã(1)
11 , Ã

(2)
11 , B̃

(1)
1 , B̃

(2)
1 , C̃1, D). �

4 Constructions of 2D finite support convolutional codes

In this section we construct 2D finite support convolutional codes with a designed distance. We
start by studying the relation between the properties of a 2D finite support convolutional code and
the properties of its projection onto the semi-axis `ei, ` ∈ N, for e1 = (1, 0) and e2 = (0, 1). Then
we build ISO representations, Σ = (A1, A2, B1, B2, C,D), in such a way that the projections of
C(A1, A2, B1, B2, C,D) to the semi-axes furnish codes Ci(Ai, Bi, C,D) with a specified distance. In
this way we obtain a lower bound on the distance of C(A1, A2, B1, B2, C,D).

Given a 2D finite support convolutional code C, define

C1 = {v̂(z1, 0) : v̂(z1, z2) ∈ C} and C2 = {v̂(0, z2) : v̂(z1, z2) ∈ C}. (7)

It is easy to check that Ci is a (free) submodule of Fn[zi], i = 1, 2, and therefore a 1D finite support
convolutional code [10].

The next lemma is immediate.

Lemma 4.1 Let C(A1, A2, B1, B2, C,D) be a 2D finite support convolutional code with ISO rep-
resentation Σ = (A1, A2, B1, B2, C,D) of dimension δ, with k inputs and n − k outputs, and
v̂(z1, z2) = (û(z1, z2), ŷ(z1, z2)) ∈ C(A1, A2, B1, B2, C,D). Let i1, i2 ∈ Z be such that û′(z1, z2) =
zi11 z

i2
2 û(z1, z2) ∈ F[z1, z2]k. Then v̂′(z1, z2) = (û′(z1, z2), ŷ′(z1, z2)) ∈ C(A1, A2, B1, B2, C,D), where

ŷ′(z1, z2) = zi11 z
i2
2 ŷ(z1, z2). Moreover, wt(û′) = wt(û), wt(ŷ′) = wt(ŷ) and wt(v̂′) = wt(v̂).

Thus, to determine the distance of a 2D finite support convolutional code with ISO representation
Σ = (A1, A2, B1, B2, C,D) we only have to consider the codewords whose restrictions to the semi-
axes are nonzero. This, together with the fact that wt(v̂(0, 0)) ≤ 0 leads readily to the following
result.

Proposition 4.1 Let C be a 2D finite support convolutional code with an ISO representation and
Ci as defined in (7), i = 1, 2. Then

dist(C) ≥ max {dist(C1), dist(C2), dist(C1) + dist(C2)− n} .

Let G(z1, z2) ∈ F[z1, z2]n×k be an encoder of C and define the polynomial matrices

G(z1, 0) ∈ F[z1]n×k and G(0, z2) ∈ F[z2]n×k. (8)

Hence, if G(z1, z2) is an encoder of C then C1 = ImF[z1]G(z1, 0) and C2 = ImF[z2]G(0, z2). Note
however that the fact that G(z1, z2) is an encoder of C does not imply, in general, that G(z1, 0)
and G(0, z2) are also encoders of C1 and C2, respectively. Also, the condition of factor primeness on
G(z1, z2) is too weak to ensure that G(z1, 0) and G(0, z2) are right prime matrices over F[z1] and
F[z2], respectively. Thus the noncatastrophicity of C does not imply the noncatastrophicity of C1
and C2. But, if G(z1, z2) is zero prime then C1 and C2 are noncatastrophic.

8



Let {(x(i, j), u(i, j), y(i, j))}(i,j)∈N2 be a trajectory of (1) and let us consider its restriction to the
semi-axis `e1, ` ∈ N, i.e., {(x(i, 0), u(i, 0), y(i, 0))}i∈N. By the past finite support property of the
input and of the state and by the zero initial condition of (1) it follows that this restriction is a 1D
trajectory that fulfills the following equations

x̄1(i+ 1) = A1x̄1(i) +B1ū1(i)
ȳ1(i) = Cx̄1(i) +Dū1(i)

with x̄1(0) = 0, and x̄1(i) = x(i, 0), ū1(i) = u(i, 0) and ȳ1(i) = y(i, 0), for i ∈ N. Thus, the 1D
system Σ1 = (A1, B1, C,D) generates the restrictions to the semi-axis `e1, ` ∈ N, of all trajectories
of (1), which means that Σ1 is a realization of C1. Analogously, we have that Σ2 = (A2, B2, C,D) is
a realization of C2.

A particular type of 1D convolutional codes will be very important in our construction of 2D
codes. The properties of these codes are presented in Theorem 3.1 of [12]. Below, we restate this
theorem in a revised form by taking an additional component of the codeword into account which
will help us to construct 2D codes with a designed distance. Such an ingredient consists in taking
into account also the weight of the output. Indeed, studying [12, Th. 3.1] and its proof, one can
obtain the following result.

Theorem 4.1 Let C be a 1D finite support convolutional code of rate k
n with ISO representation

Σ = (A,B,C,D) of dimension δ, which is observable, with observability index ν, and such that

Φdν = [Adν−1B Adν−2B · · ·AB B] (9)

forms the parity-check matrix of a block code of distance d. If v̂(z) = (û(z), ŷ(z)) ∈ F[z]n is a
nonzero codeword of C (where û(z) is an input and ŷ(z) the corresponding output of Σ) and ` =
min{i | v(i) 6= 0}, where v̂(z) =

∑
i∈N

v(i)zi =
∑
i∈N

(u(i), y(i))zi, it follows that

df (C) ≥ d+ wt(y(`)).

Using the previous result and the projections onto the semi-axes, we establish a lower bound on
the distance of a 2D finite support convolutional code.

Theorem 4.2 Let Σ1 = (A1, B1, C,D) and Σ2 = (A2, B2, C,D) be two 1D systems of dimension δ,
with k inputs and n−k outputs, which are observable with observability indices ν1 and ν2, respectively.
Suppose that Φdiνi

(Ai, Bi), as defined in (9), is the parity-check matrix of a block code of distance
di, for i = 1, 2. Then,

dist(C(A1, A2, B1, B2, C,D)) ≥ d1 + d2 −min{d1, d2, k}.

In the case D contains the k × k identity matrix Ik up to row permutation, one obtains that

dist(C(A1, A2, B1, B2, C,D)) ≥ d1 + d2.

Proof By Lemma 4.1 it is enough to analyze the weight of the codewords (û(z1, z2), ŷ(z1, z2))
where û(z1, 0) 6= 0 and û(0, z2) 6= 0.

The weight of a codeword v̂(z1, z2) = (û(z1, z2), ŷ(z1, z2)) ∈ C(A1, A2, B1, B2, C,D) satisfies the
following inequality

wt(v̂(z1, z2)) ≥ wt(v̂(z1, 0)) + wt(v̂(0, z2))− wt(v(0, 0)), (10)
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where v̂(z1, 0) ∈ C(A1, B1, C,D) and v̂(0, z2) ∈ C(A2, B2, C,D).
Suppose that min{d1, d2, k} = k. By Theorem 4.1, Lemma 4.1 and the fact that wt(u(0, 0)) ≤ k,

it follows that

wt(v̂(z1, z2)) ≥ wt(v̂(z1, 0)) + wt(v̂(0, z2))− wt(v(0, 0))
≥ d1 + wt(y(0, 0)) + d2 + wt(y(0, 0))− [wt(u(0, 0)) + wt(y(0, 0))]
≥ d1 + d2 − k.

If min{d1, d2, k} = d1 then it is enough to show that wt(v̂(z1, z2)) ≥ d2. This easily follows
since by Lemma 4.1 wt(v̂(z1, z2)) ≥ wt(v̂(z1, 0)) + wt(v̂(0, z2)) − wt(v(0, 0)) ≥ wt(v̂(0, z2)) ≥ d2.
Equivalently, if min{d1, d2, k} = d2 then it follows that wt(v̂(z1, z2)) ≥ d1.

In the case D contains the identity matrix, up to row permutation, we have that wt(u(0, 0)) ≤
wt(y(0, 0)). Hence, by Lemma 4.1

wt(v̂(z1, z2)) ≥ wt(v̂(z1, 0)) + wt(v̂(0, z2))− wt(v(0, 0))
≥ d1 + wt(y(0, 0)) + d2 + wt(y(0, 0))− wt(u(0, 0))− wt(y(0, 0))
≥ d1 + d2,

which completes the proof. �

The distance of a rate k
n 1D convolutional code of degree δ is always upper-bounded by the

generalized Singleton bound (n− k)(bδ/kc+ 1) + δ + 1, see [11]. The 1D convolutional codes whose
distance reach such a bound are called maximum-distance separable (MDS) convolutional codes.
However, in the 2D case very few results exist on the distance of 2D convolutional codes (see for
instance [16, Proposition 4.2.3]) and no upper bound is known.

We are now ready to construct 2D finite support convolutional codes by means of an ISO rep-
resentation in such a way that the code is noncatastrophic, its distance has a designed value and
the ISO representation has the minimal possible dimension. Here we propose the following exam-
ple by making particular choices of the parameters A1, A2, B1, B2, C and D and construct a 2D
convolutional code of rate 2

3 and complexity 5.

Example 4.1 Let F = GF (26), α be a primitive of F and Σ1 =(A1, B1, C,D) and Σ2 =(A2, B2, C,D)
two 1D systems with

A1 = A2 =


α2 0 0 0 0
0 α4 0 0 0
0 0 α6 0 0
0 0 0 α8 0
0 0 0 0 α10

 , B1 = B2 =


1 α
1 α2

1 α3

1 α4

1 α5

 ,

C =
(

1 1 1 1 1
)

and D=
(

1 1
)
.

(11)

It can be easily verified that Σ1,Σ2 are observable with observability index ν = 5. By construction,
Φ30(A1, B1) = [A29

1 B1 A28
1 B1 . . . A1B1 B1] is a Vandermonde matrix of size 5 × 60 and there-

fore is the parity-check matrix of a block code of distance 6. Using Theorem 4.2 and the fact that
min{d1, d2, k} = min{6, 6, 2} = 2 one obtains that

dist(C(A1, A2, B1, B2, C,D)) ≥ 6 + 6− 2 = 10.

Since the system Σ = (A1, A2.B1, B2, C,D) is modally observable by Theorem 3.2 we have that the
code C(A1, A2, B1, B2, C,D) is noncatastrophic. Moreover, as Σ is modally observable and satisfies
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the conditions of Corollary 3.1 the system Σ is a minimal ISO representation of C(A1, A2, B1, B2, C,D),
with complexity 5. Finally, it is worth pointing out that the distance of C(A1, A2, B1, B2, C,D) is
larger than any 1D convolutional code of rate 2

3 and complexity 5 since the Singleton bound in this
case is equal to 9.

5 Conclusions

In this paper we have established a framework to represent 2D finite support convolutional codes
by means of linear systems. To that purpose we have introduced input-state-output representations,
which have several advantages with respect to the representations used by Fornasini and Valcher
in [2]. In particular, we have overcome the important issue of minimality, namely, our input-state-
output representations allowed us to construct minimal representations of 2D convolutional codes,
whereas such constructions are not known for the representations used in [2]. We have characterized
catrastrophicity of these representations and show how it is possible to make constructions with
a designed distance. We think that these representations are a good tool for the construction of
optimal 2D finite support convolutional codes. It is a topic of future research to obtain an upper
bound for the maximal distance of 2D convolutional codes and construct codes that reach such
a bound. Moreover, we believe that such an approach will lead to a future algebraic decoding
algorithm.

References

[1] E. Fornasini and G. Marchesini. Structure and properties of two-dimensional systems. In in S.G.
Tzafestas (ed.), Multidimensional Systems, Techniques and Applications, pages 37–88, 1986.

[2] E. Fornasini and M.E. Valcher. Algebraic aspects of two-dimensional convolutional codes. IEEE
Trans. Inf. Th, 40(4):1068–1082, 1994.

[3] H. Gluesing-Luersen, J. Rosenthal, and P.A. Weiner. Duality between mutidimensinal convolu-
tional codes and systems. In F. Colonius, U. Helmke, F. Wirth, and D. Prtzel-Wolters, editors,
Advances in Mathematical Systems Theory, A Volume in Honor of Diedrich Hinrichsen.

[4] J. Justesen and S. Forchhammer. Two dimensional information theory and coding. With ap-
plications to graphics data and high-density storage media. Cambridge: Cambridge University
Press.

[5] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J, 1980.

[6] B. Kitchens. Multidimensional convolutional codes. SIAM J. Discrete Math., 15(3):367–381,
2002.
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