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ON THE ORDER BOUNDS FOR ONE-POINT AG CODES

OLAV GEIL, CARLOS MUNUERA, DIEGO RUANO, AND FERNANDO TORRES

Abstract. The order bound for the minimum distance of algebraic geometry codes

was originally defined for the duals of one-point codes and later generalized for arbitrary

algebraic geometry codes. Another bound of order type for the minimum distance of

general linear codes, and for codes from order domains in particular, was given in [1].

Here we investigate in detail the application of that bound to one-point algebraic geom-

etry codes, obtaining a bound d∗ for the minimum distance of these codes. We establish

a connection between d∗ and the order bound and its generalizations. We also study

the improved code constructions based on d∗. Finally we extend d∗ to all generalized

Hamming weights.

1. Introduction

Algebraic geometry codes, or AG codes, over the finite field Fq with q elements are con-

structed from a (projective, non-singular, geometrically irreducible) algebraic curve X |Fq

and two rational divisors with disjoint support, D = P1 + · · · + Pn and G . The code

C(D,G) is defined as the image of the Riemann-Roch space L(G) by the evaluation at

D map evD : L(G) → Fn
q , evD(f) = (f(P1), . . . , f(Pn)), see Section 3 or [3, 10, 14]. The

divisor G is often taken as a multiple of a single point, G = mQ, with Q 6∈ supp(D). In

this case C(D,G) = C(D,mQ) is called one-point code.

Given a code C(D,mQ) the first task is to compute its parameters: length, dimension

and minimum distance. The length is obviously n = deg(D). In order to compute the

dimension an important role is played by the Weierstrass semigroup at Q,

H = H(Q) := {−vQ(f) : f ∈ L(∞Q) \ {0}} = {h1 = 0 < h2 < . . . }
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where vQ is the valuation at Q and L(∞Q) = ∪r=0,1,...L(rQ). In fact, if hi < n then the

dimension of C(D, hiQ) is i. For m ≥ n this is no longer true in general, as the evaluation

map evD : L(mQ) → Fn
q might have a non-trivial kernel, L(mQ−D). Thus we consider

the set

H∗ = H∗(D,Q) := {m ∈ N0 : C(D,mQ) 6= C(D, (m− 1)Q)}.

Knowing H∗ is equivalent to knowing the dimension of all codes C(D,mQ). It is clear

that H∗ consists of n elements, that H∗ ⊂ H and that for m < n, m ∈ H∗ if and only if

m ∈ H .

Regarding the minimum distance d = d(C(D,mQ)) the simplest estimate is given by the

Goppa bound, d ≥ n−m. The Goppa bound does not give the true minimum distance in

many cases. For example, it does not give any information whenm ≥ n. This problem can

be solved by using the improved Goppa bound, d ≥ n−m+ γa+1, where a = ℓ(mQ−D)

is the abundance of C(D,mQ). The drawback of this improved bound is that it is based

on the gonality sequence (γi) of the curve X , see [11], which is difficult to compute.

Besides uniform bounds, some of the most interesting known bounds for d are of order

type. These bounds are based on obtaining different estimates for different subsets of

codewords. They are successful if for each subset we can find estimates better than a

uniform bound for all codewords, see [4]. The original order bound dORD (also called

Feng-Rao bound) was introduced by Feng and Rao in [7] and by Høholdt, van Lint and

Pellikaan in [10]. It usually gives very good results, but it has the disadvantage that it

can only be applied to the duals of one-point codes, which are not one-point codes in

general. A nice generalization of this bound for arbitrary AG codes was given by Beelen

[2] and later improved by Duursma, Kirov and Park in a sequence of articles [4, 5, 6].

Another bound of order type for general linear codes was given in [1]. This bound was

applied to order domain codes and to one-point codes in particular. In the present work,

we investigate in detail the case of one-point codes, obtaining a bound d∗. This bound was

already present in [1] (Proposition 37) but here we state it explicitly, by showing how to

compute d∗ from the set H∗ defined above. Besides we investigate the connection to the

order bound. We show that d∗ is a special case of the Beelen and Duursma-Kirov-Park

generalized bouds. Since it can happen that the generalized order bounds give different

results than the original one, we also investigate the connection of d∗ to the original order

bound dORD. We show that when both can be applied -namely when the dual of a one-

point code is isometric to a one-point code- then both coincide. Furthermore we investigate

how to construct improved codes from d∗ and how to extend d∗ to all generalized Hamming

weights. These problems have never been treated in the aforementioned works of Beelen

and Duursma-Kirov-Park. Thus the main purpose of this article is not to present a new

or better bound, but (i) to make the conection between the Andersen-Geil bound and

the order bounds for AG one-point codes, (ii) to emphasize the possibility of manage

the order bound entirely in the language of one-point evaluation codes and Weierstrass
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semigroups; (iii) to study how to construct improved codes; and (iv) to extend d∗ to all

generalized Hamming weights.

The paper is structured in 5 sections: In Section 2 we briefly recall the bound for the

minimum distance of linear codes from [1] as well as the main facts and definitions we

need. We introduce the bound d∗ for one-point codes in Section 3, where we also show the

connection with the generalized order bounds of Beelen and Duursma-Kirov-Park. We

also deal with improved codes, whose construction becomes now very easy. Some worked

examples where we show how to compute d∗ are included. In Section 4 we compare the

bound d∗ to the strict order bound (that is the original order bound dORD with respect

to the evaluation map evD), showing that when both can be applied then they give the

same result. Furthermore, we continue our study of improved codes. Finally in Section 5

we extend d∗ to all generalized Hamming weights.

2. The bound from [1] for the minimum distance of linear codes

For the convenience of the reader, we begin with a brief explanation of some results from

[1]. Let B = {b1, . . . ,bn} be a basis of Fn
q . We consider the codes C0 = (0), and for

i = 1, . . . , n,

Ci = 〈b1, . . . ,bi〉.

Associated to these codes we consider the (valuation-like) map ν : Fn
q → {0, . . . , n} defined

by ν(v) = min{i : v ∈ Ci}.

Lemma 2.1. Let v1, . . . ,vm ∈ Fn
q . Then

(a) ν(v1+· · ·+vm) ≤ max{ν(v1), . . . , ν(vm)}. If there exists j such that ν(vi) < ν(vj)

for all i 6= j, then equality holds.

(b) dim(〈v1, . . . ,vm〉) ≥ #{ν(v1), . . . , ν(vm)}. Conversely, if D ⊆ Fn
q is a linear

subspace of dimension m, then there exists a basis {v1, . . . ,vm} of D such that

#{ν(v1), . . . , ν(vm)} = m.

Proof. (a) is clear. (b) Assume #{ν(v1), . . . , ν(vm)} = t and ν(v1) < · · · < ν(vt). If

λ1v1 + · · · + λtvt = 0 then 0 = ν(0) = ν(λ1v1 + · · ·+ λtvt) = max{ν(vi) : λi 6= 0}. By

(a) this implies λ1 = · · · = λt = 0. Conversely write Di = D ∩ Ci. For all i = 1, . . . , n, it

holds that Di = Di−1 ⊕ (D ∩ 〈bi〉), hence dim(Di−1) ≤ dim(Di) ≤ dim(Di−1) + 1 and the

last inequality is an equality precisely m times. If Di 6= Di−1, take a vector vi ∈ Di\Di−1.

Then #{ν(v1), . . . , ν(vm)} = m and according to (b), {v1, . . . ,vm} is a basis of D. �

For c ∈ Fn
q , c 6= 0, we consider the space V (c) = {v ∈ Fn

q : supp(v) ⊆ supp(c)} = {v ∗ c :

v ∈ Fn
q }, where the component-wise product is defined as usual: v ∗ c = (v1c1, . . . , vncn).

Clearly dim(V (c)) = wt(c), where wt(c) denotes the weight of c. Now consider in

{1, . . . , n}2 the order (r, s) < (i, j) if and only if r ≤ i, s ≤ j and (r, s) 6= (i, j). A
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pair (bi,bj) is called well-behaving if ν(br ∗ bs) < ν(bi ∗ bj) for all (r, s) < (i, j). For

i = 1, . . . , n, define

Λi = {bj ∈ B : (bi,bj) is well-behaving}.

Since we can write c = λ1b1 + · · ·+ λν(c)bν(c) with λν(c) 6= 0, then for bj ∈ Λν(c) we have

ν(c ∗ bj) = ν(

ν(c)
∑

i=1

λibi ∗ bj) = ν(bν(c) ∗ bj).

Proposition 2.2. Let c ∈ Fn
q . If c 6= 0 then wt(c) ≥ #Λν(c).

Proof. We have wt(c) = dim(V (c)) ≥ dim(〈c ∗ b1, . . . , c ∗ bn〉) ≥ #{ν(c ∗ b1), . . . , ν(c ∗

bn)} ≥ #{ν(c ∗ bj) : j ∈ Λν(c)} = #{ν(bν(c) ∗ bj) : j ∈ Λν(c)} = #Λν(c). �

Theorem 2.3. For i = 1, . . . , n, the true minimum distance of Ci, satisfies d(Ci) ≥

min{#Λr : r ≤ i}.

This bound can be applied to an arbitrary linear code C, just by including it into an

increasing chain of codes C1 ⊂ · · · ⊂ Ck−1 ⊂ C ⊂ Ck+1 ⊂ · · · ⊂ Cn = Fn
q . Such a chain is

quite natural for one-point codes.

3. A bound for the minimum distance of one-point codes

3.1. The bound. Let X be a (projective, non-singular, geometrically irreducible algebraic)

curve of genus g defined over the finite field Fq. We construct one-point codes from X in

the usual way. Let Q,P1, . . . , Pn be different rational points in X . Let v = −vQ, where

vQ is the valuation at Q, and consider the spaces L(mQ) and the algebra L(∞Q) =

∪r=0,1,...L(rQ). Let D = P1+· · ·+Pn and ev = evD : L(∞Q) → Fn
q be the evaluation map

atD. The one-point codes C(D,mQ) arising from X , D andQ are defined as the images of

the sets L(mQ) by ev, that is C(D,mQ) = ev(L(mQ)). Note that C(D, (n+2g−1)Q) =

Fn
q , hence we can restrict ourselves to 0 ≤ m ≤ n + 2g − 1.

Let C = C(D,mQ). We shall apply to C the bound from Section 2 with respect to the se-

quence of codes C1 ⊂ C2 ⊂ · · · ⊂ Cn, obtained from the sequence (C(D,mQ))m=0,...,n+2g−1

by deleting the repeated codes. Thus the map ν can be written as

ν(v) = min{dim(C(D,mQ)) : v ∈ C(D,mQ)}.

From now on, unless explicitly said, we restrict ourselves to codes with length n > 2g+2.

Lemma 3.1. For f ∈ L(∞Q) we have ν(ev(f)) ≤ dim(C(D, v(f)Q)). If C(D, v(f)Q) 6=

C(D, (v(f)− 1)Q) then equality holds, ν(ev(f)) = dim(C(D, v(f)Q)).

Proof. The first statement is clear since f ∈ L(v(f)Q) and hence ev(f) ∈ C(D, v(f)Q).

For the second one, note that if m = v(f), then L(mQ) = L((m− 1)Q) + 〈f〉, and hence

C(D,mQ) = C(D, (m− 1)Q) + 〈ev(f)〉. Thus ev(f) ∈ C(D,mQ) \C(D, (m− 1)Q). �
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Note that it is not true in general that ν(ev(f)) = dim(C(D, v(f)Q)) because ev only

depends on the points P1, . . . , Pn, and thus ev(f) might be equal to ev(g) with g ∈

C(D, (v(f)−1)Q). For example, take a non-constant function f ∈ L(∞Q). Then v(f q) =

qv(f) but ev(f q) = ev(f).

Let H = H(Q) = {h1 = 0 < h2 < . . . } be the Weierstrass semigroup of Q. As we know,

this is a numerical semigroup of finite genus g. Let l1, . . . , lg be the gaps of H . Let us

consider the set H∗ defined in the Introduction, namely

H∗ = H∗(D,Q) := {m ∈ N0 : C(D,mQ) 6= C(D, (m− 1)Q)}.

It is clear that H∗ consists of n elements. Let us write H∗ = {m1, . . . , mn}. It is also clear

that H∗ ⊂ H and for m < n it holds that m ∈ H∗ if and only if m ∈ H . The following

results may be useful for computing H∗. Remember that for a divisor E, ℓ(E) stands for

the dimension of L(E).

Proposition 3.2. H∗ = {m ∈ H : ℓ(mQ−D) = ℓ((m− 1)Q−D)}.

Proof. If m < n then C(D,mQ) 6= C(D, (m − 1)Q) if and only if m ∈ H that is if and

only if m ∈ H∗. If m ≥ n then the kernel of the evaluation map restricted to L(mQ) is

ker(ev|L(mQ)) = L(mQ −D). Since m− 1, m ∈ H , then C(D,mQ) 6= C(D, (m− 1)Q) if

and only if both kernels are equal. �

Thus, for m ≥ n, and since ℓ((n+2g−1)Q−D) = g and H has g gaps, we conclude that

g elements of {n, . . . , n+ 2g − 1} belong to H∗ while the other g elements do not.

Corollary 3.3. Let m ≥ n. If m 6∈ H∗ then for all h ∈ H it holds that m+ h 6∈ H∗.

Proof. If m 6∈ H∗ then there exists a non-zero function f ∈ L(mQ−D)\L((m−1)Q−D).

Take a function φ ∈ L(hQ) such that v(φ) = h. Then fφ ∈ L((m+ h)Q−D) \ L((m+

h− 1)Q−D), and hence m+ h 6∈ H∗. �

Corollary 3.4. If the divisors D and nQ are linearly equivalent, D ∼ nQ, then H∗ ∩

{n, . . . , n+2g−1} = {n+l1, . . . , n+lg}, henceH
∗ = (H∩{1, . . . , n−1})∪{n+l1, . . . , n+lg}.

Proof. If D ∼ nQ then n 6∈ H∗ and hence, according to Corollary 3.3, n = n+h1, . . . , n+

hg 6∈ H∗. The statement follows by cardinality reasons. �

Let f ∈ L(∞Q). If v(f) ∈ H∗ then, by Lemma 3.1, we have ν(ev(f)) = dim(C(v(f))).

For i = 1, . . . , n, let fi ∈ L(∞Q) be such that v(fi) = mi. Thus, according to Lemma 2.1

(b), B = {ev(f1), . . . , ev(fn)} is a basis of Fn
q and the sequence of codes (Ci) is given by

Ci = 〈ev(f1), . . . , ev(fi)〉 = C(D,miQ), i = 1, . . . , n.

Our sequence (C(D,miQ)) does not contain the code C0 = (0). If we want to include it

(see Section 4 for example) we simply take m0 = −1 and C(D,m0Q) = (0).

Proposition 3.5. If mi +mj ∈ H∗ then (ev(fi), ev(fj)) is a well behaving pair.
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Proof. For φ1, φ2 ∈ L(∞Q) we have that v(φ1φ2) = v(φ1) + v(φ2). If mi + mj ∈ H∗

then ν(ev(fi) ∗ ev(fj)) = ν(ev(fifj)) = dim(C(D, v(fifj)Q)) = dim(C(D, (mi +mj)Q)).

If (r, s) < (i, j) then v(frfs) < v(fifj) and hence ν(ev(fr) ∗ ev(fs)) = ν(ev(frfs)) <

dim(C(D, (mi +mj)Q)). �

Thus from the bound in Section 2 we get a bound for one-point codes as follows. For

i = 1, . . . , n, consider the sets

Λ∗
i = {m ∈ H∗ : m = mi +mj with mj ∈ H∗}.

If m ∈ mi +H \H∗ then m = mi + h for some h ∈ H \H∗ and thus m 6∈ H∗ according to

Corollary 3.3. Thus the sets Λ∗
i can also be written as Λ∗

i = {m ∈ H∗ : m −mi ∈ H} =

(mi +H)∩H∗. According to Propositions 2.2 and 3.5, we have that wt(c) ≥ #Λ∗
r for all

c ∈ C(D,mrQ) \ C(D,mr−1Q). Define

d∗(i) := min{#Λ∗
r : r ≤ i}.

Then d(C(D,miQ)) ≥ d∗(i), or equivalently

Theorem 3.6. For a non-negative integer m, we have d(C(D,mQ)) ≥ d∗(dim(C(D,mQ))).

We call this inequality the d∗ bound for one-point codes. Let us remember that the

classical bound on the minimum distance of an code is given by the Goppa estimate

d(C(D,mQ)) ≥ dG(C(D,mQ)) := n − m. d∗ improves the Goppa bound as the next

result shows (see also Proposition 37 in [1]). The first element in H \H∗ is denoted by

π = π(H). Note that π ≥ n.

Proposition 3.7. For all i = 1, . . . , n, we have d∗(i) ≥ dG(C(D,miQ)). If mi < π − lg
then equality holds, d∗(i) = dG(C(D,miQ)).

Proof. For the first statement it suffices to show that #(H∗ \ Λ∗
r) ≤ mr for all r. Since

Λ∗
i = (mi + H) ∩ H∗, we have H∗ \ Λ∗

i ⊆ H \ (mi + H) and this follows from the fact

that #(H \ (mr +H)) = mr (see [10], Lemma 5.15). If mi + lg < π, then all elements in

H \ (mi +H) are smaller than π and hence H∗ \ Λ∗
i = H \ (mi +H). �

3.2. d∗ and the generalized order bounds of Beelen and Duursma-Kirov-Park. The bound

d∗ can also be obtained from the generalized order bounds of Beelen and Duursma-Kirov-

Park. Let us show first how to get d∗ from the Beelen generalized order bound dB stated

in [2]. Let mi ∈ H∗ and consider the code C(D,miQ). The Beelen bound applies to

the duals of evaluation codes. Thus, let W be a canonical divisor with simple poles and

residue 1 at all points P ∈ supp(D) and let G = D + W −miQ. It is well known that

C(D,miQ) = C(D,G)⊥ (see [14]). By using the notation as in [2], for r = 0, 1, 2, . . . ,

consider the divisors

F (r) := G+ rQ = F
(r)
1 + F

(r)
2 =: (D +W ) + ((r −mi)Q).
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Note that all the divisors F (r), F
(r)
1 , F

(r)
2 above have support disjoint from D. For a divisor

E, let H(Q,E) be the Weierstrass set of Q relative to E,

H(Q,E) = −vQ





⋃

deg(E+sQ)≥0

L(E + sQ) \ {0}



 .

In our case, for all r = 0, 1, . . . , we have H(Q,F
(r)
2 ) = H(Q, (r −mi)Q) = H(Q, 0) = H ,

the usual Weierstrass semigroup of Q. The Beelen bound states that

d(C(D,miQ)) ≥ min{#N(F
(r)
1 , F

(r)
2 ) : r = 0, 1, . . . }

where

N(F
(r)
1 , F

(r)
2 ) = {(t, s) : t ∈ H(Q,F

(r)
1 ), s ∈ H(Q,F

(r)
2 ), t+ s = vQ(G) + 1}

= {(t, s) : t ∈ H(Q,D +W ), s ∈ H, t+ s = 1−mi}.

According to the Rieman-Roch theorem, for an integer m it holds that 1−m ∈ H(Q,D+

W ) if and only if ℓ(mQ−D) = ℓ((m−1)Q−D). Thus for m ∈ H the conditions m ∈ H∗

and 1−m ∈ H(Q,D +W ) are equivalent. Consequently

#N(F
(r)
1 , F

(r)
2 ) = #{s ∈ H : 1− (s+mi) ∈ H(Q,F

(r)
1 )}

= #{s ∈ H : s+mi ∈ H∗}

as s ∈ H implies s+mi ∈ H . Finally observe that while the sets Λ∗
i and {s ∈ H : s+mi ∈

H∗} count different objects, they are of the same cardinality: the map m 7→ m+mi gives

a bijection from Λ∗
i to {s ∈ H : s+mi ∈ H∗}. Thus, for one-point codes, the bound d∗ can

be seen as a particular case of the Beelen bound dB, relative to the choice of Q,Q, . . . as

infinite sequence of points not in supp(D) and the divisors F
(r)
1 = D+W,F

(r)
2 = (r−mi)Q.

In particular in may happen that d∗ < dB (for an accurate choice of the infinite sequence

of points and the divisors F
(r)
1 , F

(r)
2 ), in the same way as it may happen that dORD < dB

(see Example 8 of [2]).

Let us show briefly how to obtain d∗ from the generalized order bound of Duursma,

Kirov and Park. Consider again the code C(D,miQ). In the formulation of [4, 5, 6], if

c ∈ C(D,miQ) \ C(D,mi−1Q), then

wt(c) ≥ #(∆Q(D −miQ) ∩ {(m−mi)Q : m ≥ mi})

where for a divisor E, ∆Q(E) is defined as

∆Q(E) = {A : L(A) 6= L(A−Q),L(A− E) 6= L(A−Q−E)}.

The same argument as in the case of dB proves that the sets Λ∗
i and (∆Q(D − miQ) ∩

{(m − mi)Q : m ≥ mi}) are of the same cardinality. This shows that d∗ can also be

obtained from the extended Duursma-Kirov-Park order bound.

On the other hand, the choice of the sets Λ∗
i (instead of the counting made in the Beelen

and Duursma-Kirov-Park bounds) has some technical advantages. Firstly it does not
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involve more divisors that the ones naturally associated to the code C(D,mQ). And

secondly, in contrast to what happens with those bounds, d∗ allows us to study improved

codes very easily. Also it allows us to extend the same idea to all generalized Hamming

weights (see Section 5). In fact, for these two problems d∗ works even better than the

original order bound dORD. As discussed in Section 4, d∗ extends exactly dORD to one-

point codes.

3.3. Improved codes. Let δ be an integer, 0 < δ ≤ n. In the same way as the order bound

allows us to construct codes with designed minimum distance δ and dimension as large

as possible, see [10], the bound d∗ shows how to construct similar codes from sequences

(C(D,miQ)), see [1]. Specifically, given δ let us consider the improved code

C(D,Q, δ) = 〈{ev(fi) : #Λ∗
i ≥ δ}〉

where fi ∈ L(∞Q) with v(fi) = mi. From Lemma 2.1 (a), and the discussion before

Theorem 3.6, it is clear that the minimum distance of C(D,Q, δ) is at least δ.

The sequence (Λ∗
i ) is said to be monotone for δ if for every i, j such that #Λ∗

i ≥ δ and

#Λ∗
j < δ we have that i < j. If (Λ∗

i ) is monotone for δ it is clear that C(D,Q, δ) is

a usual one-point code, so improved codes only improve one-point codes for those δ for

which the sequence is not monotone. In this case the code C(D,Q, δ) depends on the

choice of the set {f1, . . . , fn}. In fact, if #Λ∗
i = δ and #Λ∗

j < δ for some j < i, then

v(fi + fj) = v(fi) but in general ev(fj) 6∈ C(D,Q, δ), hence ev(fi + fj) 6∈ C(D,Q, δ).

Thus we have a collection of improved codes with designed distance δ, depending on the

collection of sets {f1, . . . , fn}.

3.4. Worked examples. We compute H∗ for some examples.

Example 3.8. (Codes on Castle curves) A curve X defined over Fq is said to be Castle if

there is a rational point Q such that the Weierstrass semigroup at Q, H = H(Q), is sym-

metric and qh2+1 = #X (Fq) (where h2 is the first nonzero element of H). If D is the sum

of all rational points of X except Q, the codes C(D,mQ) are called Castle codes, see [13].

It is simple to see that for Castle curves we have D ∼ nQ, hence H∗∩{n, . . . , n+2g−1} =

{n+ l1, . . . , n+ lg} according to Proposition 3.4. In Section 4 we shall see that, being the

semigroup H symmetric, we have H∗ = H \ (n + H). Recall that the family of Castle

codes includes Hermitian, generalized Hermitian, Norm-trace, Suzuki, Ree and many of

the most known codes. To study a concrete example, let us consider the Suzuki curve X

over F8 (see [13] again). This curve has genus g = 14 and 65 rational points. A plane

model of X is given by the equation Y 8Z2 − Y Z9 = X2(X8 −XZ7). This model is non-

singular except at the point (0 : 1 : 0). Being this singularity uni-branched, the unique

point Q lying over (0 : 1 : 0) is rational. Let us consider the codes C(D,mQ), where D is

the sum of all rational points of X except Q. The Weierstrass semigroup at Q is known to

be H = 〈8, 10, 12, 13〉. A straightforward computation gives the sequence (#Λ∗
i ): (64, 56,
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54, 50, 49, 48, 46, 44, 43, 42, 41, 40, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 28, 26, 26, 24, 23, 22, 21,

20, 21, 18, 20, 16, 18, 16, 14, 13, 14, 10, 14, 8, 13, 10, 10, 9, 9, 6, 9, 8, 4, 6, 5, 5, 4, 6, 5, 3, 2, 3, 3, 2,

1, 1). This sequence is monotone for δ = 3, 5, 6, 9, 13, 14, 18, 20, 21. For example the

code C(D, 70Q) has dimension 55 and distance at least 4 (that is d∗(55) = 4), whereas

C(D,Q, 4) has dimension 57.

Example 3.9. (Two families of codes from a curve over F16) The computation of H∗ for

long codes can be carried often to the computation of H∗ for much shorter codes. Let

C(D,mQ) be a code and let n′′ be the largest integer for which equality in the Goppa

bound holds. Then n′′ < n and there exists a divisor D′′ ≤ D such that D′′ ∼ n′′Q.

Hence, for m ≥ n we have ℓ(mQ −D) = ℓ((m − n′′)Q − D′) where D′ = D − D′′. This

leads us to considering the codes C(D′, m′Q) of length n′ = n− n′′. To give an example

of this situation let us consider the curve X over F16 defined by the affine equation

y15 = p(x) :=
x(x14 − 1)

x− 1
= x14 + x13 + · · ·+ x.

Let us study the rational points of X . Firstly there is just one point Q over x = ∞.

Regarding the affine points, note that the polynomial p(x) has 2 roots in F16, namely

0 and 1. In fact, if α 6= 0, 1 is a root of p(x), then α7 = 1 and 7 ∤ 15. These roots

give two points, R1 = (0, 0) and R1 = (1, 0). We consider now the morphism φ = x,

φ : X → P1(F16) of order 15, where F16 denotes the algebraic closure of F16. For α ∈ F16,

α 6= 0, 1, from the equation of X , we have y15 = α(α14− 1)/(α− 1) = 1, so that there are

15 rational points over each φ(α). Write

div(x− α) =
15
∑

i=1

P i
α − 15Q.

Thus X has (16− 2) · 15+2+1 = 213 rational points. To compute its genus observe that

y15 = x(x− 1)(x− α1)
2 . . . (x− α6)

2,

where α7
i 6= 1, αi 6∈ F16. As the extension F16(X )|F16(x) is Kummer, the genus can be

computed via the Riemann-Hurwitz formula [14],

2g − 2 = 15(−2) + 9(14) = 96

and g = 49. Note that X attains the record of rational points among all curves genus 49

over F16. Finally let us compute the Weierstrass semigroup H at Q. We have seen that

−vQ(x) = 15. In the same way div∞(y) = 14Q, so 14, 15 ∈ H . Let

z := y8/((x− α1) · · · (x− α6)).
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It is easy to compute div∞(z) = 22Q, hence 22 ∈ H and thus 〈14, 15, 22〉 ⊆ H . Since

both semigroups have equal genus we conclude that equality holds. Then

H(Q) =〈14, 15, 22〉 = {0, 14, 15, 22, 28, 29, 30, 36, 37, 42, 43, 44, 45, 50, 51, 52, 56, 57, 58,

59, 60, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89,

90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, . . .}.

Note that 2g − 1 = 97 ∈ H and so H is not symmetric. In order to construct codes from

this curve let us consider the divisors D′ = R1 +R2, and for α ∈ F16, α 6= 0, 1

D′′
α =

15
∑

i=1

P i
α , D′′ =

∑

α

D′′
α.

According to our previous computations, D′′
α ∼ 15Q and hence D′′ ∼ 210Q. Let D =

D′ + D′′ be the sum of all affine points of X , n = 212 = deg(D) and consider the

codes of length n, C(D,mQ), m = 0, . . . , n + 2g − 1 = 309. In order to determine

H∗ = H∗(D,Q) we have to compute ℓ(mQ−D) for m ≥ n. But since D′′ ∼ 210Q, then

ℓ(mQ−D) = ℓ((m−210)Q)−D′). This fact leads us to considering the codes C(D′, m′Q)

for m′ = 2, . . . , 2g+1 = 99. The length of these codes is n′ = 2 and C(D′, 0Q) = 〈(1, 1)〉.

Thus there exists just one m′ for which the dimension increases. Clearly, this is not the

case for any gap of H , so m′ must be a non-gap. Looking at the generator matrix (1, 1) of

C(D′, 0Q) we conclude that this m′ is the smallest order of a function f in L(∞Q) such

that f(R1) 6= f(R2). Such a function is clearly f = x and hence m′ = 15. Thus,

H(D,Q)∗ ∩ {n, . . . , n+ 2g − 1} = {n− 2 + l : l is a gap of H and l ≥ 2} ∪ {n− 2 + 15}.

Once H∗ is known we can compute the dimensions of all codes C(D,mQ) and apply

Theorem 3.6 to estimate the minimum distances. Note that for large m we do not obtain

good parameters. In fact, as D′′
α ∼ 15Q, for all m < n, m multiple of 15, the true

minimum distance of C(D,mQ) equals the Goppa estimate. In particular the minimum

distance distance of C(D, 210Q) is d = 2. The bound d∗ gives d ≥ 2 for m = 224 (that

is, for dimension k ≤ 175) and hence all codes C(D,mQ), m = 210, . . . , 224 have true

minimum distance d = 2.

In order to obtain codes with better parameters (that is, better minimum distance) the

usual approach is to consider another divisor G. We shall show that this goal can also be

accomplished by taking a slightly different D. Consider the codes C(D′′, mQ) of length

n′′ = 210. Then the function from which the codeword of weight 2 arises belongs to the

kernel of the evaluation map. The set H∗ = H∗(D′′, Q) can be now computed by using

Corollary 3.4, andH∗∩{n′′, . . . , n′′+2g−1} = {n′′+l1, . . . , n
′′+lg}, where l1, . . . , lg are the

49 gaps of H . It is not necessary to apply the bound d∗ to see that the minimum distance

of these codes is larger for m ≥ n′′. For example, from the improved Goppa bound we

know that the minimum distance of C(D′′, 210Q) satisfies d ≥ n′′ − 210 + γ2 = γ2, where
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γ2 is the usual gonality of X , see [11] . It is not easy to compute γ2, but at the first sight

we have γ2 ≥ #X (F16)/#P1(F16), hence γ2 ≥ 13 (so γ2 = 13 or 14) and d ≥ 13 as well.

4. Relating the bounds d∗ and dORD

As we noted above, in some cases the generalized order bounds may give different results

than the original order bound, see [2] Example 8. Likewise, also the Andersen-Geil bound,

from which we have obtained d∗, can be very different from the original order bound, see

Example 51 of [1]. In this Section we shall compare d∗ and the original order bound

dORD. This comparison can be done over sequences of one-point codes such that their

duals are also one-point. We can slightly relax this condition by imposing that the duals

are isometric to one-point codes.

4.1. The isometry-dual condition. Let C,D, be two linear codes in Fn
q and let x ∈ (F∗

q)
n

be an n-tuple of non-zero elements. We say that C and D are isometric according to x (or

simply x-isometric) if the map χx : Fn
q → Fn

q given by χx(v) = x ∗ v satisfies χx(C) = D.

Note that χx is a true linear isometry for the Hamming distance, hence isometric codes

have the same parameters. The dual of a code C is denoted by C⊥.

Proposition 4.1. Let C,D be two linear codes in Fn
q . If χx(C) = D then χx(D

⊥) = C⊥.

Proof. Let c ∈ C and d = χx(c) ∈ D. For all v ∈ Fn
q we have v ·d = v ·(x∗c) = (x∗v) ·c,

hence v ∈ D⊥ if and only if χx(v) ∈ C⊥. �

Let us recall that we have fixed a basis B = {b1, . . . ,bn} of Fn
q and the associated codes

Ci = 〈b1, . . . ,bi〉, i = 0, . . . , n.

Definition 4.2. A sequence of codes (Ci)i=0,...,n is said to satisfy the isometry-dual con-

dition if there exists x ∈ (F∗
q)

n such that Ci is x-isometric to C⊥
n−i for all i = 0, 1, . . . , n.

Let us study the case of AG codes. We consider the sequence of codes (C(D,miQ))i=0,...,n

arising from the curve X and the associated set H∗ = {m1, . . . , mn}. In addition let

m0 = −1 and C(D,m0Q) = (0). If (C(D,miQ)) satisfies the isometry-dual condition

then both d∗ and the order bound dORD can be used to estimate the minimum distance

of these codes. Let us remember that we are assuming that n > 2g + 2. Remember also

that the dual of C(D,mQ) is C(D,D +W −mQ), where W is a canonical divisor with

simple poles and residue 1 at every point in supp(D) (see [14]).

Proposition 4.3. The following statements are equivalent.

(a) The sequence (C(D,miQ))i=0,...,n satisfies the isometry-dual condition.

(b) The divisor (n+ 2g − 2)Q−D is canonical.

(c) n+ 2g − 1 ∈ H∗.



12 OLAV GEIL, CARLOS MUNUERA, DIEGO RUANO, AND FERNANDO TORRES

Proof. Let us consider the divisor E = (n + 2g − 2)Q − D and for an integer m write

m⊥ = n+ 2g − 2−m. ((a)⇔(b)) Assume that the sequence (C(D,miQ))i=0,...,n satisfies

the isometry-dual condition. Let m be such that 2g ≤ m ≤ n − 2 (since n > 2g + 2,

such an m does exist). Then 2g ≤ m⊥ ≤ n − 2 and hence m,m⊥ ∈ H∗. In particular

dim(C(D,mQ)) + dim(C(D,m⊥Q)) = n. Since the sequence (C(D,miQ))i=0,...,n satisfies

the isometry-dual condition we have that C(D,D+W −mQ) = C(D,mQ)⊥ is isometric

to C(D,m⊥Q). This implies that the divisors D + W − mQ and m⊥Q are equivalent

(see [12]). Then W ∼ (m +m⊥)Q −D = E and this divisor is canonical. Conversely, if

E is a canonical divisor then there is a rational function f such that E + div(f) = W .

In particular f has neither poles nor zeros in supp(D). Let x = evD(f). Then we have

D +W −mQ = m⊥Q + div(f) hence C(D,mQ)⊥ = x ∗ C(D,m⊥Q) = χx(C(D,m⊥Q).

((b)⇔(c)) Since deg(E) = 2g − 2, then E is canonical if and only if ℓ(E) = g. By

the Riemann-Roch theorem (see [10], Theorem 2.55), we have ℓ(E + Q) = g hence E is

canonical if and only if ℓ(E) = ℓ(E+Q), that is, if and only if n+2g− 1 ∈ H∗ according

to Proposition 3.2 �

Example 4.4. (Codes on Castle curves) Let X be a Castle curve and (C(D,miQ))i=0,...,n

be a sequence of Castle codes of length n arising from X (see Example 3.8). Since D ∼ nQ

and the semigroup H(Q) is symmetric, Proposition 3.4 implies that (C(D,miQ))i=0,...,n

satisfies the isometry-dual condition.

Example 4.5. (Codes on the Klein quartic) Let us consider the Klein quartic X of

projective equation X3Y + Y 3Z + Z3X = 0 and genus g = 3. Over the field F8, X has

24 rational points (the maximum allowed by Weil-Serre bound) and a rich geometrical

structure. Codes coming from this curve are usually constructed by using the divisors

G = m(Q1 + Q2 + Q3), where Q1 = (1 : 0 : 0), Q2 = (0 : 1 : 0) and Q3 = (0 : 0 : 1),

since this choice has some technical advantages (see [3],[8],[10]). However, one-point codes

over X can also be considered. Let Q = Q2, D
′ = Q1 + Q3, D

′′ = P1 + · · ·+ P21 be the

sum of all rational points except Q1, Q2, Q3 and let D = D′ +D′′. It is easy to see that

div(x) = 3Q3 − 2Q2 −Q1 and div(y) = 2Q1+Q3 − 3Q2. Then div(xy) = Q1+4Q3 − 5Q2

and div(x2y) = 7Q3 − 7Q2. Then the Weierstrass semigroup H = H(Q) is generated by

3,5 and 7. In particular {1, y, xy, y2, x2y, . . . } is a basis of L(∞Q). In order to compute

H∗ = H∗(D,Q) we can proceed as in Example 3.9. By considering the morphism φ = y,

φ : X → P1(F8) of degree 3, we observe that D
′′ ∼ 21Q. This fact leads us to consider the

codes C(D′, mQ) of length 2 and the set H∗(D′, Q). Since x2y is the first non constant

function in the above basis for which Q1 is not a zero, we deduce that H∗(D′, Q) = {0, 7}.

Then 21+7 = 28 = n+2g−1 ∈ H∗(D,Q) and the sequence of codes C(D,miQ) satisfies

the isometry-dual condition. As we shall se in Lemma 4.7, this condition provides the

whole set H∗ and H∗ = {0, 3, 5, 6, 7, . . . , 22, 23, 25, 28}. A direct computation shows that

for this sequence of codes, both d∗ and the order bound give the true minimum distance

for all m.
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Example 4.6. Let us consider the sequence of codes of length n = 212 introduced

in Example 3.9. Here n + 2g − 1 = 309 6∈ H∗ hence this sequence does not satisfy

the isometry-dual condition. As a consequence dORD cannot be applied to estimate the

minimum distances.

4.2. The bounds for isometry dual codes. Let (C(D,miQ))i=0,...,n be a sequence of one-

point codes satisfying the isometry-dual condition. For this sequence the set H∗ is par-

ticularly simple and can be computed just in terms of the Weierstrass semigroup H .

Lemma 4.7. If (C(D,miQ)) satisfies the isometry-dual condition, then H∗ = {m ∈ H :

n+ 2g − 1−m ∈ H}.

Proof. Let m ∈ H . From the Riemann-Roch theorem, ℓ(mQ − D) = m − n + 1 −

g + ℓ((n + 2g − 2 − m)Q) and hence ℓ(mQ − D) = ℓ((m − 1)Q − D) if and only if

ℓ((n+2g−2−m)Q) 6= ℓ((n+2g−1−m)Q), that is, if and only if n+2g−1−m ∈ H . �

Thus for isometry-dual sequences the set H∗ is symmetric in the sense that for an integer

m it holds that m ∈ H∗ if and only if n+ 2g− 1−m ∈ H∗ (and conversely this property

implies the isometry-dual condition). It follows that n + 2g − 1 − mi = mn−i+1. We

must not confuse this kind of symmetry with the symmetry of the semigroup H . Let us

remember that a semigroup H of genus g is called symmetric if 2g−1 6∈ H or equivalently

(since its largest gap lg satisfies lg ≤ 2g − 1) if lg = 2g − 1. For symmetric semigroups it

holds that m ∈ H if and only if lg −m 6∈ H , see [10]. When the Weierstrass semigroup

H = H(Q) is symmetric, (2g−2)Q is a canonical divisor, hence the isometry-dual property

is equivalent to D ∼ nQ. Since in this case the condition n+2g−1−m ∈ H is equivalent

to m− n 6∈ H , or m 6∈ n+H , then the set H∗ is given by

H∗ = H \ (n+H).

Let us return to the general case of H , where it might not be symmetric. The symmetrical

description of H∗ given by Lemma 4.7 allows us to write H∗ in the following way

Proposition 4.8. If the sequence (C(D,miQ)) satisfies the isometry-dual condition, then

H∗ = {0, . . . , n+ 2g − 1} \ {l1, . . . , lg, n+ 2g − 1− lg, . . . , n+ 2g − 1− l1}.

Proof. We have l1, . . . , lg 6∈ H∗. In the same way, if l is a gap of H then n + 2g − 1 −

(n+ 2g − 1− l) = l 6∈ H and hence n+ 2g − 1− l 6∈ H∗. Furthermore, since lg < n, then

lg < n+ 2g− 1− lg and hence #{l1, . . . , lg, n+ 2g − 1− lg, . . . , n+ 2g − 1− l1} = 2g. By

cardinality reasons we get the result. �

For i = 1, . . . , n, let us consider the set Li = {mi + l1, . . . , mi + lg}.

Proposition 4.9. If (C(D,miQ)) satisfies the isometry-dual condition, then #Λ∗
i = n−

i+ 1−#(Li ∩H∗).
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Proof. Let L = {l1, . . . , lg, n + 2g − 1− lg, . . . , n+ 2g − 1− l1}, and for i = 1, . . . , n,

B
(1)
i = {mj ∈ H∗ : mi +mj < n+ 2g,mi +mj 6∈ H∗},

B
(2)
i = {mj ∈ H∗ : mi +mj ≥ n + 2g}.

Clearly #Λ∗
i = #(H∗ \ (B

(1)
i ∪B

(2)
i )) = n−#B

(1)
i −#B

(2)
i . Since H∗ ⊆ H and the sum of

two non-gaps is again a non-gap, we have B
(1)
i = {mj ∈ H∗ : mi +mj ∈ L} = {n+ 2g −

1− lg−mi, . . . , n+2g−1− l1−mi}∩H∗. According to Lemma 4.7, #B
(1)
i = #(Li∩H∗).

Besides #B
(2)
i = i − 1. In fact, if mi + mj ≥ n + 2g, from Lemma 4.7 we can write

mj = n+ 2g− 1−mt with t = n− j + 1. Then n+ 2g− 1 +mi −mt > n+ 2g− 1 if and

only if mi > mt and there exist i− 1 such choices for mt. �

Then d∗ can be written for isometry-dual codes as

d(C(D,miQ)) ≥ d∗(i) = min{n− r + 1−#(Lr ∩H∗) : r ≤ i}.

Let us prove now that d∗ and the strict order bound with respect to the evaluation map

evD, dORD,ev ([10], Section 4.3), give the same result when applied to codes satisfying the

isometry-dual condition. Let mi ∈ H∗ and let us compute both bounds for C(D,miQ).

If mi < n − lg, according to Proposition 3.7 and Theorem 4.7 in [10], both bounds are

equal to Goppa bound.

In order to compute the order bound, we first need the duals of the codes C(D,mrQ).

As we know, C(D,mrQ)⊥ is isometric to C(D, (n+ 2g − 2−mr)Q). Let hs, hs+1 ∈ H be

such that hs ≤ n+2g−2−mr < hs+1. Then C(D, hsQ) = C(D, (n+2g−2−mr)Q) and

hence C(D, hsQ)⊥ is isometric to C(D,mrQ). Note that C(D,mrQ) has dimension r, so

C(D, hsQ) has dimension n−r. Furthermore, Lemma 4.7 implies that n+2g−1−mr ∈ H∗

hence hs+1 = n + 2g − 1−mr = mn−r+1 and dimC(D, hs+1Q) = n− r + 1.

For h ∈ H let us consider the set

A[h] = {t ∈ H : h− t ∈ H}.

The strict order bound on the minimum distance of C(D,miQ) together with our previous

discussion, imply that

d(C(D,miQ)) ≥ dORD,ev(C(D,miQ)) := min{#A[h] : h ∈ H∗, h ≥ n+ 2g − 1−mi}

= min{#A[n + 2g − 1−mr] : mr ∈ H∗, r ≤ i}

= min{#A[mn−r+1] : r ≤ i},

where the last two equalities follow from 4.7 and the fact that mn−r+1 = n+2g− 1−mr.

Lemma 4.10. If h ∈ H and l 6∈ H then l − h 6∈ H.

Proof. If l − h = h′ ∈ H then l = h+ h′ and hence l ∈ H . �
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Proposition 4.11. Let mr ∈ H∗. If (C(D,miQ)) satisfies the isometry-dual condition,

then #Λ∗
r = #A[mn−r+1].

Proof. Let us compute #A[n + 2g − 1 −mr] + #(Lr ∩ H∗). For a given gap l of H , we

have mr + l ∈ H∗ if and only if n + 2g − 1−mr − l ∈ H∗. Thus

#(Lr ∩H∗) = #{l ∈ Gaps(H) : n+ 2g − 1−mr − l ∈ H∗}

= #{h ∈ H∗ : n+ 2g − 1−mr − h ∈ Gaps(H)},

so #A[n+2g−1−mr ]+#(Lr∩H∗) = #{h ∈ H : h ≤ n+2g−1−mr}−#{h ∈ H \H∗ :

h ≤ n+2g−1−mr , n+2g−1−mr −h ∈ Gaps(H)}. Let us note that for all h ∈ H \H∗,

h ≤ n+2g−1−mr, it holds that n+2g−1−h ∈ Gaps(H). In fact, according to Lemma 4.7,

we would otherwise have h ∈ H∗. Then, from Lemma 4.10, n+2g−1−mr−h ∈ Gaps(H).

So {h ∈ H \H∗ : h ≤ n+ 2g− 1−mr, n+ 2g− 1−mr − h ∈ Gaps(H)} = {h ∈ H \H∗ :

h ≤ n + 2g − 1−mr} and hence #A[n + 2g − 1−mr] + #(Lr ∩H∗) = #{h ∈ H∗ : h ≤

n+ 2g − 1−mr} = dim(C(D, (n+ 2g − 1−mr)Q)) = n− r + 1. �

Corollary 4.12. For isometry-dual codes, we have dORD,ev(C(D,miQ)) = d∗(i).

Therefore d∗ and the strict order bound are the same for isometry-dual codes.

4.3. More on improved codes. In Section 3.3 we have considered the improved code

C(D,Q, δ) = 〈{ev(fi) : #Λ∗
i ≥ δ}〉, for 1 ≤ δ ≤ n. It is analogous to the improved

code C̃(D,Q, δ) introduced by Feng and Rao, [7, 10], based on the order bound:

C̃(D,Q, δ) = 〈{ev(fi) : #A[mi] < δ}〉⊥.

It is well known that the minimum distance of C̃(D,Q, δ) is at least δ. When the sequence

(C(D,miQ)) is isometry-dual, Proposition 4.11 allows us to write C̃(D,Q, δ) in terms of

the sets Λ∗
i ’s,

C̃(D,Q, δ) = 〈{ev(fi) : #Λ∗
n+1−i ≥ δ}〉⊥.

Then it is natural to wonder about the relation between these two improved codes

C̃(D,Q, δ) and C(D,Q, δ).

Proposition 4.13. If the sequence (C(D,miQ)) satisfies the isometry-dual condition,

then C(D,Q, δ) and C̃(D,Q, δ) have the same dimension.

Proof. If C(D,Q, δ) is generated by t vectors then C̃(D,Q, δ) is defined by n− t indepen-

dent parity checks. �

If the sequence (Λ∗
i ) is monotone for δ then C(D,Q, δ) is a one-point code, hence C(D,Q, δ)

and C̃(D,Q, δ) are isometric. Let us study the general case.
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Lemma 4.14. Let (Ci = 〈b1, . . . ,bi〉) be a sequence of codes that satisfies the isometry-

dual condition, χx(Ci) = C⊥
n−i. Then for i = 1, 2, . . . , n, we have

χx(bi) ∈ C⊥
n−i \ C

⊥
n−i+1.

Proof. Follows directly from the definition of isometry-dual sequence. �

Let us remember that the improved codes C(D,Q, δ) and C̃(D,Q, δ) depend on the choice

of functions f1, . . . , fn in L(∞Q) such that v(fi) = mi.

Lemma 4.15. If (C(D,miQ)) satisfies the isometry-dual condition then given a set

{f1, . . . , fn} of functions in L(∞Q) with v(fi) = mi, there exists a similar set {f ′
1, . . . , f

′
n}

such that χx(ev(f
′
i)) · ev(fj) 6= 0 holds if and only if j = n− i+ 1.

Proof. By Lemma 4.14 and the isometry-dual condition, the sets {f1, . . . , fn} and {f ′
1, . . . , f

′
n}

will satisfy
(χx(ev(f

′
i))) · ev(fj) = 0 for j = 1, . . . , n− i

(χx(ev(f
′
i))) · ev(fn−i+1) 6= 0.

So, we have to determine a particular set {f ′
1, . . . , f

′
n} that in addition satisfies

(χx(ev(f
′
i))) · ev(fj) = 0 for j = n− i+ 2, . . . , n.(1)

We show the existence of such a set by induction. Note first that given arbitrary {f1, . . . , fn}

then the condition (1) is trivially satisfied for i = 1 if we choose f ′
1 = f1. Assume next

that (1) holds for all values of i = 1, . . . , s, where s is some number less than n. That is,

for each i ∈ {1, . . . , s} the only j such that χx(ev(f
′
i)) · ev(fj) 6= 0 is j = n− i+1. Denote

by aj the value of χx(ev(f
′
i)) · ev(fj), j = n− s+ 1, . . . , n. The function

f ′
s+1 = fs+1 −

s
∑

i=1

ai
χx(ev(f ′

i)) · ev(fn+1−i)
f ′
i

satisfies (1) as

χx(ev(f
′
s+1)) · ev(fj) =

χx(ev(fs+1)) · ev(fj)−

( s
∑

i=1

ai
χx(ev(f

′
i)) · ev(fn−i+1)

χx(ev(f
′
i)) · ev(fj)

)

.

�

Proposition 4.16. Assume
(

C(D,m1Q)
)

satisfies the isometry-dual condition. For every

choice of {f1, . . . , fn} of functions in L(∞Q) with v(fi) = mi, there exists a similar set

{f ′
1, . . . f

′
n} such that the code C̃(D,Q, δ) defined from the first set is isometric to the code

C(D,Q, δ) defined from the latter set. A similar result holds the other way around.

Proof. By Propositions 4.9 and 4.11 we have #Λ∗
i = #A[m − n+ 1− i]. Choosing

{f ′
1, . . . , f

′
n} such that Lemma 4.15 is satisfied and applying the definitions of C(D,Q, δ)

and C̃(D,Q, δ) proves the first claim. The last claim follows by symmetry. �
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5. Generalized Hamming weights

The same ideas used to obtain the bound d∗ for the minimum distance can be applied to

all generalized Hamming weights (see [1]). Let us remember that given a set D ⊆ Fn
q , the

support of D is defined as

supp(D) =
⋃

v∈D

supp(v).

Let C be a code of dimension k. For r = 1, . . . , k, the r-th generalized Hamming weight

of C is defined as

dr(C) = min{#supp(D) : D is an r-dimensional linear subspace of C},

and the sequence d1(C), . . . , dk(C), is called the weight hierarchy of C. Let us first look

a general bound on the dr(C)’s. Recall that we have a basis B = {b1, . . . ,bn} of Fn
q and

codes Ci = 〈b1, . . . ,bi〉.

Lemma 5.1. Let D ⊆ Fn
q be a linear subspace of dimension r and let {c1, . . . , cr} be a

basis of D. Then #supp(D) ≥ # ∪i=1,...,r {ν(bν(ci) ∗ bj) : j ∈ Λν(ci)}.

Proof. Given D, let us consider the space V (D) = {v ∈ Fn
q : supp(v) ⊆ supp(D)}.

Since #supp(D) = dim(V (D)) and supp(D) = supp(c1) ∪ · · · ∪ supp(cr), we have that

V (D) = V (c1) + · · ·+ V (cr) and the statement follows from the results in Section 2. �

Theorem 5.2. For r = 1, . . . , i, the r-th generalized Hamming weight of Ci satisfies

dr(Ci) ≥ min
1≤j1<···<jr≤i

#







⋃

j∈{j1,...,jr}

{ν(bj ∗ bt) : t ∈ Λj}







.

Proof. According to Lemma 2.1 (c), every linear subspace D of Ci has a basis {c1, . . . , cr}

such that 1 ≤ ν(c1) < · · · < ν(cr) ≤ i. Conversely, given vectors {c1, . . . , cr} satisfying

the above condition, 〈c1, . . . , cr〉 is a vector subspace of Ci of dimension r. Then the result

is a consequence of Lemma 5.1. �

This result is easily translated to one-point AG codes. With the notation as in Section

3, we have codes C(D,mQ) and Ci = C(D,miQ). We showed that #{ν(bj ∗ bt) : t ∈

Λj}) ≥ #Λ∗
j . Thus we have

Theorem 5.3. Let m be a non-negative integer. For r = 1, . . . , i = dim(C(D,mQ)), the

r-th generalized Hamming weight of C(D,mQ) satisfies

dr(C(D,mQ)) ≥ d∗r(i) := min
1≤j1<···<jr≤i

#(Λ∗
j1
∪ · · · ∪ Λ∗

jr
).

This result is similar to the corresponding one for the order bound in [9]. Also similar

results to the ones contained in this section can be obtained for improved codes as well.
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