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Abstract. Skew polynomial rings over finite fields ([7] and [10]) and over
Galois rings ([8]) have been used to study codes. In this paper, we extend this
concept to finite chain rings. Properties of skew constacyclic codes generated
by monic right divisors of xn

− λ, where λ is a unit element, are exhibited.
When λ2 = 1, the generators of Euclidean and Hermitian dual codes of such
codes are determined together with necessary and sufficient conditions for them
to be Euclidean and Hermitian self-dual. Of more interest are codes over the
ring Fpm + uFpm . The structure of all skew constacyclic codes is completely
determined. This allows us to express generators of Euclidean and Hermitian
dual codes of skew cyclic and skew negacyclic codes in terms of the generators
of the original codes. An illustration of all skew cyclic codes of length 2 over
F3 + uF3 and their Euclidean and Hermitian dual codes is also provided.

1. Introduction. In the early history of the art of Error Correcting Codes, codes
were usually taken over finite fields. In the last two decades, interest has been
shown in linear codes over rings. In an important work [17], Calderbank et al.
showed that the Kerdock codes, the Preparata codes and Delsarte-Goethals codes
can be obtained through the Gray images of linear codes over Z4. In general, due
to their rich algebraic structure, constacyclic codes have been studied over various
finite chain rings (see, for example, [3], [6], [13], [14], [15], [16], [19], [20], [22] and
[23]). In particular, successful applications of modular lattices using codes over a
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finite chain ring Fp + uFp [4] and constructions of good sequences from polynomial
residue class rings [24] have motivated the study of constacyclic codes over a special
family of finite chain rings of the form Fpm + uFpm (see, for example, [3], [6], [15],
[16], [19] and [23]).

Classically, polynomial rings over finite fields or over finite rings and their ideals
are key to determining the algebraic structures of constacyclic codes. In [7], skew
(non-commutative) polynomial rings have been used to describe the structure of
linear codes closed under a skew cyclic shift, namely, skew cyclic codes. Later on,
in [10], more properties and good examples of such codes have been established.
Recently, in [8], that approach has been extended to codes over Galois rings. Skew
constacyclic codes have been studied for a particular case when codes are generated
by monic right divisors of xn − λ, where λ is a unit in the Galois ring fixed by a
given automorphism.

Motivated by these works, we generalize the concept of skew constacyclic codes
to over finite chain rings. We study the algebraic structure and properties of these
codes and their Euclidean and Hermitian dual codes. For arbitrary finite chain rings,
skew constacyclic codes with respect to a unit λ are studied in the case where their
generator polynomials are right divisors of xn − λ. Moreover, all skew constacyclic
codes over a finite chain ring Fpm + uFpm are investigated.

This paper is organized as follows: Results concerning finite chain rings and skew
polynomials over these are discussed in Section 2 along with some definitions and
basic properties of skew constacyclic codes. In Section 3, the algebraic structure
and some properties of skew constacyclic codes whose generator polynomials are
monic right divisors of xn − λ are established. In many cases, the structures of
their Euclidean and Hermitian dual codes are given. Necessary and sufficient con-
ditions for them to be Euclidean and Hermitian self-dual are determined as well. A
complete structural classification of skew constacyclic codes over Fpm +uFpm comes
in Section 4. Moreover, the structures of Euclidean and Hermitian dual codes of
skew cyclic and skew-negacyclic codes are determined. Some illustration examples
of skew cyclic codes are also provided.

2. Preliminaries. In this section, we recall and derive some useful results con-
cerning finite chain rings and skew polynomials over such rings. The definition of a
skew constacyclic code is introduced together with some basic properties.

2.1. Finite Chain Rings. A finite commutative ring with identity 1 6= 0 is called
a finite chain ring if its ideals are linearly ordered by inclusion. It is known that
every ideal of a finite chain ring is principal and its maximal ideal is unique (cf.
[18]). Throughout, let R denote a finite chain ring, γ a generator of its maximal
ideal and K the residue field R/〈γ〉. With these notations, the ideals of R form the
following chain

R = 〈1〉 ) 〈γ〉 ) 〈γ2〉 ) · · · ) 〈γe−1〉 ) 〈γe〉 = 〈0〉.

The integer e is called the nilpotency index of R. If K has q elements, then |R| = qe.
Typical examples of finite chain rings which are not fields are the integer residue

ring Zpe , the Galois ring GR(pe,m) and the ring Fpm + uFpm + · · · + ue−1Fpm ,
where p is a prime number and m, e are positive integers such that e ≥ 2. Note

that Fpm + uFpm + · · · + ue−1Fpm := {
∑e−1

i=0 aiu
i | ai ∈ Fpm} is a ring under the

usual addition and multiplication of polynomials in indeterminate u together with
the rule ue = 0. This ring is isomorphic to Fpm [u]/〈ue〉, the only finite chain ring



SKEW CONSTACYCLIC CODES OVER FINITE CHAIN RINGS 3

of characteristic p, nilpotency index e, and residue field Fpm (cf. [12, Lemma 1]).
The reader can find further details concerning finite chain rings in [5], [11], [12], [18]
and [25].

In [1] and [2], the structure of the automorphism group Aut(R) of every finite
chain ring R has been characterized. Many classes of finite chain rings have non-
trivial automorphism groups. For examples, Aut(GR(pe,m)) is non-trivial if and
only if m ≥ 2 (cf. [8] and [25]) and Aut(Fpm + uFpm + · · ·+ ue−1Fpm) is non-trivial
if and only if m ≥ 2 or p is odd or e ≥ 3 (cf. [1, Proposition 1]). Here, the automor-
phism group of Fpm +uFpm is given as a corollary of [1, Proposition 1], the complete
characterization of the automorphism group of Fpm + uFpm + · · ·+ ue−1Fpm .

Corollary 2.1 ([1]). For θ ∈ Aut(Fpm) and β ∈ F∗
pm , let

Θθ,β : Fpm + uFpm → Fpm + uFpm

be defined by

Θθ,β(a+ bu) = θ(a) + βθ(b)u.

Then Aut(Fpm + uFpm) = {Θθ,β | θ ∈ Aut(Fpm) and β ∈ F∗
pm}.

Note that Fpm + uFpm and its automorphisms play an important role in later
examples and in Section 4.

2.2. Skew Polynomial Rings over Finite Chain Rings. In [7], [8], [10] and
[18], results concerning skew polynomial rings over finite fields and over Galois rings
have been studied. Applying the ideas in these references, the following results over
finite chain rings are given.

For a given automorphism Θ of R, the set R[x; Θ] = {a0 + a1x + · · · + anx
n |

ai ∈ R and n ∈ N0} of formal polynomials forms a ring under the usual addition of
polynomials and where the multiplication is defined using the rule xa = Θ(a)x. The
multiplication is extended to all elements in R[x; Θ] by associativity and distribu-
tivity. The ring R[x; Θ] is called a skew polynomial ring over R and an element
in R[x; Θ] is called a skew polynomial. It is easily seen that the ring R[x; Θ] is
non-commutative unless Θ is the identity automorphism on R.

Based on the canonical reduction modulo γ,¯: R → K, the automorphism Θ̄ of
K is induced from Θ by

Θ̄(r̄) = Θ(r) for all r ∈ R.

Then there is a natural ring epimorphism extension¯: R[x; Θ]→ K[x; Θ̄] defined by

r0 + r1x+ · · ·+ rnx
n 7→ r̄0 + r̄1x+ · · ·+ r̄nx

n.

In other words, for each f(x) ∈ R[x; Θ], f(x) denotes the componentwise reduction
modulo γ of f(x).

The ring R[x; Θ] does not need to be a unique factorization ring. Moreover, the
degrees of the irreducible factors are not unique up to permutation.

Example 2.1. Consider the automorphism Θid,2 of F3+uF3, where Θid,2(a+bu) =
a+ 2bu. Here are two irreducible factorizations of x6 − 1 in (F3 + uF3)[x; Θid,2]

x6 − 1 = (x+ 1)3(x+ 2)3

= (x2 + ux+ 2)3.
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The skew polynomial ring R[x; Θ] is neither left nor right Euclidean. However,
left and right divisions can be defined for some suitable elements. Let f(x) =
a0 + a1x+ · · ·+ arx

r and g(x) = b0 + b1x+ · · ·+ bsx
s, where bs is a unit in R. The

right division of f(x) by g(x) is defined as follows:
If r < s, then f(x) = 0g(x) + f(x). Suppose that r ≥ s. First, note that the

degree of

f(x)− arΘ
r−s(b−1

s )xr−sg(x)

is less than the degree of f(x). Then iterating the above procedure by subtracting
further left multiples of g(x) from the result until the degree is less than the degree
of g(x), we obtain skew polynomials q(x) and r(x) such that

f(x) = q(x)g(x) + r(x) with deg(r(x)) < deg(g(x)) or r(x) = 0.

Note that q(x) and r(x) are unique and called the right uotient and right remainder,
respectively. This algorithm is called the Right Division Algorithm in R[x; Θ].

If r(x) = 0, we say that g(x) is a right divisor of f(x). In this case, denote by
f(x)

g(x)
the right quotient q(x) of f(x) by g(x). This implies

f(x) =
f(x)

g(x)
g(x). (2.1)

Similarly, the Left Division Algorithm in R[x; Θ] can be defined using the fact
that the degree of

f(x)− g(x)Θ−s(arb
−1
s )xr−s

is less than the degree of f(x).
For a skew polynomial f(x) in R[x; Θ], let 〈f(x)〉 denote the left ideal of R[x; Θ]

generated by f(x). Note that 〈f(x)〉 does not need to be two-sided. A sufficient
condition for 〈f(x)〉 to be two-sided is given as follows:

Proposition 2.1. If f(x) = xtg(x) such that g(x) is central and t ∈ N0, then

〈f(x)〉 is a principal two-sided ideal in R[x; Θ].

Proof. Since g(x) is central, for each skew polynomial
∑n

i=0 aix
i in R[x; Θ], we have

(
∑n

i=0 aix
i
)

(xtg(x)) = xt
∑n

i=0 Θ
−t(ai)x

ig(x) = (xtg(x))
∑n

i=0 Θ
−t(ai)x

i.

Corollary 2.2. If f(x) is a monic central skew polynomial of degree n, then the

skew polynomials of degree less than n are canonical representatives of the elements

in R[x,Θ]/〈f(x)〉.

Proof. By Proposition 2.1, 〈f(x)〉 is two-sided and hence the quotientR[x,Θ]/〈f(x)〉
is meaningful. The desired result follows from the Right Division Algorithm.

Proposition 2.2. Let n be a positive integer and λ a unit in R. Then the following

statements are equivalent:

i) xn − λ is central in R[x,Θ].
ii) 〈xn − λ〉 is two-sided.

iii) n is a multiple of the order of Θ and λ is fixed by Θ.

Proof. i)⇒ ii) follows directly from Proposition 2.1.
Next, we prove ii)⇒ iii). Assume that 〈xn − λ〉 is two-sided. Let r ∈ R. Then

rxn − rλ = r(xn − λ) = (xn − λ)s = Θn(s)xn − sλ for some s ∈ R. Comparing
the coefficients, we have rλ = sλ. As λ is a unit, it follows that r = s, and hence
rxn− rλ = Θn(r)xn− rλ. Thus, n is a multiple of the order of Θ. Next, we observe
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that xn+1−Θ(λ)x = x(xn−λ) = (xn−λ)(ax+b) = Θn(a)xn+1+Θn(b)xn−aλx−bλ,
for some a and b in R. Then Θn(a) = 1 and Θn(b) = 0. As Θ is an automorphism,
we have a = 1 and b = 0, and hence xn+1 − Θ(λ)x = xn+1 − λx. Therefore, λ is
fixed by Θ.

Finally, we prove iii) ⇒ i). Assume that n is a multiple of the order of Θ and
λ is fixed by Θ. Then x(xn − λ) = xn+1 − Θ(λ)x = xn+1 − λx = (xn − λ)x and
(xn − λ)t = Θn(t)xn − tλ = txn − tλ = t(xn − λ), for all t ∈ R. Consequently,
xn − λ commutes with any skew polynomial in R[x; Θ].

Proposition 2.3. Let h(x), g(x) ∈ R[x; Θ]. If h(x)g(x) is a monic central skew

polynomial, then h(x)g(x) = g(x)h(x). In particular, if g(x) is a right divisor

of a monic central skew polynomial f(x), then g(x) and the right quotient
f(x)

g(x)
commute, i.e.

g(x)
f(x)

g(x)
= f(x) =

f(x)

g(x)
g(x). (2.2)

Proof. Assume that h(x)g(x) is monic and central. Then the leading coefficient of
g(x) and h(x) are units. Since h(x)g(x) is central, we have

h(x)(h(x)g(x)) = (h(x)g(x))h(x) = h(x)(g(x)h(x)).

Thus h(x)(h(x)g(x) − g(x)h(x)) = 0. As the leading coefficient of h(x) is a unit,
h(x) is not a zero divisor. Hence h(x)g(x) = g(x)h(x) as desired.

The following discussion guarantees the existence of the right localization of
R[x; Θ] which plays a vital role in the study of dualities of codes. In the light of
[21, Theorem 2], necessary and sufficient conditions for R[x; Θ] to have the right
localization are given as follows.

Theorem 2.1 ([21]). Let S = {xi | i ∈ N}. Then R[x; Θ] has the right localization

at S if and only if both the following conditions hold:

i) For all xi ∈ S and a(x) ∈ R[x; Θ], there exist xj ∈ S and b(x) ∈ R[x; Θ] such
that a(x)xi = xjb(x).

ii) Given a(x) ∈ R[x; Θ] and xi ∈ S, if xia(x) = 0, then there exists xj ∈ S such

that a(x)xj = 0.

Condition i) holds because the multiplication rule allows the shifting of powers of
x from left to right by changing the coefficients. Note that, for each xi ∈ S, it
is never a left zero divisor. If a(x) ∈ R[x; Θ] such that xia(x) = 0, then a(x)
must be zero and hence a(x)xj = 0, for all xj ∈ S. This obviously implies ii).
Then, by Theorem 2.1, the right localization R[x; Θ]S−1 of R[x; Θ] exists. We have
ax−1 = x−1Θ(a) where x−1 is the inverse of x in this right localization.

The following map is key to determining the structure of dual codes.

Proposition 2.4. Let ϕ : R[x; Θ]→R[x; Θ]S−1 be defined by

ϕ(

t
∑

i=0

aix
i) =

t
∑

i=0

x−iai.

Then ϕ is a ring anti-monomorphism.

Proof. The proof is similar to a part of the argument used in the proof of [8,
Theorem 4.4].
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2.3. Definitions and Basic Properties of Skew Constacyclic Codes over

Finite Chain Rings. A code of length n over R is a nonempty subset of Rn. A
code C is said to be linear if it is a submodule of the R-module Rn. In this paper,
all codes are assumed to be linear unless otherwise stated.

Given an automorphism Θ of R and a unit λ in R, a code C is said to be
skew constacyclic, or specifically, Θ-λ-constacyclic if C is closed under the Θ-λ-
constacyclic shift ρΘ,λ : Rn →Rn defined by

ρΘ,λ((a0, a1, . . . , an−1)) = (Θ(λan−1),Θ(a0), . . . ,Θ(an−2)).

In particular, such codes are called skew cyclic and skew negacyclic codes when
λ is 1 and −1, respectively. When Θ is the identity automorphism, they become
classical constacyclic, cyclic and negacyclic codes.

Analogous to the classical constacyclic codes, we characterize Θ-λ-constacyclic
codes in terms of left ideals in R[x; Θ]/〈xn − λ〉. However, due to Proposition 2.2,
R[x; Θ]/〈xn − λ〉 is meaningful if only if 〈xn − λ〉 is two-sided, or equivalently, n is
a multiple of the order of Θ and λ is a unit fixed by Θ.

For this purpose, throughout, we restrict our study to the case where the length
n of codes is a multiple of the order of Θ and λ is a unit in RΘ, where RΘ denotes
the subring of R fixed by Θ.

The skew polynomial representation of a code C is defined to be {c0+ c1x+ · · ·+
cn−1x

n−1 | (c0, c1, . . . , cn−1) ∈ C}. For convenience, it will be regarded as C itself.
The next theorem is analogous to that for classical constacyclic codes. The proof
is omitted.

Theorem 2.2. A code C of length n over R is Θ-λ-constacyclic if and only if the

skew polynomial representation of C is a left ideal in R[x; Θ]/〈xn − λ〉.

There are two inner products on Rn that we are interested in. One is the Eu-

clidean inner product defined by 〈u, v〉 =
∑n−1

i=0 uivi, for u = (u0, u1, . . . , un−1) and
v = (v0, v1, . . . , vn−1) in Rn. When the order of Θ is 2, we can also consider the

Hermitian inner product which is defined as 〈u, v〉H =
∑n−1

i=0 uiΘ(vi). Vectors u and
v are said to be Euclidean orthogonal (resp., Hermitian orthogonal) if 〈u, v〉 = 0
(resp., 〈u, v〉H = 0).

The Euclidean dual code of a code C of length n over R is defined to be C⊥ =
{v ∈ Rn | 〈v, c〉 = 0 for all c ∈ C}. Similarly, the Hermitian dual code of C is
defined as C⊥H = {v ∈ Rn | 〈v, c〉H = 0 for all c ∈ C}. The code C is said to be
Euclidean self-dual (resp., Hermitian self-dual) if C = C⊥ (resp., C = C⊥H ).

3. Skew Constacyclic Codes Generated by Monic Right Divisors of xn−λ.
In this section, we focus on Θ-λ-constacyclic codes which are principal left ideals
in R[x; Θ]/〈xn − λ〉 generated by monic right divisors of xn − λ. We derived some
useful tools and extend results on constacyclic codes over Galois rings [8, Sections
4-5,7] to the case over an arbitrary finite chain ring R. The main assumptions that
λ is a unit in RΘ and the length n of codes is a multiple of the order of Θ are
assumed.

3.1. Properties of Skew Constacyclic Codes Generated by Monic Right

Divisors of xn − λ. Given a right divisor g(x) =
∑n−k−1

i=0 gix
i + xn−k of xn − λ,
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a generator matrix of the Θ-λ-constacyclic code C generated by g(x) is given by

G =

















g0 . . . gn−k−1 1 0 . . . 0
0 Θ(g0) . . . Θ(gn−k−1) 1 . . . 0

0 . . . . . . . . . Θ2(gn−k−1)
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...
0 . . . 0 Θk−1(g0) . . . Θk−1(gn−k−1) 1

















.

Then the rows of G are linearly independent, and hence the next proposition follows.

Proposition 3.1. Let g(x) be a right divisor of xn−λ. Then the Θ-λ-constacyclic
code C generated by g(x) is a free R-module with |C| = |R|n−deg(g(x)).

When Θ is the identity automorphism, a Θ-λ-constacyclic code becomes λ-
constacyclic. However, the converse does not need to be true. Here, necessary
and sufficient conditions for a Θ-λ-constacyclic code generated by a right divisor of
xn − λ to be λ-constacyclic are given.

Proposition 3.2. Let g(x) be a monic right divisor of xn−λ in R[x; Θ]. The Θ-λ-
constacyclic code generated by g(x) is λ-constacyclic if and only if g(x) ∈ RΘ[x; Θ].

Proof. Suppose g(x) =
∑n−k−1

i=0 gix
i + xn−k and C is the Θ-λ-constacyclic code

generated by g(x).
Assume that C is λ-constacyclic. Then xg(x), g(x)x ∈ C. By the linearity of C,

xg(x)− g(x)x ∈ C and hence

(Θ(g0)− g0)x+ (Θ(g1)− g1)x
2 + · · ·+ (Θ(gn−k−1)− gn−k−1)x

n−k = p(x)g(x),

for some p(x) ∈ R[x; Θ] such that deg(p(x)) < k. Thus deg(p(x)g(x)) < n which
implies that p(x) is constant such that p(x)g0 = 0. Since g(x) is a right divisor of
xn − λ and λ is a unit, g0 is not a zero divisor. Thus p(x) is zero and hence gi is
fixed by Θ for all i.

Conversely, assume that g(x) ∈ RΘ[x; Θ]. Then gix = xgi for all i = 0, 1, . . . , n− k.
Thus g(x)x = xg(x) ∈ C, therefore, the result follows.

A parity-check matrix for C is determined in the next proposition.

Proposition 3.3. Let C be the Θ-λ-constacyclic code generated by a monic right

divisor g(x) of xn − λ and h(x) :=
xn − λ

g(x)
. Then the following statements hold:

i) For c(x) ∈ R[x; Θ], c(x) ∈ C if and only if c(x)h(x) = 0 in R[x; Θ]/〈xn − λ〉.

ii) If h(x) =
∑k−1

i=0 hix
i + xk, then the following matrix

H =

















1 Θ(hk−1) . . . Θk(h0) 0 . . . 0
0 1 Θ2(hk−1) . . . Θk+1(h0) . . . 0

0 0 . . . . . . . . .
. . . 0

...
...

. . .
. . .

. . .
. . .

...

0 0 . . . 1 Θn−k(hk−1) . . . Θn−1(h0)

















is a parity-check matrix for C.

Proof. Since n is a multiple of the order of Θ and λ ∈ RΘ, xn − λ is central and it
follows from Proposition 2.3 that xn − λ = h(x)g(x) = g(x)h(x).
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First, we prove i). Assume that c(x) = p(x)g(x) for some p(x) in R[x; Θ]. Then
c(x)h(x) = (p(x)g(x))h(x) = p(x)(xn − λ) = 0 in R[x; Θ]/〈xn − λ〉.

Conversely, assume that c(x)h(x) = 0 in R[x; Θ]/〈xn − λ〉. Then there exists
p(x) ∈ R[x; Θ] such that c(x)h(x) = p(x)(xn − λ) = p(x)g(x)h(x). As the leading
coefficient of h(x) is a unit, we then have c(x) = p(x)g(x) ∈ C.

To prove ii), let c(x) = c0+c1x+· · ·+cn−1x
n−1 ∈ C and let [ sk sk+1 · · · sn−1 ] =

[ c0 c1 · · · cn−1 ]H
T . Then, for l ∈ {k, k + 1, . . . , n− 1},

sl = cl−k +

k−1
∑

j=0

cl−jΘ
l−j(hj)

which equals the coefficient of xl in c(x)h(x).
Since c(x) ∈ C, it follows from i) that c(x)h(x) = 0 in R[x; Θ]/〈xn − λ〉. Then

there exists q(x) ∈ R[x; Θ] such that q(x)(xn − λ) = c(x)h(x) having degree less
than n+ k. Therefore, the coefficients of the monomials xk, xk+1, . . . , xn−1 in this
product must be zero, i.e., [ sk sk+1 · · · sn−1 ] is the zero matrix.

Since the rank of H is n− k, the result follows.

3.2. Euclidean Dual Codes. We study Euclidean dual codes of Θ-λ-constacyclic
codes over R. Their characterization is given. When λ2 = 1, a generator of the Eu-
clidean dual code of a Θ-λ-constacyclic code is determined. Necessary and sufficient
conditions for such a code to be Euclidean self-dual are given as well.

Lemma 3.1. Let C be a code of length n over R. Then C is Θ-λ-constacyclic
if and only if C⊥ is Θ-λ−1-constacyclic. In particular, if λ2 = 1, then C is Θ-λ-
constacyclic if and only if C⊥ is Θ-λ-constacyclic.

Proof. Note that, for each unit α in R, α ∈ RΘ if and only if α−1 ∈ RΘ. Since
λ ∈ RΘ, so is λ−1. Let u = (u0, u1, . . . , un−1) ∈ C and v = (v0, v1, . . . , vn−1) ∈
C⊥. Since (Θn−1(λu1),Θ

n−1(λu2), . . . ,Θ
n−1(λun−1),Θ

n−1(u0)) = ρn−1
Θ,λ (u) ∈ C,

we have

0 = 〈ρn−1
Θ,λ (u), v〉

= 〈(Θn−1(λu1),Θ
n−1(λu2), . . . ,Θ

n−1(λun−1),Θ
n−1(u0)), (v0, v1, . . . , vn−1)〉

= λ〈(Θn−1(u1),Θ
n−1(u2), . . . ,Θ

n−1(un−1),Θ
n−1(λ−1u0)), (v0, v1, . . . , vn−1)〉

= λ(Θn−1(λ−1u0)vn−1 +

n−1
∑

i=1

Θn−1(ui)vi−1).

As n is a multiple of the order of Θ and λ−1 is fixed by Θ, it follows that

0 = Θ(0) = Θ(λ(Θn−1(λ−1u0)vn−1 +
n−1
∑

i=1

Θn−1(ui)vi−1))

= λ(u0Θ(λ−1vn−1) +
n−1
∑

i=1

uiΘ(vi−1))

= λ〈ρΘ,λ−1(v), u〉.

Therefore, ρΘ,λ−1(v) ∈ C⊥.

The converse follows from the fact that (C⊥)⊥ = C.
In addition, assume that λ2 = 1. Then λ = λ−1 and hence the last statement

follows immediately from the main result.
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If λ2 = 1, it follows from the previous lemma that the Euclidean dual C⊥ of a
Θ-λ-constacyclic code C is again Θ-λ-constacyclic. In this case, a generator of C⊥

is given through the ring anti-monomorphism ϕ defined in Proposition 2.4, where
ϕ(

∑t

i=0 aix
i) =

∑t

i=0 x
−iai. The next lemma is key to obtaining this result.

Lemma 3.2. Assume that λ2 = 1. Let a(x) = a0 + a1x + · · · + an−1x
n−1 and

b(x) = b0 + b1x+ · · ·+ bn−1x
n−1 be in R[x; Θ]. Then the following statements are

equivalent:

i) The coefficient vector of a(x) is Euclidean orthogonal to the coefficient vector

of xi(xn−1ϕ(b(x))) for all i ∈ {0, 1, . . . , n− 1}.
ii) (a0, a1, . . . , an−1) is Euclidean orthogonal to (bn−1,Θ(bn−2), . . . ,Θ

n−1(b0)) and
all its Θ-λ-constacyclic shifts.

iii) a(x)b(x) = 0 in R[x; Θ]/〈xn − λ〉.

Proof. i) if and only if ii) follows directly from the definition of ϕ. We prove ii) if
and only if iii). Let a(x)b(x) = c0+ c1x+ · · ·+ cn−1x

n−1 ∈ R[x; Θ]/〈xn−λ〉. Since
λ ∈ RΘ such that λ2 = 1 and n is a multiple of the order of Θ, it follows that, for
each k ∈ {0, 1, . . . , n− 1},

ck =
∑

i+j=k
0≤i≤n−1
0≤j≤n−1

aiΘ
i(bj) +

∑

i+j=k+n
0≤i≤n−1
0≤j≤n−1

λaiΘ
i(bj)

= λ













∑

i+j=k
0≤i≤n−1
0≤j≤n−1

aiΘ
k−j(λbj) +

∑

i+j=k+n
0≤i≤n−1
0≤j≤n−1

aiΘ
n+k−j(bj)













= λ〈(a0, a1, . . . , an−1),

(λbk,Θ(λbk−1), . . . ,Θ
k(λb0),Θ

k+1(bn−1), . . . ,Θ
n−1(bk+1))〉

= λ〈(a0, a1, . . . , an−1), (Θ
(n−k)+k(λbk),Θ

(n−k+1)+k(λbk−1), . . . ,

Θk(λb0),Θ
1+k(bn−1), . . . ,Θ

(n−k−1)+k(bk+1))〉.

Hence, a(x)b(x) = 0 if and only if ck = 0 for all k ∈ {0, 1, . . . , n−1}, which is true if
and only if (a0, a1, . . . , an−1) is Euclidean orthogonal to (bn−1,Θ(bn−2), . . . ,Θ

n−1(b0))
and all its Θ-λ-constacyclic shifts.

Theorem 3.3. Assume that λ2 = 1. Let g(x) be a right divisor of xn − λ and

h(x) :=
xn − λ

g(x)
. Let C be the Θ-λ-constacyclic code generated by g(x). Then the

following statements hold:

i) The skew polynomial xdeg(h(x))ϕ(h(x)) is a right divisor of xn − λ.
ii) The Euclidean dual C⊥ is a Θ-λ-constacyclic code generated by xdeg(h(x))ϕ(h(x)).
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Proof. First, we prove i). Using the assumptions that n is a multiple of the order
of Θ and λ ∈ RΘ, we observe that
(

ϕ(g(x))(−λ)xn−deg(h(x))
)(

xdeg(h(x))ϕ(h(x))
)

= ϕ(g(x))(−λ)xnϕ(h(x))

= −λxnϕ(g(x))ϕ(h(x))

= −λxnϕ(h(x)g(x)),

(since ϕ is a ring anti-monomorphism)

= −λxnϕ(xn − λ)

= −λxn(x−n − λ)

= xn − λ.

As ϕ(g(x))(−λ)xn−deg(h(x)) and xdeg(h(x))ϕ(h(x)) belong toR[x; Θ], xdeg(h(x))ϕ(h(x))
is a right divisor of xn − λ in R[x; Θ].

Next, we prove ii). Since g(x)h(x) = xn − λ = 0 in R[x; Θ]/〈xn − λ〉, by
Lemma 3.2, 〈xdeg(h(x))ϕ(h(x))〉 ⊆ C⊥. As xdeg(h(x))ϕ(h(x)) is a right divisor of
xn−λ, by Proposition 3.1, |〈xdeg(h(x))ϕ(h(x))〉| = |R|n−deg(h(x)) = |C⊥|. Therefore,
〈xdeg(h(x))ϕ(h(x))〉 = C⊥.

Necessary and sufficient conditions for a Θ-λ-constacyclic code to be Euclidean
self-dual are given in the next theorem.

Theorem 3.4. Assume that λ2 = 1 and n is even, denoted by n = 2k. Let g(x) =
∑k−1

i=0 gix
i+xk be a right divisor of xn−λ. Then the Θ-λ-constacyclic code generated

by g(x) is Euclidean self-dual if and only if

(
k−1
∑

i=0

gix
i + xk)(Θ−k(g−1

0 ) +
k−1
∑

i=1

Θi−k(g−1
0 gk−i)x

i + xk) = xn − λ. (3.1)

Proof. Let C be the Θ-λ-constacyclic code generated by g(x) and let g⊥(x) be
the generator polynomial of the Euclidean dual code C⊥. Denote by h(x) :=
∑k−1

i=0 hix
i + xk the right quotient

xn − λ

g(x)
. It follows from Theorem 3.3 that

g⊥(x) = xkϕ(h(x)) = Θk(h0)x
k + · · ·+Θ(hk−1)x+ 1. (3.2)

First, assume that C is Euclidean self-dual. It is easily seen that g(x) is the
unique monic generator of minimal degree in C. Then g⊥(x) is a scalar multiple of
g(x) of the form

g⊥(x) = Θk(h0)g(x) = Θk(h0)(

k−1
∑

i=0

gix
i + xk). (3.3)

Comparing the coefficients in (3.2) and (3.3), we obtain Θk(h0)g0 = 1 and Θk(h0)gi =
Θi(hk−i), for all i = 1, 2, . . . , k − 1. Consequently, h0 = Θ−k(g−1

0 ) and hi =

Θi(h0)Θ
i−k(gk−i) = Θi−k(g−1

0 )Θi−k(gk−i) = Θi−k(g−1
0 gk−i), for all i = 1, 2, . . . ,

k− 1. and h(x) = Θ−k(g−1
0 ) +

∑k−1
i=1 Θi−k(g−1

0 gk−i)x
i + xk. Therefore, (3.1) holds.

Conversely, assume that (3.1) holds. Then

h(x) = Θ−k(g−1
0 ) +

k−1
∑

i=1

Θi−k(g−1
0 gk−i)x

i + xk.
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Hence, by Theorem 3.3,

g⊥(x) = xkϕ(h(x)) =

k
∑

i=1

(g−1
0 gi)x

i + 1 = g−1
0 g(x).

This completes the proof.

Remark 3.1. From Theorem 3.4, we observe that if there is a Euclidean self-dual
Θ-λ-constacyclic code, then −λ = g0Θ

−k(g−1
0 ) = Θk(g0)g

−1
0 . Thus, if the order of

Θ divides k and λ 6= −1, then there are no Euclidean self-dual Θ-λ-constacyclic
codes of length 2k. In particular, if Θ is the identity automorphism and λ 6= −1,
then there are no Euclidean self-dual Θ-λ-constacyclic codes of any length.

3.3. Hermitian Dual Codes. Due to the constraint in the definition of the Her-
mitian inner product, the Hermitian dual codes of skew constacyclic codes are stud-
ied only when the order of Θ is 2. Using arguments similar to those in the previous
proofs, the following results concerning the Hermitian duality are obtained.

Lemma 3.5. Let C be a code of even length n over R. Assume that the order

of Θ is 2. Then C is Θ-λ-constacyclic if and only if C⊥H is Θ-λ−1-constacyclic.

In particular, if λ2 = 1, then C is Θ-λ-constacyclic if and only if C⊥H is Θ-λ-
constacyclic.

When λ2 = 1, a generator of the Hermitian dual code of a Θ-λ-constacyclic code
is determined through the ring anti-monomorphism ϕ defined in Proposition 2.4
and a ring automorphism φ on R[x; Θ] defined by

φ(

t
∑

i=0

aix
i) =

t
∑

i=0

Θ(ai)x
i. (3.4)

Lemma 3.6. Assume that the order of Θ is 2 and λ2 = 1. Let a(x) = a0 + a1x+
· · · + an−1x

n−1 and b(x) = b0 + b1x + · · · + bn−1x
n−1 be in R[x; Θ]. Then the

following statements are equivalent:

i) The coefficient vector of a(x) is Hermitian orthogonal to the coefficient vector

of xiφ(xn−1ϕ(b(x))) for all i ∈ {0, 1, . . . , n− 1}.
ii) (a0, a1, . . . , an−1) is Hermitian orthogonal to (Θ−1(bn−1), bn−2, . . . ,Θ

n−2(b0))
and all its Θ-λ-constacyclic shifts.

iii) a(x)b(x) = 0 in R[x; Θ]/〈xn − λ〉.

Theorem 3.7. Assume that the order of Θ is 2 and λ2 = 1. Let g(x) be a right

divisor of xn−λ and h(x) :=
xn − λ

g(x)
. Let C be the Θ-λ-constacyclic code generated

by g(x). Then the following statements hold:

i) The skew polynomial φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ.
ii) The Hermitian dual C⊥H is a Θ-λ-constacyclic code generated by

φ(xdeg(h(x))ϕ(h(x))).

Proof. From the proof of Theorem 3.3, we have

ϕ(g(x))(−λxn−deg(h))xdeg(h)ϕ(h(x)) = xn − λ.

Then φ(ϕ(g(x))(−λxn−deg(h)))φ(xdeg(h(x))ϕ(h(x))) = φ(xn−λ) = xn−λ. Therefore,
φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ, which yields i).
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Since g(x)h(x) = xn − λ = 0 in R[x; Θ]/〈xn − λ〉, by Lemma 3.6,

〈φ(xdeg(h(x))ϕ(h(x)))〉 ⊆ C⊥H .

Since φ(xdeg(h(x))ϕ(h(x))) is a right divisor of xn − λ, by Proposition 3.1,

|〈φ(xdeg(h(x))ϕ(h(x)))〉| = |R|n−deg(h(x)) = |C⊥H |.

Therefore, 〈φ(xdeg(h(x))ϕ(h(x)))〉 = C⊥H . This proves ii).

Necessary and sufficient conditions for a Θ-λ-constacyclic code to be Hermitian
self-dual are given. The proof follows as an application of the proof of Theorem 3.4.

Theorem 3.8. Assume that the order of Θ is 2, λ2 = 1 and n is even, denoted

by n = 2k. Let g(x) =
∑k−1

i=0 gix
i + xk be a right divisor of xn − λ. Then the

Θ-λ-constacyclic code generated by g(x) is Hermitian self-dual if and only if

(

k−1
∑

i=0

gix
i + xk)(Θ−k−1(g−1

0 ) +

k−1
∑

i=1

Θi−k−1(g−1
0 gk−i)x

i + xk) = xn − λ.

Remark 3.2. Suppose there is a Hermitian self-dual Θ-λ-constacyclic code. Then,
by Theorem 3.8, we have −λ = g0Θ

−k−1(g−1
0 ). Since λ is fixed by Θ, it follows that

λ = −Θk+1(g0)g
−1
0 . As the order of Θ is 2,

λ =

{

−1 if k is odd,

−Θ(g0)g
−1
0 if k is even.

Therefore, if k is odd and λ 6= −1, then there are no Hermitian self-dual Θ-λ-
constacyclic codes of length 2k.

4. Skew Constacyclic Codes over Fpm +uFpm. The class of finite chain rings of
the form Fpm +uFpm has widely been used as alphabet in certain constacyclic codes
(see, for example, [3], [6], [15], [16], [19] and [23]). In this section, we characterize
the structure of all Θ-λ-constacyclic codes over this ring under the conditions where
λ is a unit in Fpm + uFpm fixed by a given automorphism Θ and the length n of
codes is a multiple of the order of Θ. Moreover, the structures of Euclidean and
Hermitian dual codes of skew cyclic and skew negacyclic codes over this ring are
determined as well.

Recall that Fpm + uFpm is a finite chain ring of nilpotency index 2 and charac-
teristic p. Its only maximal ideal is uFpm . The residue field K of Fpm + uFpm will
be viewed as the subfield Fpm of Fpm + uFpm . Every automorphism of Fpm + uFpm

is of the form Θθ,β(a+ bu) = θ(a) + βθ(b)u, where θ ∈ Aut(Fpm) and β ∈ F∗
pm (cf.

Corollary 2.1 or [1, Proposition 1]). For simplicity, where no confusion arises, the
subscripts θ and β will be dropped.

As the residue field K of Fpm + uFpm is viewed as the subfield Fpm , the ring
epimorphism¯: Fpm + uFpm → Fpm can be viewed as the reduction modulo u. For

f(x) ∈ (Fpm+uFpm)[x; Θ], f(x) denotes the isomorphic image in Fpm [x; θ] ( (Fpm+
uFpm)[x; Θ] of the componentwise reduction modulo u of f(x). Since every skew
polynomial in (Fpm + uFpm)[x; Θ] is viewed as f0(x) + uf1(x), where f0(x), f1(x) ∈

Fpm [x; θ], we have f0(x) + uf1(x) = f0(x) ∈ Fpm [x; θ].
For f(x) in (Fpm + uFpm)[x; Θ], the multiplication rule allows the shifting of u

and powers of x from the left to the right of f(x) (and vice versa) by changing
the coefficients of f(x). Then, for Ω ∈ {u, xi | i ∈ N}, it is meaningful to give the
following notations:
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i)
←−−
f(x)

Ω
denotes the skew polynomial such that f(x)Ω = Ω

←−−
f(x)

Ω
,

ii)
−−→
f(x)

Ω

denotes the skew polynomial such that Ωf(x) =
−−→
f(x)

Ω

Ω.

4.1. Classification of Skew Constacyclic Codes over Fpm + uFpm . In this
subsection, the classification of Θ-λ-constacyclic codes is given in terms of gener-
ators of left ideals in (Fpm + uFpm)[x; Θ]/〈xn − λ〉. These generators are uniquely
determined under some conditions. Their properties are also given.

Let C be a non-zero left ideal in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 and let A denote
the set of all non-zero skew polynomials of minimal degree in C. Clearly, A is
non-empty. We consider three cases: when there is a monic skew polynomial in A,
when there are no monic skew polynomials in C, and when there are no monic skew
polynomials in A but there is a monic skew polynomial in C.

Theorem 4.1. Let C and A be as above. Then:

i) If there exists a monic skew polynomial in A, then it is unique in A. In this

case, C = 〈g(x)〉, where g(x) is the unique such skew polynomial.

ii) If there are no monic skew polynomials in C, then there exists a unique skew

polynomial g(x) = ug1(x) in A with leading coefficient u. In this case, C =
〈g(x)〉.

iii) If there are no monic skew polynomials in A but there exists a monic skew

polynomial in C, then there exist a unique skew polynomial g(x) = ug1(x)
in A with leading coefficient u and a unique monic skew polynomial f(x) =
f0(x) + uf1(x) of minimal degree in C such that deg(f1(x)) < deg(g1(x)). In

this case, C = 〈g(x), f(x)〉.

Proof. To prove i), assume that g(x) and g′(x) are monic skew polynomials in A.
Then the degree of g(x) − g′(x) is less than the degree of g(x). By the minimality
of deg(g(x)), g(x) − g′(x) = 0. Hence, g(x) is the unique monic skew polynomial
in A.

Let c(x) ∈ C. Then by the Right Division Algorithm, there exist unique skew
polynomials q(x) and r(x) in (Fpm + uFpm)[x; Θ] such that

c(x) = q(x)g(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g(x)). Then

r(x) = c(x) − q(x)g(x) ∈ C.

By the minimality of deg(g(x)), r(x) = 0. Hence c(x) = q(x)g(x), i.e., C = 〈g(x)〉.
To prove ii), assume there are no monic skew polynomials in C. Without loss

of generality, let g(x) be a skew polynomial in A with leading coefficient u. First,
we show that g(x) is a right multiple of u. Suppose that g(x) has a unit coefficient
ai for some i < deg(g(x)). Then ug(x) ∈ C is a non-zero skew polynomial having
degree less than deg(g(x)), which contradicts the minimality of deg(g(x)). Hence
g(x) is a right multiple of u, and we write g(x) = ug1(x), where g1(x) is a monic
skew polynomial in Fpm [x; θ].

For the uniqueness, suppose that g′(x) is a skew polynomial in A with leading
coefficient u. Then the degree of g(x) − g′(x) is less than the degree of g(x). By
the minimality of deg(g(x)), g(x) − g′(x) = 0. Hence, g(x) = ug1(x) is the unique
skew polynomial in A with leading coefficient u.

Now, we show that C is generated by g(x) = ug1(x). Suppose that there ex-
ists h(x) in C of minimal degree ℓ which is not a left multiple of g(x) = ug1(x).
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Moreover, h(x) can be chosen to have leading coefficient u. Then

k(x) : = h(x)− uxℓ−deg(g(x))g1(x)

= h(x)−
−−−−−−−−→
xℓ−deg(g(x))

u

ug1(x)

= h(x)−
−−−−−−−−→
xℓ−deg(g(x))

u

g(x) ∈ C.

If k(x) = 0, then h(x) =
−−−−−−−−→
xℓ−deg(g(x))

u

g(x) which contradicts the assumption. Sup-
pose k(x) 6= 0. Then the degree of k(x) is less than ℓ and k(x) is not a left multiple
of g(x), contradicting the choice of h(x).

Finally, we prove iii). Assume there are no monic skew polynomials in A but
there exists a monic skew polynomial in C. It can be shown as in ii) that there is
a unique skew polynomial g(x) = ug1(x) in A with leading coefficient u.

Let F (x) be a monic skew polynomial of minimal degree in C. We view F (x) =
F0(x) + uF1(x), where F0(x), F1(x) ∈ Fpm [x; θ]. By the Right Division Algorithm,
there exist unique skew polynomials q(x) and r(x) in Fpm [x; θ] such that

F1(x) = q(x)g1(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g1(x)). Thus

F (x) = F0(x) + uF1(x) = F0(x) + uq(x)g1(x) + ur(x).

We choose f(x) = F (x) − uq(x)g1(x), f0(x) = F0(x) and f1(x) = r(x). Then
f(x) = f0(x)+uf1(x) is a monic skew polynomial of minimal degree in C such that
deg(f1(x)) < deg(g1(x)).

The uniqueness of ug1(x) can be shown as in the proof of ii). Suppose t0(x) +
ut1(x) is a monic skew polynomial of minimal degree in C such that deg(t1(x)) <
deg(g1(x)). Then 〈uf0(x)〉 = uC = 〈ut0(x)〉. Hence, by the proof of ii), f0(x) =
t0(x). Note that u(f1(x) − t1(x)) = (f0(x) + uf1(x)) − (t0(x) + ut1(x)) ∈ C. Then
u(f1(x)− t1(x)) is the zero or deg(f1(x)− t1(x)) ≤ max{deg(f1(x)), deg(t1(x))}. If
the later case occurs, then deg(f1(x) − t1(x)) < deg(g1(x)), which contradicts the
minimality of deg(g1(x)). Hence f1(x)− t1(x) = 0.

Let B be the set of all non-zero skew polynomials in C with degree less than
deg(f(x)). Then the leading coefficients of all skew polynomials in B are multiple
of u. Since ug1 ∈ A, we have deg(ug1(x)) < deg(f(x)), and hence ug1(x) ∈ B.
Using arguments similar to the third paragraph in the proof of ii), B is contained
in the left ideal generated by ug1(x).

To show that C is generated by {g(x) = ug1(x), f(x) = g0(x) + ug1(x)}, let
c(x) ∈ C. Then there exist unique skew polynomials q′(x) and r′(x) in (Fpm +
uFpm)[x; Θ] such that

c(x) = q′(x)f(x) + r′(x),

and r′(x) = 0 or deg(r′(x)) < deg(f(x)). If r′(x) = 0, we are done. Assume that
deg(r′(x)) < deg(f(x)). Then r′(x) ∈ B and hence r′(x) = m(x)g(x) for some
m(x) ∈ (Fpm + uFpm)[x; Θ]. Hence

c(x) = q′(x)f(x) + r′(x) = q′(x)f(x) +m(x)g(x).

Therefore, C is generated by {g(x) = ug1(x), f(x) = f0(x) + uf1(x)}.

For convenience, we split the left ideals of (Fpm +uFpm)[x; Θ]/〈xn−λ〉 into three
types: Type LI-1 refers to the zero ideal or a left ideal satisfying Theorem 4.1 i),
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type LI-2 refers to a left ideal satisfying Theorem 4.1 ii), and type LI-3 refers to a
left ideal satisfying Theorem 4.1 iii).

More properties of left ideals of each type are given in the following propositions.

Proposition 4.1. A left ideal of type LI-1 is principal and generated by a monic

right divisor g(x) of xn − λ in (Fpm + uFpm)[x; Θ]. Moreover, if we view g(x) =
g0(x) + ug1(x), where g0(x), g1(x) ∈ Fpm [x; θ], then deg(g1(x)) < deg(g0(x)) and

g0(x) is a monic right divisor of xn − λ in Fpm [x; θ].

Proof. Let C be a left ideal of type LI-1. If C = {0}, then C = 〈0〉 = 〈xn − λ〉 has
the desired properties.

Suppose C is non-zero. We prove that the generator polynomial g(x) in The-
orem 4.1 i) satisfies these properties. Recall that g(x) is the unique monic skew
polynomial in A, the set of all non-zero skew polynomials of minimal degree in C

First, we show that g(x) is a right divisor of xn − λ in (Fpm + uFpm)[x; Θ]. By
the Right Division Algorithm, there exist unique skew polynomials q(x) and r(x)
in (Fpm + uFpm)[x; Θ] such that

xn − λ = q(x)g(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g(x)). Then

r(x) = −q(x)g(x) + (xn − λ) ∈ C.

By the minimality of deg(g(x)), r(x) = 0. Hence g(x) is a right divisor of xn − λ.
Finally, we write g(x) = g0(x)+ug1(x), where g0(x), g1(x) ∈ Fpm [x; θ]. Since g(x)

is monic, it is clear that g0(x) is monic and deg(g1(x)) < deg(g(x)) = deg(g0(x)).
As g(x) is a right divisor of xn − λ in (Fpm + uFpm)[x; Θ], there exists p(x) in
(Fpm + uFpm)[x; Θ] such that

xn − λ = p(x)(g0(x) + ug1(x)).

Computing modulo u, we have xn − λ = p(x)g0(x) in Fpm [x; θ]. This means g0(x)

is a monic right divisor of xn − λ in Fpm [x; θ].

Proposition 4.2. A left ideal of type LI-2 is principal and generated by g(x) =

ug1(x), where g1(x) is a monic right divisor of xn − λ in Fpm [x; θ] such that

deg(g1(x)) < n.

Proof. Let C be a left ideal of type LI-2. We prove that the generator polynomial
g(x) = ug1(x) in Theorem 4.1 ii) satisfies the desired properties. Recall that g(x) =
ug1(x) is the unique skew polynomial with leading coefficient u in A, the set of all
non-zero skew polynomials of minimal degree in C. Clearly, deg(g1(x)) < n. By
the Right Division Algorithm, there exist unique skew polynomials q(x) and r(x)
in Fpm [x; θ] such that

xn − λ = q(x)g1(x) + r(x),

and r(x) = 0 or deg(r(x)) < deg(g1(x)). Since u(xn − λ̄) = u(xn − λ), we have

ur(x) = −uq(x)g1(x) + u(xn − λ̄)

= −
−−→
q(x)

u

ug1(x) + u(xn − λ)

= −
−−→
q(x)

u

g(x) + u(xn − λ) ∈ C.

By the minimality of deg(g(x)), ur(x) = 0. As r(x) ∈ Fpm [x; θ], r(x) = 0. Hence

g1(x) is a right divisor of xn − λ in Fpm [x; θ].
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Proposition 4.3. A left ideal of type LI-3 is generated by {g(x) = ug1(x), f(x) =
f0(x) + uf1(x)}, where f0(x), f1(x), g1(x) ∈ Fpm [x; θ] satisfy the following proper-

ties:

i) g1(x), f0(x) are monic,

ii) deg(f1(x)) < deg(g1(x))< deg(f0(x)) < n,
iii) g1(x) is a right divisor of f0(x) in Fpm [x; θ],

iv) f0(x) is a right divisor of xn − λ in Fpm [x; θ].

Moreover, if λ ∈ Fpm , then g1(x) is a right divisor of

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x) in Fpm [x; θ].

Proof. Let C be a left ideal of type LI-3. We prove that the generator set {g(x) =
ug1(x), f(x) = f0(x) + uf1(x)} in Theorem 4.1 iii) satisfies the desired properties.
Recall that g(x) = ug1(x) is the unique skew polynomial with the leading coefficient
u in A, the set of all non-zero skew polynomials of minimal degree in C and f0(x)+
uf1(x) is the unique monic skew polynomial of minimal degree in C such that
deg(f1(x)) < deg(g1(x)).

Properties i) and ii) are clear. Property iii) can be proved by a similar argument
in the case for Proposition 4.2 with xn − λ̄ replaced by f0(x).

Note that uf0(x) is a skew polynomial of minimal degree in 〈uf0(x)〉. Using
arguments similar to the proof of Proposition 4.2, f0(x) is a right divisor of xn − λ
in Fpm [x; θ]. Hence, property iv) is proved.

Finally, it is straightforward to see that if λ ∈ Fpm , then λ̄ = λ. Thus

xn − λ

f0(x)
(f0(x) + uf1(x)) =

xn − λ

f0(x)
uf1(x)

= u

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x)

∈ C ∩ u((Fpm + uFpm)[x; Θ]/〈xn − λ〉).

Note that C ∩u((Fpm +uFpm)[x; Θ]/〈xn−λ〉) is a left ideal in (Fpm +uFpm)[x; Θ]/
〈xn − λ〉 containing g(x) = ug1(x) as a skew polynomial of minimal degree. Since
C ∩u((Fpm +uFpm)[x; Θ]/〈xn−λ〉) does not contain any monic element, by Propo-
sition 4.2, it is generated by g(x) = ug1(x). Hence g1(x) is a right divisor of
←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x).

Example 4.1. Figures 4.1 and 4.2 show the ideal lattices of (F3+uF3)[x]/〈x
2− 1〉

and (F3 + uF3)[x; Θid,2]/〈x
2 − 1〉, where Θid,2(a + bu) = a + 2bu for all a, b ∈ F3.

The subscripts 1, 2 and 3 indicate types LI-1, LI-2 and LI-3, respectively.
Note that Figure 4.1 is embedded in Figure 4.2.

4.2. Euclidean Dual Codes of Skew Cyclic and Skew Negacyclic Codes

over Fpm + uFpm . We study the structures of the Euclidean dual codes of skew
cyclic and skew negacyclic codes over Fpm + uFpm . For this purpose, we assume
that λ = ±1. Since λ̄ = λ ∈ Fpm is always fixed by any automorphism, Θ can be
arbitrary. However, the length n of codes is assumed to be a multiple of the order
of Θ.

As λ2 = 1, by Lemma 3.1, the Euclidean dual codes of skew cyclic and skew
negacyclic codes are again skew cyclic and skew negacyclic, respectively. Their
generators are given through the unique representation of the original codes and
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〈1〉1

〈u, x+ 1〉3 〈u, x+ 2〉3

〈u〉2

〈x+ 1〉1 〈x+ 2〉1

〈u(x+ 1)〉2 〈u(x+ 2)〉2

〈0〉1

Figure 4.1. The ideal lattice of (F3 + uF3)[x]/〈x
2 − 1〉

〈1〉1

〈u, x+ 1〉3 〈u, x+ 2〉3

〈u〉2

〈x+ 1 + 2u〉1 〈x+ 1 + u〉1 〈x+ 1〉1 〈x+ 2〉1 〈x+ 2 + u〉1 〈x+ 2 + 2u〉1

〈u(x+ 1)〉2 〈u(x+ 2)〉2

〈0〉1

Figure 4.2. The ideal lattice of (F3 + uF3)[x; Θid,2]/〈x
2 − 1〉

the ring anti-monomorphism ϕ defined in Proposition 2.4, where ϕ(
∑t

i=0 aix
i) =

∑t

i=0 x
−iai.

Theorem 4.2. Let λ ∈ {−1, 1}. Then the Euclidean dual code of a left ideal

in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 is also a left ideal in(Fpm + uFpm)[x; Θ]/〈xn − λ〉
determined as follows:

LI-1⊥. If C = 〈g0(x) + ug1(x)〉, then C⊥ = 〈xn−deg(g0(x))ϕ

(

xn − λ

g0(x) + ug1(x)

)

〉.

LI-2⊥. If C = 〈ug1(x)〉, then C⊥ = 〈u, xn−deg(g1(x))ϕ

(

xn − λ

g1(x)

)

〉.
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LI-3⊥. If C = 〈ug1(x), f0(x)+uf1(x)〉, then there exists m(x) ∈ Fpm [x; θ] such that

m(x)g1(x) =

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x) and

C⊥ = 〈xn−deg(f0(x))ϕ

(

xn − λ

f0(x)
u

)

, xn−deg(g1(x))ϕ

(

xn − λ

g1(x)
− um(x)

)

〉.

For LI-1⊥, the Euclidean dual code of type LI-1 code is determined in Theo-
rem 3.3 and it is shown to be type LI-1. Moreover, (C⊥)⊥ = C implies that C is
type LI-1 if and only if C⊥ is type LI-1. However, this does not need to be true for
types LI-2 and LI-3 (see Example 4.2).

In LI-2⊥ and LI-3⊥, f0(x), g1(x) are right divisors of xn − λ in Fpm [x; θ]. Since
xn − λ is central, it follows from (2.2) that

f0(x)
xn − λ

f0(x)
= xn − λ =

xn − λ

f0(x)
f0(x), (4.1)

g1(x)
xn − λ

g1(x)
= xn − λ =

xn − λ

g1(x)
g1(x). (4.2)

These two facts and the centrality of xn−λ will be frequently used in the following
proofs.

Proof of LI-2⊥. Let D := 〈u, xn−deg(g1(x))ϕ

(

xn − λ

g1(x)

)

〉. Clearly, u ∈ C⊥. From

(4.2), it follows that (ug1(x))
xn − λ

g1(x)
= u(xn−λ) = 0 in (Fpm+uFpm)[x; Θ]/〈xn−λ〉.

Hence D ⊆ C⊥ is concluded via Lemma 3.2.
In the other direction, we note that C⊥ is of either type LI-2 or LI-3. If C⊥ =

〈us1(x)〉 is of type LI-2, then C⊥ ⊆ 〈u〉 ⊆ D. Suppose that C⊥ := 〈us1(x), t0(x) +
ut1(x)〉 is of type LI-3. Clearly, us1(x), ut1(x) ∈ 〈u〉 ⊆ D.

Since ug1(x) ∈ C and t0(x) + ut1(x) ∈ C⊥, it follows from Lemma 3.2

0 = (ug1(x))ϕ
−1(x− deg(t0(x))(t0(x) + ut1(x)))

= ug1(x)ϕ
−1(x− deg(t0(x))t0(x))

in (Fpm + uFpm)[x; Θ]/〈xn − λ〉. Thus g1(x)ϕ
−1(x− deg(t0(x))t0(x)) = 0. Hence,

in (Fpm + uFpm)[x; Θ],

g1(x)ϕ
−1(x− deg(t0(x))t0(x)) = l1(x)(x

n − λ) = (xn − λ)l1(x), (4.3)

for some l1(x) ∈ Fpm [x; θ]. Note that

deg(t0(x)) = deg(l1(x)) + n− deg(g1(x)). (4.4)

With the notation in (4.2), left cancellation of (4.3) by g1(x) gives

xn − λ

g1(x)
l1(x) = ϕ−1(x− deg(t0(x))t0(x)),
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and hence, by (4.4),

t0(x) = xdeg(t0(x))ϕ

(

xn − λ

g1(x)
l1(x)

)

= xdeg(l1(x))+n−deg(g1(x))ϕ(l1(x))ϕ

(

xn − λ

g1(x)

)

= xdeg(l1(x))
−−−−−→
ϕ(l1(x))

xn−deg(g1(x))

xn−deg(g1(x))ϕ

(

xn − λ

g1(x)

)

∈ D.

Consequently, t0(x) + ut1(x) ∈ D. As desired, C⊥ ⊆ D. �

Proof of LI-3⊥. Since λ ∈ Fpm , it follows from Proposition 4.3 that g1(x) is a

right divisor of

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x). Then there exists m(x) ∈ Fpm [x; θ] such that

m(x)g1(x) =

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x). (4.5)

Let D := 〈xn−deg(f0(x))ϕ

(

xn − λ

f0(x)
u

)

, xn−deg(g1(x))ϕ

(

xn − λ

g1(x)
− um(x)

)

〉. It fol-

lows from (4.5) that

um(x)g1(x) = u

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x) =
xn − λ

f0(x)
uf1(x). (4.6)

Multiplying on the left of (4.6) by f0(x), we have

f0(x)um(x)g1(x) = f0(x)
xn − λ

f0(x)
uf1(x)

= (xn − λ)uf1(x) (using (4.1))

= uf1(x)(x
n − λ)

= uf1(x)
xn − λ

g1(x)
g1(x) (using (4.2)).

Hence,

f0(x)um(x) = uf1(x)
xn − λ

g1(x)
, (4.7)

and

deg(m(x)) = n+ deg(f1(x)) − deg(f0(x)) − deg(g1(x)). (4.8)

Now, we observe the following:

a) Since u2 = 0, we have

ug1(x)
xn − λ

f0(x)
u = 0. (4.9)

b) Using u2 = 0 and (4.2), we conclude that

ug1(x)

(

xn − λ

g1(x)
− um(x)

)

= ug1(x)
xn − λ

g1(x)
= u(xn − λ). (4.10)
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c) It follows from u2 = 0 and (4.1) that

(f0(x) + uf1(x))(
xn − λ

f0(x)
u) = f0(x)

xn − λ

f0(x)
u = (xn − λ)u = u(xn − λ). (4.11)

d) Since g1(x) is a right divisor of f0(x), by (2.1) and (4.2), we have

f0(x)
xn − λ

g1(x)
=

(

f0(x)

g1(x)
g1(x)

)

xn − λ

g1(x)
=

f0(x)

g1(x)

(

g1(x)
xn − λ

g1(x)

)

=
f0(x)

g1(x)
(xn − λ). (4.12)

The next equation follows from u2 = 0, (4.7) and (4.12)

(f0(x) + uf1(x))

(

xn − λ

g1(x)
− um(x)

)

= f0(x)
xn − λ

g1(x)
+ uf1(x)

xn − λ

g1(x)

− f0(x)um(x)

=
f0(x)

g1(x)
(xn − λ). (4.13)

Equations (4.9)-(4.11) and (4.13) equal 0 in (Fpm + uFpm)[x; Θ]/〈xn −λ〉. Thus, by
Lemma 3.2, D ⊆ C⊥.

For the reverse inclusion, we note that C⊥ is of type LI-2 or LI-3. First, suppose
that C⊥ := 〈us1(x)〉 is of type LI-2. Since f0(x) + uf1(x) ∈ C and us1(x) ∈ C⊥,
the Euclidean orthogonality and Lemma 3.2 imply that

(f0(x) + uf1(x))ϕ
−1(x− deg(s1)us1(x)) = 0

in (Fpm + uFpm)[x; Θ]/〈xn − λ〉. Hence, in (Fpm + uFpm)[x; Θ],

f0(x)ϕ
−1(x− deg(s1(x))us1(x)) = ul(x)(xn − λ) = (xn − λ)ul(x), (4.14)

for some l(x) ∈ Fpm [x; θ]. Moreover, deg(s1(x)) = n + deg(l(x)) − deg(f0(x)). It
follows from (4.1) and (4.14) that

ϕ−1(x−(n+deg(l(x))−deg(f0(x)))us1(x)) = ϕ−1(x− deg(s1(x))us1(x)) =
xn − λ

f0(x)
ul(x).

Since ϕ is a ring anti-monomorphism, we conclude that

x−(n+deg(l(x))−deg(f0(x)))us1(x) = ϕ

(

xn − λ

f0(x)
ul(x)

)

= ϕ(l(x))ϕ

(

xn − λ

f0(x)
u

)

.

Consequently,

us1(x) = xn+deg(l(x))−deg(f0(x))ϕ(l(x))ϕ

(

xn − λ

f0(x)
u

)

= xdeg(l(x))−−−−→ϕ(l(x))
xn−deg(f0(x))

xn−deg(f0(x))ϕ

(

xn − λ

f0(x)
u

)

∈ D.

Next, suppose that C⊥ := 〈us1(x), t0(x) + ut1(x)〉 is of type LI-3. Using ar-
guments similar to those above, f0(x) + uf1(x) ∈ C and us1(x) ∈ C⊥ imply
us1(x) ∈ D.

Since ug1(x) ∈ C and t0(x) + ut1(x) ∈ C⊥, it follows from Lemma 3.2 that

0 = ug1(x)ϕ
−1(x− deg(t0(x))(t0(x) + ut1(x))) = ug1(x)ϕ

−1(x− deg(t0(x))t0(x)),
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in (Fpm + uFpm)[x; Θ]/〈xn − λ〉. Thus g1(x)ϕ
−1(x− deg(t0(x))t0(x)) = 0, and hence,

in (Fpm + uFpm)[x; Θ],

g1(x)ϕ
−1(x− deg(t0(x))t0(x)) = l1(x)(x

n − λ) = (xn − λ)l1(x), (4.15)

for some l1(x) ∈ Fpm [x; θ]. Note that

deg(t0(x)) = n+ deg(l1(x)) − deg(g1(x)). (4.16)

In the notation of (4.2), the left cancellation of (4.15) by g1(x) implies

ϕ−1(x− deg(t0(x))t0(x)) =
xn − λ

g1(x)
l1(x), (4.17)

and hence

t0(x) = xdeg(t0(x))ϕ

(

xn − λ

g1(x)
l1(x)

)

= xdeg(t0(x))ϕ(l1(x))ϕ

(

xn − λ

g1(x)

)

. (4.18)

By Lemma 3.2, in (Fpm + uFpm)[x; Θ]/〈xn − λ〉,

0 = (f0(x) + uf1(x))ϕ
−1(x− deg(t0(x))(t0(x) + ut1(x)))

= f0(x)ϕ
−1(x− deg(t0(x))t0(x)) + f0(x)ϕ

−1(x− deg(t0(x))ut1(x))

+ uf1(x)ϕ
−1(x− deg(t0(x))t0(x))

= f0(x)
xn − λ

g1(x)
l1(x) + f0(x)ϕ

−1(x− deg(t0(x))ut1(x)) + uf1(x)
xn − λ

g1(x)
l1(x)

(using (4.17))

=
f0(x)

g1(x)
(xn − λ)l1(x) + f0(x)ϕ

−1(x− deg(t0(x))ut1(x)) + f0(x)um(x)l1(x)

(using (2.1), (4.2) and (4.7))

=
f0(x)

g1(x)
l1(x)(x

n − λ) + f0(x)
(

ϕ−1(x− deg(t0(x))ut1(x)) + um(x)l1(x)
)

= f0(x)(ϕ
−1(x− deg(t0(x))ut1(x)) + um(x)l1(x)).

Then there exists l2(x) ∈ Fpm [x; θ] such that, in (Fpm + uFpm)[x; Θ],

f0(x)(ϕ
−1(x− deg(t0(x))ut1(x)) + um(x)l1(x)) = ul2(x)(x

n − λ)

= (xn − λ)ul2(x). (4.19)

Using (4.8), (4.16) and the fact that deg(f0(x)) > deg(f1(x)), we conclude that

deg(m(x)l1(x)) ≤ deg(m(x)) + deg(l1(x)) < deg(t0(x)). (4.20)

Hence, from (4.19) and (4.20),

deg(t0(x)) = n+ deg(l2(x)) − deg(f0(x)). (4.21)

The left cancellation of (4.19) by f0(x) implies

ϕ−1(x− deg(t0(x))ut1(x)) + um(x)l1(x) =
xn − λ

f0(x)
ul2(x).
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Hence ϕ−1(x− deg(t0(x))ut1(x)) =
xn − λ

f0(x)
ul2(x)− um(x)l1(x), i.e.,

ut1(x) = xdeg(t0(x))ϕ

(

xn − λ

f0(x)
ul2(x) − um(x)l1(x)

)

. (4.22)

Therefore,

t0(x) + ut1(x) = xdeg(t0(x))ϕ(l1(x))ϕ

(

xn − λ

g1(x)

)

+ xdeg(t0(x))ϕ

(

xn − λ

f0(x)
ul2(x) − um(x)l1(x)

)

(using (4.18) and (4.22))

= xdeg(t0(x))ϕ(l1(x))ϕ

(

xn − λ

g1(x)

)

− xdeg(t0(x))ϕ(l1(x))ϕ(um(x))

+ xdeg(t0(x))ϕ

(

xn − λ

f0(x)
ul2(x)

)

= xn+deg(l1(x))−deg(g1(x))ϕ(l1(x))ϕ

(

xn − λ

g1(x)
− um(x)

)

+ xn+deg(l2(x))−deg(f0(x))ϕ(l2(x))ϕ(
xn − λ

f0(x)
u) (using (4.16) and (4.21))

= xdeg(l1(x))
−−−−−→
ϕ(l1(x))

xn−deg(g1(x))

xn−deg(g1(x))ϕ

(

xn − λ

g1(x)
− um(x)

)

+ xdeg(l2(x))
−−−−−→
ϕ(l2(x))

xn−deg(f0(x))

xn−deg(f0(x))ϕ(
xn − λ

f0(x)
u) ∈ D.

As desired, C⊥ ⊆ D. �

4.3. Hermitian Dual Codes of Skew Cyclic and Skew Negacyclic Codes

over Fpm +uFpm . We assume that the order of Θ is 2 and determine the structure
of the Hermitian dual codes of skew cyclic and skew negacyclic codes in terms of
their unique representative generators, the ring anti-monomorphism ϕ defined in
Proposition 2.4 and the ring automorphism φ defined in (3.4). Using Lemma 3.6
and arguments similar to those in the previous subsection, the next theorem follows.

Theorem 4.3. Let λ ∈ {1,−1} and let Θ be an automorphism of order 2. Then

the Hermitian dual code of a left ideal in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 is again a

left ideal in (Fpm + uFpm)[x; Θ]/〈xn − λ〉 determined as follows:

LI-1⊥H . If C = 〈g0(x)+ug1(x)〉, then C⊥H = 〈φ(xn−deg(g0(x))ϕ

(

xn − λ

g0(x) + ug1(x)

)

)〉.

LI-2⊥H . If C = 〈ug1(x)〉, then C⊥H = 〈u, φ(xn−deg(g1(x))ϕ

(

xn − λ

g1(x)

)

)〉.

LI-3⊥H . If C = 〈ug1(x), f0(x) + uf1(x)〉, then there exists m(x) ∈ Fpm [x; θ] such

that m(x)g1(x) =

←−−−−−−−(

xn − λ

f0(x)

)

u

f1(x) and

C⊥H = 〈φ(xn−deg(f0(x))ϕ

(

xn − λ

f0(x)
u

)

), φ(xn−deg(g1(x))ϕ

(

xn − λ

g1(x)
− um(x)

)

)〉.

Example 4.2. Table 4.1 shows the Euclidean and Hermitian dual codes of the left
ideals in (F3 + uF3)[x; Θid,2]/〈x

2 − 1〉 classified in Example 4.1. The dual codes
are obtained via Theorems 4.2 and 4.3 and rewritten to satisfy the representation
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in Proposition 4.1. The subscripts 1, 2 and 3 indicate types LI-1, LI-2 and LI-3,
respectively.

Table 4.1. The left ideals in (F3+uF3)[x; Θid,2]/〈x
2−1〉 and their

Euclidean and Hermitian dual codes

C C⊥ C⊥H

〈0〉1 〈1〉1 〈1〉1
〈u(x+ 1)〉2 〈u, x+ 2〉3 〈u, x+ 2〉3
〈u(x+ 2)〉2 〈u, x+ 1〉3 〈u, x+ 1〉3
〈u〉2 〈u〉2 〈u〉2
〈x + 1 + 2u〉1 〈x+ 2 + 2u〉1 〈x+ 2 + u〉1
〈x + 1 + u〉1 〈x+ 2 + u〉1 〈x+ 2 + 2u〉1
〈x + 1〉1 〈x+ 2〉1 〈x+ 2〉1
〈x + 2〉1 〈x+ 1〉1 〈x+ 1〉1
〈x + 2 + u〉1 〈x+ 1 + u〉1 〈x+ 1 + 2u〉1
〈x + 2 + 2u〉1 〈x+ 1 + 2u〉1 〈x+ 1 + u〉1
〈u, x+ 1〉3 〈u(x+ 2)〉2 〈u(x+ 2)〉2
〈u, x+ 2〉3 〈u(x+ 1)〉2 〈u(x+ 1)〉2
〈1〉1 〈0〉1 〈0〉1

5. Conclusion. The concept of coding with skew polynomial rings over finite fields
[7] and [10] and over Galois rings [8] is extended to the case over finite chain
rings. Given an automorphism Θ of a finite chain ring R and a unit λ in R, Θ-λ-
constacyclic codes are introduced. Under the assumptions that λ is a unit fixed by
Θ and the length n of codes is a multiple of the order of Θ, Θ-λ-constacyclic codes
can be viewed as left ideals in the quotient ring R[x; Θ]/〈xn − λ〉. In particular,
when the code is generated by a monic right divisor g(x) of xn−λ, its properties are
exhibited. When λ2 = 1, the generators of its Euclidean and Hermitian dual codes

are given in terms of h(x) :=
xn − λ

g(x)
. Moreover, necessary and sufficient conditions

for a Θ-λ-constacyclic code to be Euclidean and Hermitian self-dual are provided.
A typical example of a finite chain ring is Fpm+uFpm+· · ·+ue−1Fpm . In the case

e = 2, a complete classification of Θ-λ-constacyclic codes over the ring Fpm + uFpm

is given. For the special case when λ = ±1, the classification provides generators of
the Euclidean and Hermitian dual codes of skew cyclic and skew negacyclic codes
based on generators of the original codes. Moreover, an illustration of all skew cyclic
codes of length 2 over F3 + uF3 and their Euclidean and Hermitian dual codes is
also provided.

For further work, using the idea in [9], constructions and classification of skew
constacyclic codes over finite chain rings could be considered as modules over the
skew polynomial ring R[x; Θ]. This may lead to classification of codes of arbitrary
lengths and constructions of more codes with good parameters.
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