
Short One-Time Signatures

Gregory M. Zaverucha∗ and Douglas R. Stinson†

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo ON, N2L 3G1, Canada
{gzaveruc, dstinson}@uwaterloo.ca

July 26, 2010

Abstract

We present a new one-time signature scheme having short signatures. Our new scheme is
also the first one-time signature scheme that supports aggregation, batch verification, and which
admits efficient proofs of knowledge. It has a fast signing algorithm, requiring only modular
additions, and its verification cost is comparable to ECDSA verification. These properties make
our scheme suitable for applications on resource-constrained devices such as smart cards and
sensor nodes.

Keywords: one-time signatures, short signatures, cover-free families
AMS Classifications: 94A60, 05B40

1 Introduction

A one-time signature (OTS) scheme is a digital signature scheme that can be used to sign one
message per key pair. More generally, we consider w-time signatures, which allow w signatures to
be signed securely with each key pair (signing more than w messages breaks the security of the
scheme). One-time signatures are an old idea: the first digital signature scheme invented was an
OTS (Rabin/Lamport [43, 29]). The two main advantages of OTS is that they may be constructed
from any one-way function, and the signing and verification algorithms are very fast and cheap to
compute (when compared to regular public-key signatures). Common drawbacks, aside from the
signature limit, are the signature length and the size of the public and private keys.

Despite the limitations of OTS, they have found many applications. On the more practical
side, OTS can be used to authenticate messages in sensor networks [18] and to provide source
authentication for multicast (also called broadcast) authentication [39]. One-time signatures are
also used in the construction of other primitives, such as online/offline signatures [22] and CCA-
secure public-key encryption [14].

With respect to signature length, designing conventional signature schemes with short signatures
is not a new problem, and is motivated by applications with strong bandwidth constraints. For
∗Supported by an NSERC post-graduate scholarship
†Research supported by NSERC discovery grant 203114-06

1

example, signatures which are bar-coded for postage stamps, or which must be entered manually
by users as a part of a product registration system, must be as short as possible while maintaining
security.

There is a significant gap in signature length between regular public-key signatures and OTS.
While signatures in conventional schemes can be very short, e.g., as small as 160 bits for 80-bit
security (in the BLS scheme [9]), one-time signatures are usually many times longer (for typical
examples, see [39, 44], where signature lengths are over one thousand bits). This motivates the
following questions: Are short OTS possible? Can we retain the advantages of OTS but reduce the
signature size?

We give a positive answer to these questions. In particular, we make the following contributions:

• We give the first one-time signature scheme with short signatures (constant size, about 180
bits long for 80-bit security) and a tight security reduction based on the difficulty of the
discrete logarithm problem.

• We give a unified description of five previous schemes and improve parameter selection for
these schemes.

• Our new scheme supports aggregation and batch verification, admits efficient proofs of knowl-
edge, and is fail-stop. Ours is the first OTS to have the first two of these properties.

• As a corollary, we give a fail-stop signature scheme with the shortest signatures to date.

• Our new OTS retains fast signing, but has slower verification than most OTS. Nonethe-
less, verification in our new scheme is only about as expensive as verification of an ECDSA
signature.

Informal description of our solution. We consider a general class of OTS schemes based on
cover-free families, and make the observation that the one-way function in an OTS scheme is being
used as a commitment function. The signer creates commitments during key generation that form
the public key, and the openings of these commitments make up the signature. By replacing the
one-way function with Pedersen commitments (of the form gshr) [38], we can use the algebraic
properties of this commitment scheme to compress a number of openings into a single opening. We
also show that it is sufficient for security to have the value r in the commitment be very small,
leading to short signatures. We make further use of the algebraic structure to prove security, and
provide additional features: batch verification, aggregation, and proofs of knowledge.

Paper organization. First we describe a general construction of OTS based on cover-free families
(§2), then we review relevant related work on one-time signatures and their applications (§3). In §4
we present our new scheme and discuss parameter selection, in §5 we describe additional features
of our scheme, and then we conclude with a discussion of its applications (§6).

2 General Construction of OTS from Cover-Free Families

A number of existing OTS schemes may be described as special cases of a (unified) general construc-
tion based on cover-free families. Our new scheme will also be a variant of this general construction.
We start with the definition of a cover-free family (which is somewhat specialized for this paper).

2

Definition 2.1. A w-cover-free family (X,B) is a set X of m elements, and a set B of 2n subsets
of X called blocks, with the following property. For any w blocks Bi1 , . . . , Biw ∈ B, and all other
blocks B ∈ B, it holds that

B 6⊆
w⋃
j=1

Bij

We say that Bi1 , . . . , Biw does not cover any other B ∈ B. We will use the notation w-CFF(m, 2n)
for cover-free families.

We now describe the general construction of a w-time signature scheme based on a cover-free
family. Throughout this paper, the message space is {0, 1}n.

Setup(n): Let (X,B) be a w-CFF with |X| = m elements and |B| = 2n sets. Let f : {0, 1}` →
{0, 1}` be any one-way function (where ` is a security parameter). Also, to each message
M ∈ {0, 1}n we associate a unique BM ∈ B (this correspondence is public).

Key Generation: Choose m random values s1, . . . , sm ∈ {0, 1}` and compute vi = f(si) for
i = 1, . . . ,m. Output the public key PK := (v1, . . . , vm) and the secret key SK := (s1, . . . , sm).

Sign: To sign M ∈ {0, 1}n, compute BM ∈ B, the subset corresponding to M . Then output the
signature σ = {(si, i) : i ∈ BM}.

Verify: To verify (σ,M) using PK, compute BM , then check that f(si) = vi for all i ∈ BM . If so,
output 1; otherwise, output 0.

It is easy to see that security is provided by the one-wayness of f and the cover-free property:
given w signatures, all other messages require knowledge of at least one si value that has not
been revealed (a more detailed analysis appears in [40]). The correspondence between M and BM
depends on the CFF; we will describe an efficient algorithm for our scheme in §4.2.

3 Related work

We will first describe five existing schemes that are special cases of the general CFF scheme de-
scribed above. Then we discuss other work related to OTS and fail-stop signatures. The OTS
literature is vast, and a complete survey is impractical, given space constraints. For a more com-
prehensive survey, see Menezes et al. [31, Ch. 11.6] and Dods et al. [21]. All of the schemes
considered in [21, 31] have signatures that are longer than the new scheme we present in §4. For
details of the signature length in conventional signature schemes, see [9].

3.1 Schemes Based on the CFF Model

The descriptions assume we want to sign n-bit messages. We write Mi for the i-th bit of message
M .

In the Lamport scheme [29], the public key consists of vi,b = f(si,b) for i = 1, . . . , n, and for b =
0, 1. To sign M , reveal s1,M1 , . . . , sn,Mn . The verifier checks that vi,Mi = f(si,Mi), for i = 1, . . . , n.
This can be interpreted as a 1-CFF with 2n points, where X = {(i, b) : i = 1, . . . , n and b = 0, 1}
and BM = {(i, b) : Mi = b} for all M ∈ {0, 1}n.

3

The Bos and Chaum [10] scheme has m secrets and can be used to sign all weight bm/2c binary
vectors. Therefore, we require

(
m
bm/2c

)
> 2n in order to sign n-bit messages. When these vectors are

viewed as the incidence matrix of a CFF, this forms an optimal 1-CFF with m points (optimality
is proven by Sperner [41]).

The Reyzin-Reyzin schemes [44] use random structures instead of explicitly constructed CFFs
(under the name “subset-resilient functions”). Their security analysis considers two probabilities.
First, the probability that a random matrix is a w-CFF is used in the security analysis for chosen-
message attacks. The adversary has the description of the CFF, and finding w blocks that cover
another block allows the adversary to sign the covered message after observing w signatures. Second,
the probability that a randomly chosen set of messages covers another message is used to analyze
security when the adversary is passive and observes w signatures on random messages. Some
example parameters are given in [44]. To sign two messages with 80-bit security and a forgery
probability of 2−53, the public key size is ≈ 82 Kb and the signatures are 1600 bits in length.

The scheme of Pieprzyk, Wang and Xing [40] (the PWX scheme) is the first to explicitly use
CFFs, and it uses some constructions based on polynomials and error-correcting codes. All of the
constructions in [40] are constructions for w-CFF for general w. The special case w = 1 is not
singled out (having already been considered in [10]).

Katz [27] defines the same scheme as the PWX scheme, but uses a CFF with a stronger property,
namely, that the union of w blocks misses λ (or more) points of any other block. The stronger
property is required to provide leakage resilience (a property that guarantees security even if a
bounded amount of the signer’s secret information is leaked). As in [40], going from signing one
message to signing multiple messages is done via a w-CFF.

Parameter Selection In Section 4.3 we show that better parameters (shorter signatures and
smaller keys) are obtained by using w 1-CFFs rather than a single w-CFF. This improves the
schemes above that use w-CFF.

3.2 Other Work Related to One-Time Signatures

Fail-Stop Signatures. In a fail-stop signature scheme, the signer may efficiently prove that he
did not create a given, valid signature (when the signature is a legitimate forgery). The scheme
of van Heyst and Pedersen [49] uses Pedersen commitments in the public key to create a fail-
stop signature scheme. For this reason, our schemes have some similarities: both schemes can
sign w messages, the public key is a list of commitments, and the secret key is their openings. The
signature and verification algorithms differ, however: in [49], the messages are used in the signature
directly (rather than being encoded with a CFF), verification is slower (at least twice as slow) and
signatures are about twice as long.

Other schemes. Goldwasser, Micali and Rivest [24] present a one-time signature scheme based
on trapdoor claw-free permutations. The scheme requires n evaluations of the permutation to
sign n-bit messages and the signature is the size of the output. For all known trapdoor claw-free
permutations, this means that the signature is at least as long as an RSA modulus (i.e., 1024 bits
at the 80-bit security level).

Groth [25] gives an alternate construction of an OTS scheme with the same properties as the
van Heyst and Pedersen scheme (though it is not fail-stop).

4

Bellare and Shoup [4] present a general construction of OTS from three-move identification
protocols. Specific instantiations of their construction yield an OTS scheme with short signatures
(as short as ours) based on the one more discrete log problem [36], while another gives a scheme
with signatures about twice as large as ours having discrete log security. Both schemes presented
in [4] also require a collision resistant hash function (CRHF), even when signing short messages,
i.e., the hash function is part of the signing algorithm, and not just applied to the input message
in the usual way.

A popular approach to convert an OTS scheme to a w-time signature scheme is to use a Merkle
tree to authenticate w one-time public keys [21, 31, 32]. Since the signature must include a path
through the authentication tree, the signature length is typically thousands of bits. Some examples
of multiple-time signatures using Merkle trees are given in [6, 11, 34]. To our knowledge, the
Merkle-like scheme with the shortest signatures is due to Dahmen and Krauß [18]. At the 80-bit
security level, the signatures produced by their scheme are 330 bits long (in general the signature
length is about 4κ to achieve κ-bit security).

A recent paper by Mohassel gives a black-box construction of OTS schemes from chameleon
hash functions [33]. This result leads to new OTS schemes based on the hardness of factoring, the
discrete logarithm problem, and the short integer solution problem on lattices. The instantiation
based on the discrete log assumption has the shortest signatures, which are the same length as the
van Heyst and Pedersen OTS, about twice as long as in the new scheme we present.

3.3 Applications of One-Time Signatures

Here we review a few example applications of one-time signatures. In §6 we discuss using our new
OTS for these applications.

Smart cards and sensor networks. Resource-constrained devices that are not capable of us-
ing public-key cryptography (RSA, for example) often have sufficient resources for symmetric-key
operations and w-time signatures. Rohde et al. [42] show that the Merkle signature scheme is prac-
tical on smart cards without a cryptographic coprocessor. Nodes in sensor networks have similar
limitations, and one-time signatures were applied in this case by Dahmen and Krauß [18]. Their
scheme uses the fact that most messages in sensor networks are short (8–24 bits), for example,
basic commands or simple measurements (such as temperature).

Bicakci et al. [7] introduce the concept of one-time sensors. In this application, nodes in a
wireless sensor network are given enough cryptographic material to produce only one (or a few)
authentic messages. This is motivated by nodes with a short lifespan, for instance, due to limited
battery life. Also, the nodes might not be strictly disposable, e.g., they must return to the central
authority periodically to obtain new cryptographic keys. Signing must be fast on a sensor node,
while verification is done at a central repository by a more powerful computer.

Broadcast authentication. Using OTS to authenticate a stream of broadcasted data was initi-
ated by Gennaro and Rohatgi [23, 45]. For streams of data that are unknown in advance (e.g., live
broadcasts) their solution uses an OTS to authenticate each block of the stream against the public
key transmitted in the previous block.

The BiBa OTS scheme was designed by Perrig [39] as the main component of the BiBa broad-
cast authentication protocol. In broadcast authentication, a sender wishes to send authenticated

5

packets to multiple receivers that may have limited resources. Fast signing and verification are im-
portant in this application to allow high-throughput, low-latency communication. Substituting the
Reyzin-Reyzin scheme (see §3.1) for the BiBa OTS improves the efficiency of the BiBa broadcast
authentication protocol (see [44]).

4 A New OTS Scheme with Short Signatures

In this section we describe our new scheme and discuss parameter selection. We also give a set of
concrete parameters for 80-bit security. The scheme, given in Figure 1, signs only one message,
since in §4.3 we show that w public keys that each sign one message will be smaller than one public
key that signs w messages (for CFF-based OTS).

4.1 Scheme Description

We first briefly review Pedersen’s commitment scheme [38]. Let G be a group of order q, where
q is prime. Let g, h ∈ G be system parameters. To commit to a message m ∈ Z∗q , choose r ∈ Zq
at random, and output C = gmhr as the commitment. To open C, reveal (m, r). Also note that,
given two distinct openings to a Pedersen commitment using distinct bases g and h, it is possible
to recover logg h.

The complete scheme is presented in Figure 1.

Remark 4.1. For the scheme in Figure 1 to be fail-stop, logg h must be unknown to the signer.
In practice, g and h may be chosen by a trusted authority, or verifiably at random. A forgery will
allow the signer to recover logg h (with probability at least 1−2−`r), and use it as a proof of forgery
(under the assumption that the signer cannot compute logg h). See the proof of Theorem 4.4 for
details. If the fail-stop property is not desired, the signer may use any distinct g and h, provided
logg h is not publicly known.

Our scheme is secure if the discrete log problem is hard in G.

Definition 4.2. Let G be a cyclic group of prime order q, and let g be a generator of G. The
discrete log problem (DLP) is, when given g, h ∈ G, to compute x = logg h, i.e., h = gx.

We say that an adversary A (t, ε)-solves the DLP in G if after time t, A outputs a correct
solution to a DLP instance with probability ε.

The definition of security we use is strong unforgeability under chosen message attacks. Strong
unforgeability against an adaptive adversary is modelled by the following game between a challenger
C and an adversary A.

1. C publishes Params := Setup(n).

2. C runs the key generation algorithm with Params w times, and publishes PK1, . . . ,PKw.

3. A adaptively requests up to w signatures, at most one per public key, which C provides. Let
Q be the set of (message, signature, public key index) triples queried by A.

4. A outputs (M,σ, i).

6

Setup(n): Choose a group G of order q, where q is an `q-bit prime (`q is a security parameter).
Let (X,B) be an optimal 1-CFF(m, 2n), and write BM for the block corresponding to
the message M ∈ {0, 1}n. Let g and h be generators of G (see Remark 4.1 below on
choosing g and h).

Key Generation: For i = 1, . . . ,m, generate random values si ∈R Zq and ri ∈R {0, 1}`r ,
where `r is a parameter. The secret key is SK := (si, ri)mi=1. For i = 1, . . . ,m, compute
vi := gsihri . The public key is PK := (v1, . . . , vm).

Sign: To sign M , compute and output

(σ, ρ) :=

∑
i∈BM

si (mod q),
∑
i∈BM

ri

 ∈ Zq × Z.

More precisely, ρ is an integer in [0,m(2`r − 1)/2], since |BM | = bm/2c in the optimal
1-CFF.

Verify: To verify the signature (σ, ρ), check that 0 ≤ ρ ≤ m(2`r − 1)/2 and

gσhρ
?=
∏
i∈BM

vi.

Output 1 if both conditions hold, and output 0 otherwise.

To sign w messages, simply create w public keys as above, and include a counter with each
signature to indicate which of the w public keys is being used.

Figure 1: Our new one-time signature scheme.

We say that A (t, ε)-wins the game if

Pr[Verify(PKi,M, σ) = 1 ∧ (M,σ, i) 6∈ Q] = ε ,

and Step 4 takes time t. Note that A can win by outputting a triple (M,σ, i) where M appears
in Q, but with a different σ. This is the strong unforgeability property: a new signature on a
previously signed message is considered a forgery.

For our proof of security, we will require the following technical lemma. In what follows, for an
integer x we write [x] to denote {0, . . . , x− 1}.

Lemma 4.3. Let Xn be the probability distribution on [n2`] defined as Xn = X1 + . . .+Xn, where
Xi is the uniform distribution on [2`]. Then the min-entropy of Xn, H∞(Xn), is at least ` bits.

Proof. Let Pn(k) = Pr[Xn = k] for k ∈ [n2`]. Clearly, P1(k) = 2−` for all k ∈ [2`] and zero
otherwise. By applying repeated convolution to P1,

Pn(k) =
∑
i∈Z

P1(i)Pn−1(k − i)

= 2−`(Pn−1(k − 1) + . . .+ Pn−1(k − 2`)) .

7

because P1(i) = 0 for values of i 6∈ [2`]. Since the sum of the terms Pn−1(k − i) are at most one
(Pn−1 is a probability distribution), it follows that Pn(k) ≤ 2−` for all n, k. Now we compute the
min-entropy of Xn:

H∞(Xn) = − log
(

max {Pr[Xn = x]}x∈[n2`]

)
≥ − log 2−` = `,

which proves the lemma.

We now prove the security of our scheme.

Theorem 4.4. Let A be an adversary who (t, ε)-wins the strong unforgeability security game above
for the w-time signature scheme in Figure 1. Then A can be used to (t + c, ε(1 − 2−`r))-solve the
DLP in G, where `r is a parameter of the signature scheme, and c is a small constant.

Proof. B will be a new algorithm that uses A to solve an instance of the DLP in G. Let the DLP
instance given as input to B be (g, h). B creates PK1, . . . ,PKw and SK1, . . . ,SKw as above, using
g and h, and gives PK1, . . .PKw and the system parameters to A. Since B knows SK1, . . . ,SKi,
the w adaptive queries A makes may all be answered correctly. (Recall that each message is signed
with one of the w keys, as the w-time key pair consists of w one-time key pairs.) After seeing
signatures on a set of Q messages, A outputs a signature (σ, ρ, i) on a message M , which verifies
using PKi. Let (σ, ρ) be the signature on M created by B using SKi and the signing algorithm
above. Now define the Pedersen commitment

C :=
∏
j∈BM

vj = gσhρ = gσhρ .

There are two cases to consider: (i) M 6∈ Q or, (ii) M ∈ Q, but (σ, ρ) 6= (σ, ρ).
Since the ρ-value of a signature is in [0,m(2`r − 1)/2], there are m(2`r − 1)/2 valid openings of

C. We must analyze the probability that A outputs the same opening as (σ, ρ). A does have some
information about ρ; he knows that ρ is the sum of uniformly random values from {0, 1}`r . By
Lemma 4.3, the min-entropy of ρ as a random variable defined on

{
0, . . . ,m(2`r − 1)/2

}
is at least

`r bits. Therefore, in case (i) the forgery equals (σ, ρ) with probability not more than 2−`r , and
differs (giving distinct openings of C) with probability at least 1− 2−`r . In case (ii), (σ, ρ) 6= (σ, ρ)
by definition, so we always have distinct openings of C.

Thus, with probability at least ε(1 − 2−`r) A succeeds and B has two distinct openings of C,
which allows B to recover logg h, solving the DLP instance. The time required by B is t (the time
required by A) plus the time required to: generate w key pairs, sign w messages, and solve for
logg h, i.e, compute logg h = (ρ− ρ)/(σ − σ).

Remark 4.5. Note that non-repudiation is provided, despite the signer’s ability to choose SK such
that two messages have the same signature (the signer can do this by ensuring that the sum of two
openings is the same). Suppose Bob has a signature (σ, ρ) from Alice on the message M , and Alice
later claims that (σ, ρ) is a signature on M ′ (and the verification equation holds). If Alice is telling
the truth, and she did not give Bob a signature on M , then Bob has produced a forgery on M , which
is not possible by Theorem 4.4. Therefore, Alice must have signed M .

A natural question to ask is whether we can change the commitments used in the public key to
simple discrete log commitments, i.e., a commitment to m is computed as gm. This simplifies the
scheme and reduces signature size (by 10 bits using our parameters from §4.3). Unfortunately, we
were not able to find a security proof for this modified scheme with a tight security reduction, and
it remains an open question.

8

4.2 Encoding a message M as BM

Encoding messages is considered in detail by Bos and Chaum [10] as well as Reyzin and Reyzin [44].
Pieprzyk et al. [40] discuss coding-theoretic approaches to the problem (encoding using generator
matrices). In both [10] and [44], algorithms to encode a message as a weight bm/2c vector are
given. Both require a nontrivial amount of computation (at least m2n multiplications). Here we
mention a simpler approach.

A bijective function S :
{

1, . . . ,
(
a
b

)}
↔ {b-subsets of [a]} is called a ranking algorithm from

integers to subsets and an unranking algorithm from subsets to integers. The well-known ranking
algorithm described in [15, 16] requires bm/2c subtractions and log d comparisons where d =

(
n

bm/2c
)
,

using precomputed values. The algorithm is as follows:

Input M : an n-bit integer, k: weight of the output
Output y: length d binary vector of weight k

for i = 1, . . . , d

if M >
(
n−i
k

)
yi = 1
M = M −

(
n−i
k

)
k = k − 1

else yi = 0

return y

This is called the co-lex ranking [28]. Bicakci et al. [6] use the lex ranking in their implementation
of the Bos-Chaum scheme.

4.3 Parameter Selection

We first show that signing w messages using w instances of a 1-CFF will require less storage than
using a single w-CFF. This applies to all of the CFF schemes described in Section 3.1.

Suppose w = `t for integers ` and t. In any w-CFF(m, 2n), we have m = Ω(w2

logwn) (see Stinson
et al. [46]). Combining ` public keys allowing t signatures each to create a public key permitting
w = `t signatures therefore has m = Ω(` t2

log tn) (where m in this case is the total number of secrets
needed by the signer). It is easy to see that this bound on m is smallest when ` = w and t = 1, i.e.,
when we use w public keys each allowing one signature. It is also easy to see that an intermediate
choice (e.g., using

√
w
√
w-CFFs) is not an improvement. Thus, by using w 1-CFF(m, 2n) instead

of one w-CFF(m, 2n), we can potentially reduce storage by a factor of w/ logw. A minor drawback
of this approach is that the signature must include a counter, to tell the verifier which part of the
public key to use.

Constructing an optimal 1-CFF(m, 2n) is simple: choose all length m binary vectors with weight
bm/2c (there are

(
m
bm/2c

)
such vectors). This is a 1-CFF(m, 2n) provided that(

m

bm/2c

)
> 2n, (1)

9

in fact, it is the same CFF used in the Bos-Chaum scheme [10].1

Next we consider `q. We choose G to be a group of points on an elliptic curve, since its elements
have a compact representation. Therefore, `q must be large enough so that the DLP is hard in G.
We would probably use the standard NIST curves [35] for performance reasons.

In most applications, `r = 10 will be sufficient. This means that the security reduction succeeds
with probability ε− ε/1024, or put another way, an instance of the DLP may be solved on average,
given a forgery, 1023 out of 1024 times. A probability of proving a forgery of 1023/1024 should
also be sufficient for most applications requiring fail-stop signatures.

Parameter sizes for 80-bit security and arbitrary-length messages. We assume that
messages will be hashed with a collision-resistant hash function which produces a 160-bit output,
and so n = 160. We need `q = 160 for security, therefore group elements may be represented
using 160 bits (recall our choice of G above). In this case the public key size is 160 · 165w bits,
which is about 26Kb per signature (we take m ≥ 165 in order to satisfy (1)). When w = 10, 100,
and 1000, the public key is 264Kb, 2.64Mb and 26.4Mb, respectively. Since `r = 10 and log2 ρ ≤
log2(bm/2c 2`r) the signature length is not more than 160 + 17 + log2w = 177 + log2w bits. (The
log2w bits are required for the counter.) Next, the encoding algorithm requires log2

(
165
82

)
≈ 160

comparisons, and we must store about 162 160-bit values, requiring about 26Kb space.

Computational costs. Recall that m = 165 for 80-bit security and G is a prime-order elliptic
curve group. Key generation requires m multi-exponentiations in G. Verification requires a single
multi-exponentiation (where one exponent is small) and 82 multiplications, which is comparable to
ECDSA (which requires one multi-exponentiation with full-length exponents). Signing requires 82
additions mod q. Note that, when computing the multi-exponentiations during key generation and
verification, fast exponentiation techniques are applicable [5].

The signing and verification times of our scheme were compared to ECDSA using version 5.6.0
of the Crypto++ library [17] on a Pentium D 3.0GHz processor. The parameter sizes and elliptic
curve group implementation used in both schemes was the same. For signing, our OTS is 47.14
times faster than ECDSA, while verification was 1.13 times slower.

Parameter sizes for 80-bit security and short messages. We now consider the parameter
sizes when our scheme is used to sign 16-bit messages. Recall (§3) that short messages are common
in sensor networks [18]. To construct the optimal 1-CFF(m, 216) requires m = 19. Therefore the
public key contains 3040w bits to sign w 16-bit messages. While the key sizes are larger than the
Dahmen and Krauß scheme, the signature overhead is halved.

Some possible tradeoffs. First, to reduce the signature size even further, we can avoid including
the counter at the cost of either (i) increased verification time, by simply omitting it, which may
be acceptable when w is small, or (ii) larger public and private parameters, by using a w-CFF.
Second, using randomized hashing, we may reduce the public and private storage requirement. The
idea is to use a target collision-resistant hash function, which is a type of keyed hash function with
a short digest (i.e., a κ-bit digest for κ-bit security, instead of a 2κ-bit digest). Since the digest

1The 1-CFF with the stronger property required to construct Katz’ leakage-resilient scheme also has a simple (but
not optimal) construction – a direct generalization of the Sperner construction (see Stinson et al. [47, Lemma 3.2]).
The reduction in required storage is even more pronounced here, as m depends more strongly on w.

10

Scheme Security PK size SK size Sig. size Sign Verify
vHP [49] DLP 2κ 4κ 2κ 2 mult. 3 exp.
Groth [25] DLP 3κ 2κ 2κ 3 mult. 3 exp.
BS [4] DLP + CRHF κ 2κ 2κ 2 mult. 1 exp.
BS [4] omDLP +

CRHF
κ 3κ κ 1 mult 1 exp.

Generic CFF
[10, 29, 40,
44]

OWF O(γn) O(γn) O(γn) Encode
(§4.2)

O(n) OWF
computa-
tions

This paper DLP O(κn) O(κn) κ+ c Encode and
O(n) add.

1 exp. +
O(n) mult.

Table 1: Comparison of various OTS schemes. The DL security parameter is denoted by κ, the
one-way function (OWF) security parameter is denoted by δ and n is the number of bits in the
message to sign, and c is a small constant (c = 10 bits in the examples given above). The “Generic
CFF” construction is given in §2.

is half the size, the public and private parameters are roughly halved. However, the signer must
commit to w hash keys during key generation, and include the hash key with the signature. This
idea is discussed in [34] and [45]. Another possible way to reduce signer storage is to store only a
short seed and generate SK using a pseudorandom generator (PRG), which increases computation
during signing since the PRG must be invoked bm/2c times. Finally, we may reduce computation
by precomputing and storing values of hr for all r ∈ {0, 1}`r , since `r is small.

Comparison. In Table 1, we compare the size of the keys and signatures, and the computation
required to create signatures and verify them, for several OTS. For schemes providing security under
the DLP, our scheme has the shortest signatures. This is traded off against the large public key size.
The scheme of Bellare and Shoup (BS) has the best all-around performance, but it requires stronger
assumptions, namely, the one more DLP (omDLP) and the existence of a collision-resistant hash
function (CRHF).

5 Additional Features of the OTS Scheme

In this section, we describe four additional features of our OTS scheme. Batch verification and
aggregation are techniques for handling multiple signatures, in order to efficiently verify or compress
many signatures. Proving knowledge of a signature and verifiably encrypting a signature are useful
properties when using OTS to build more complex cryptographic protocols (e.g., certified email
[2]).

5.1 Batch Verification

Our new OTS provides batch verification under the most general definition: verification of k sig-
natures on k (possibly different) messages created under k (possibly different) public keys. Given
a batch of signatures, (σ1, ρ1, . . . , σk, ρk, M1, . . . ,Mk,PK1, . . . ,PKk), we can efficiently verify them

11

using the small exponents tests of Bellare, Garay and Rabin [3], as follows:

gσ1d1+...+σkdkhρ1d1+...ρkdk
?=

 ∏
i∈BM1

,vi∈PK1

vi

d1

× · · · ×

 ∏
i∈BMk

,vi∈PKk

vi

dk

where d1, . . . , dk are randomly chosen small exponents. Using `-bit exponents, there is a 2−`

probability of error during verification.

5.2 Aggregation

In this section we prove that k signatures may be securely aggregated by simply computing their
sum. We consider the most general definition of aggregation: signatures from k (possibly different)
signers on k (possibly different) messages are combined to produce a single signature. Here are the
aggregation functions.

Aggregate(σ1, ρ1, . . . , σk, ρk): Output the aggregate signature

(σ, ρ) =

(
k∑
i=1

σi (mod q),
k∑
i=1

ρi (mod q)

)
∈ Zq × Zq .

Note that, when aggregating a large number of signatures, ρ may be reduced mod q.

VerAgg(PK1, . . . ,PKk,M1, . . . ,Mk, σ, ρ): Output 1 if

gσhρ
?=

 ∏
i∈BM1

,vi∈PK1

vi

× · · · ×
 ∏
i∈BMk

,vi∈PKk

vi

 ,

holds, and output 0 otherwise.

Here we present the security game for aggregate signatures from Boneh et al. [8]. Let C be the
challenger and A be the adversary.

1. C runs Setup(n) to generate params, computes PK1 = Keygen(params), and gives params
and PK1 to A.

2. A adaptively queries a set of messages Q, and C provides signatures using SK1.

3. A outputs PK2, . . . ,PKk, (σ, ρ) and M = {M1, . . . ,Mk}. A’s success probability is the
probability that VerAgg(PK1, . . . ,PKk,M, σ, ρ) = 1 and M1 6∈ Q.

In order for Aggregate to be secure, we must augment the public key PKi with a zero-knowledge (ZK)
proof of knowledge Zi of the secret key (using standard techniques, e.g., [12, 19]). This proves that
each public key is well formed. We naturally require that A must output valid public keys to win
the above game.

12

Sketch of the security proof. We show that an adversary who produces a forgery in the above
game can be used to solve the DLP in G. The challenger creates PK1,SK1, and Z1 and sends PK1

and Z1 to A. A makes adaptive queries, then responds as in Step 3. C then extracts SK2, . . . ,SKk

from Z2, . . . , Zk (which is possible using the knowledge extractor since the proofs Zi are valid, see
[19]). Given (σ, ρ), and SK2, . . . ,SKk, the challenger computes (σ′, ρ′) = Aggregate(PK2, . . . ,PKk,
M2, . . . ,Mk). Now, σ′′ := σ − σ′, ρ′′ := ρ − ρ′ is a valid signature on M1 under PK1 (a forgery).
We now proceed as in the proof of Theorem 4.4.

Remark 5.1. No ZK proofs are necessary when all signatures are created by a single signer, or by a
group of trusted signers. In this case, since the participants are honest (not under A’s control), the
above game should be modified to have the challenger choose PK2, . . . ,PKk, instead of the adversary.

5.3 Proving Knowledge of a Signature on the Message M

The following ZK proof of knowledge allows a prover to convince a verifier that he possesses a
signature on M under a known public key without revealing the signature.2

PK{(σ, ρ) :
∏
i∈BM

vi = gσhρ}

Note that prover only needs to know g, h, σ, ρ and can remain ignorant of the whole public key.
This is easily generalized to proving knowledge of aggregate signatures. The computation of the
prover is a single multi-exponentiation in both cases. The size of the proof is about 4`q bits.

5.4 Verifiably Encrypting a Signature

Since proving knowledge of a signature amounts to proving knowledge of a discrete log, we can
verifiably encrypt signatures by combining our OTS with the Camenisch-Shoup verifiable encryption
scheme [13]. The ability to verifiably encrypt signatures allows them to be exchanged fairly using
an optimistic fair exchange protocol [1]. If we encrypt using an additively homomorphic encryption
scheme with efficient proofs of plaintext knowledge (such as the Paillier scheme [20]), encrypted
signatures may also be aggregated.

6 Impact on Applications

In this section we discuss using our scheme in the applications mentioned in Section 3.3. For
two of the applications mentioned in the introduction, bar-coded postage and product registration
systems, our scheme may be used, but it does not offer any immediate advantages over conventional
signatures. So we do not discuss these applications further.

Smart cards and sensor networks. It is important that authentication for smart cards and
sensor networks have low overhead, due to the high cost of communication [30]. This is the biggest
advantage of using our OTS: the number of signature bits per message bit is smaller than alternative
schemes. A specific application where short signatures are especially important is when sensors are

2The “PK” (proof of knowledge) notation [12] is a short-hand for the various Schnorr-like proof of knowledge of
a discrete logarithm protocols which exist for types of statements such as knowledge of, relations between, and the
length of discrete logarithms.

13

used in vehicular networks. Since the vehicles pass roadside access points at high speed, only a
limited amount of data can be transferred [37]. Key management can be handled offline, i.e., when
the vehicle is parked.

The computation costs of our scheme favour applications where the card or nodes produce
the signatures and verification is performed by a device with more resources. For example, in
heterogeneous sensor networks, where signatures are created by low-resource nodes and verified by
nodes with greater resources, or in sensor networks where the sensors return authenticated data
to a central authority (e.g., weather sensors reporting to a meteorological agency). In the latter
example, aggregation can reduce authentication overhead even further, and batch verification can
reduce verification time. We stress that that resource-constrained devices are still able to efficiently
verify signatures in our scheme. ECDSA has been shown practical for sensor nodes and smart cards
[26, 48], and verification in our scheme requires equivalent computational resources.

Broadcast authentication. While our scheme could be used with BiBa, it will not be as efficient
as the Reyzin-Reyzin scheme because of the size of the public parameters; we cannot use the hash
chain technique to re-use a single public key for many signatures. However, our observation on
parameter selection (i.e., to use w 1-CFFs instead of one w-CFF) gives a variant of the Reyzin-
Reyzin scheme with smaller public keys and signatures, and thus gives a version of the BiBa protocol
with reduced communication and computation, and improved security.

Acknowledgements

The authors would like to thank the members of the CrySP lab of the university of Waterloo for
their feedback on earlier drafts of this paper (J. Clark, I. Goldberg, R. Henry, U. Hengartner, A.
Kate, F. Olumofin and C. Swanson). This research was supported by NSERC discovery grant
203114-06, and an NSERC PGS scholarship. We also thank Payman Mohassel for pointing out [4].

References

[1] N. Asokan, V. Shoup and M. Waidner. Optimistic fair exchange of digital signatures. IEEE
Journal on Selected Areas in Communications 18 (2000), 593–610.

[2] G. Ateniese. Verifiable encryption of digital signatures and applications. ACM Trans. on Inf.
and Systems Security (TISSEC) 7 (2004), 1–20.

[3] M. Bellare, J. Garay and T. Rabin. Fast batch verification for modular exponentiation and
digital signatures. Proceedings of EUROCRYPT ’98, LNCS 1403 (1998), 236–250.

[4] M. Bellare and S. Shoup. Two-Tier Signatures, Strongly Unforgeable Signatures, and Fiat-
Shamir Without Random Oracles In Public Key Cryptography (PKC’07), LNCS 4450 (2007)
201–216.

[5] D. J. Bernstein. Pippenger’s exponentiation algorithm. Manuscript. http://cr.yp.to/papers.
html#pippenger.

[6] K. Bicakci, G. Tsudik and B. Tung. How to construct optimal one-time signatures. Computer
Networks 43 (2003), 339–349.

14

[7] K. Bicakci, C. Gamage, B. Crispo and A.S. Tanenbaum. One-time sensors: A novel concept
to mitigate node-capture attacks. Proceedings of Security and Privacy in Ad-hoc and Sensor
Networks (ESAS’05), LNCS 3813, 80–90.

[8] D. Boneh, C. Gentry, B. Lynn and H. Shacham. Aggregate and Verifiably Encrypted Signatures
from Bilinear Maps. Proceedings of EUROCRYPT ’03, LNCS 2656 (2003), 416–432.

[9] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. Journal of
Cryptology 17 (2004), 297–319.

[10] J. Bos and D. Chaum. Provably unforgeable signatures. Proceedings of CRYPTO ’92, LNCS
740 (1992), 1–14.

[11] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya and C. Vuillaume. Merkle signatures
with virtually unlimited signature capacity. Proceedings of Applied Cryptography and Network
Security (ACNS’07), LNCS 4521 (2007), 31–45.

[12] J. Camenisch and M. Stadler. Proof systems for general statements about discrete logarithms.
Technical Report TR 260 (1997), Institute for Theoretical Computer Science, ETH Zürich.

[13] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete loga-
rithms. Proceedings of CRYPTO ’03, LNCS 2729 (2003), 126–144.

[14] R. Canetti, S. Halevi and J. Katz. Chosen-ciphertext security from identity-based encryption.
Proceedings of EUROCRYPT ’04, LNCS 3027 (2004), 207–222.

[15] T.M. Cover. Enumerative source coding. IEEE Transactions on Information Theory 19 (1973),
73–77.

[16] B. Chor and R. Rivest. A knapsack-type public key cryptosystem based on arithmetic in finite
fields. IEEE Transactions on Information Theory 34 (1988), 901–909.

[17] W. Dai. Crypto++: A free C++ class library of cryptographic schemes. Accessed January
2010, http://www.cryptopp.com/.

[18] E. Dahmen and C. Krauß. Short hash-based signatures for wireless sensor networks. Proceed-
ings of Cryptology and Network Security (CANS’09), LNCS 5888 (2009), 463–476.

[19] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. Proceedings of
EUROCRYPT’00, LNCS 1807 (2000), 418–430.

[20] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. Proceedings of PKC 2001, LNCS 1992, 119–136.

[21] C. Dods, N.P. Smart and M. Stam. Hash based digital signature schemes. Proceedings of
Cryptography and Coding 2005, LNCS 3796 (2005), 96–115.

[22] S. Even, O. Goldreich and S. Micali. On-line/off-line digital signatures. Journal of Cryptology
9 (1996), 35–67.

[23] R. Genarro and P. Rohatgi. How to sign digital streams. Proceedings of CRYPTO ’97, LNCS
1294 (1997), 180–197.

15

[24] S. Goldwasser, S. Micali and R.L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J. Computing 17 (1988), 281–308.

[25] J. Groth Simulation-Sound NIZK Proofs for a Practical Language and Constant Size Group
Signatures. In proceedings of ASIACRYPT’06, LNCS 4284 (2006) 444–459.

[26] N. Gura, A. Patel, A. Wander, H. Eberle and S.C. Shantz. Comparing elliptic curve cryptog-
raphy and RSA on 8-bit CPUs. Proceedings of CHES ’04, LNCS 3156 (2004), 118–132.

[27] J. Katz. Signature schemes with bounded leakage resilience. IACR ePrint Archive Report
2009/220, http://eprint.iacr.org/2009/220.

[28] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation, Enumeration and
Search, CRC Press, Boca Raton FL, 1999.

[29] L. Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-
98, SRI International, Palo Alto, 1979.

[30] M. Luk, A. Perrig and B. Whillock. Seven cardinal properties of sensor network broadcast
authentication. In: SASN ’06: Proceedings of the fourth ACM workshop on Security of ad hoc
and sensor networks, ACM Press (2006), 147–156.

[31] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography. CRC
Press LLC, Boca Raton, FL, 1996.

[32] R. Merkle. A certified digital signature. Proceedings of CRYPTO ’89, LNCS 435 (1989),
218–238.

[33] P. Mohassel. One-time signatures and chameleon hash functions. To appear at Selected Areas
in Cryptography (SAC) 2010.

[34] D. Naor, A. Shenhav and A. Wool. One-time signatures revisited: Have they become practical?
IACR ePrint Archive Report 2005/442, http://eprint.iacr.org/2005/442.

[35] National Institute of Standards and Technology. Digital signature standard (DSS). FIPS PUB
186-2 (2000).

[36] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to discrete
log. Proceedings of ASIACRYPT’05, LNCS 3788 (2005), 1–20.

[37] F. Kargl, P. Papadimitratos, L. Buttyan, M. Müter, E. Schoch, B. Wiedersheim, T.-V. Thong,
G. Calandriello, A. Held, A. Kung, J.-P. Hubaux. Secure vehicular communication systems:
implementation, performance, and research challenges. IEEE Communications Magazine 46
(2008), 110–118.

[38] T.P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. Pro-
ceedings of CRYPTO’91, LNCS 1440 (1992), 129–140.

[39] A. Perrig. The BiBa one time signature and broadcast authentication protocol. Proceedings of
the 8th ACM Conference on Computer and Communications Security (CCS ’01), ACM Press,
New York, 2001, 28–37.

16

[40] J. Pieprzyk, H. Wang and C. Xing. Multiple-time signature schemes against chosen message
attacks. Proceedings of SAC ’03, LNCS 3006 (2003), 88–100.

[41] E. Sperner. Ein Satz Uber Untermengen einer endliche Menge. Math. Zeit. 27 (1928) 544–548.

[42] S. Rohde, T. Eisenbarth, E. Dahmen, J. Buchmann and C. Paar. Fast hash-based signatures
on constrained devices. Proceedings of CARDIS’08, LNCS 5189 (2008), 104–117.

[43] M.O. Rabin. Digitalized Signatures. Foundations of Secure Computation, New York: Academic
Press, 1978, pp.155–168.

[44] L. Reyzin and N. Reyzin. Better than BiBa: Short one-time signatures with fast signing and
verifying. Proceedings of ACISP ’02, LNCS 2384 (2002), 144–153.

[45] P. Rohatgi. A compact and fast hybrid signature scheme for multicast packet authentication.
Proceedings of the 6th ACM Conference on Computer and Communications Security (CCS ’99),
ACM Press, New York, 1999, 93–100.

[46] D.R. Stinson, R. Wei and L. Zhu. Some new bounds for cover-free families. Journal of
Combinatorial Theory Series A. 90 (2000), 224–234.

[47] D.R. Stinson and R. Wei. Generalized cover-free families. Discrete Mathematics 279 (2004),
463–477.

[48] P. Szczechowiak, L.B. Oliveira, M. Scott, M. Collier, R. Dahab. NanoECC: Testing the limits of
elliptic curve cryptography in sensor networks. Proceedings of EWSN ’08, LNCS 4913 (2008),
305–320.

[49] E. van Heyst and T.P. Pedersen. How to make efficient fail-stop signatures. Proceedings of
EUROCRYPT ’92, LNCS 658 (1993), 366–377.

17

