
ar
X

iv
:1

11
2.

27
62

v2
 [

cs
.C

R
]

 3
 J

ul
 2

01
2

Extended Combinatorial Constructions for Peer-to-peer

User-Private Information Retrieval

C.M. Swanson and D.R. Stinson⋆

David C. Cheriton School of Computer Science
University of Waterloo

Abstract. We consider user-private information retrieval (UPIR), an interesting alternative to private
information retrieval (PIR) introduced by Domingo-Ferrer et al. In UPIR, the database knows which
records have been retrieved, but does not know the identity of the query issuer. The goal of UPIR is to
disguise user profiles from the database. Domingo-Ferrer et al. focus on using a peer-to-peer community
to construct a UPIR scheme, which we term P2P UPIR. In this paper, we establish a strengthened
model for P2P UPIR and clarify the privacy goals of such schemes using standard terminology from
the field of privacy research. In particular, we argue that any solution providing privacy against the
database should attempt to minimize any corresponding loss of privacy against other users. We give an
analysis of existing schemes, including a new attack by the database. Finally, we introduce and analyze
two new protocols. Whereas previous work focuses on a special type of combinatorial design known as
a configuration, our protocols make use of more general designs. This allows for flexibility in protocol
set-up, allowing for a choice between having a dynamic scheme (in which users are permitted to enter
and leave the system), or providing increased privacy against other users.

1 Introduction

We consider the case of a user who wishes to maintain privacy when requesting documents from
a database. One existing method to address this problem is private information retrieval (PIR).
In PIR, the content of a given query is hidden from the database, but the identity of the user
making the query is not protected. In this paper, we focus on an interesting alternative to PIR
dubbed user-private information retrieval (UPIR), introduced by Domingo-Ferrer et al. [3]. UPIR,
however, is only nominally related to PIR, in that it seeks to provide privacy for users of a database.
In UPIR, the database knows which records have been retrieved, but does not know the identity of
the person making the query. The problem that we address, then, is how to disguise user profiles
from the point of view of the database.

We draw some of our terminology from Pfitzmann [6]. Here we understand anonymity as the
state of not being identifiable within a set of subjects, and the anonymity set is the set of all
possible subjects. By untraceable queries from the point of view of the database, we mean that the
database cannot determine that a given set of queries belongs to the same user. One interesting
caveat, which is addressed below, is that a set of queries might be deemed to come from the same
user based on the subject matter of those queries. If the subject matter of a given set of queries is
esoteric or otherwise unique, the database (or some other adversary) can surmise that the identity
of the source is the same for all (or most) queries in this set; we call such a set of queries linked.
In the case of linked queries, we wish to provide as much privacy as possible, in the sense that
we wish the database to have no probabilistic advantage in guessing the identity of the source of
a given set of linked queries. In this way, we can say the user making the linked queries still has
pseudonymity—his identity is not known.

⋆ Research supported by NSERC grant 203114-11

http://arxiv.org/abs/1112.2762v2

With this terminology in mind, we might better explain UPIR as a method of database query-
ing that is privacy-preserving and satisfies the following properties from the point of view of the
database:

1. For any given user Ui, some (large) subset of all users U is the query anonymity set for Ui;
2. User queries are anonymous;
3. User queries are untraceable;
4. Given a set of queries that is unavoidably traceable due to subject matter, the person making

the query is protected by pseudonymity.

In addition to these basic properties of user-privacy against a database, we may wish to provide
user-privacy against other users. Ideally, a UPIR scheme would provide the same privacy guarantees
against other users as against the database, but we will see that this usually cannot be attained in
practice.

Previous work [2,3,8,9] has focused on the use of a P2P network consisting of various encrypted
“memory spaces” (i.e., drop boxes), to which users can post their own queries, submit queries to
the database and post the respective answers, and read answers to previously posted queries. That
is, in the P2P UPIR setting, we have a cooperating community of users who act as proxies to
submit each other’s queries to the database. In particular, a class of combinatorial designs known
as configurations have been suggested by Domingo-Ferrer, Bras-Amorós et al. [2,3,8,9] as a way to
specify the structure of the P2P network. In this work, we focus on P2P UPIR and consider the
application of other types of designs in determining the structure of the P2P network. We introduce
new P2P UPIR protocols and explore the level of privacy guarantees our protocols achieve, both
against the database and against other users.

1.1 Our Contributions

The main contributions of our work are as follows.

– We establish a strengthened model for P2P UPIR and clarify the privacy goals of such schemes
using standard terminology from the field of privacy research.

– We provide an analysis of the protocol introduced by Domingo-Ferrer and Bras-Amorós [2,3],
as well as its subsequent variations. In particular, we reconsider the choice to limit the designs
used as the basis for the P2P UPIR scheme to configurations. We provide a new attack on
user-privacy against the database, which we call the intersection attack, to which the above
protocol variations are vulnerable.

– We introduce two new P2P UPIR protocols (and variations on these), and give an analysis of
the user-privacy these protocols provide, both against the database and against other users.
Our protocols utilize more general designs and resist the intersection attack by the database.
In particular, our protocols provide more flexibility in designing the P2P network.

– We consider the possible trade-offs of using different types of designs in the P2P UPIR setting,
both with respect to the overall flexibility of the scheme as well as user-privacy. Our protocols
provide viable design choices, which can allow for a dynamic UPIR scheme (i.e., one in which
users are permitted to enter and leave the system), or provide increased privacy against other
users.

– We consider the problem of user-privacy against other users in detail. In particular, we relax
the assumptions of previous work, by allowing users to collaborate outside the parameters of

2

the P2P UPIR scheme; that is, we consider a stronger adversarial model than previous work.
We analyze the ability of different types of designs to provide user-privacy against other users,
and explore how well our protocol resists an intersection attack launched by a coalition of users
on linked queries. Finally, we introduce methods to improve privacy against other users without
compromising privacy against the database.

We now give an outline of our paper. In Section 2, we give a model for P2P UPIR schemes and
provide the relevant privacy goals. Section 3 provides background information on designs. We then
review previous work in Section 4 and give attacks on these protocols in Section 4.1. We introduce
our protocols in Section 5 and give an analysis of the privacy guarantees our protocols provide
against the database. In Section 6, we analyze the ability of our protocols to provide user-privacy
against other users and consider ways to improve this type of privacy. We conclude in Section 7.

2 Our P2P UPIR Model

A P2P UPIR scheme consists of the following players: a finite set of possible users U = {U1, . . . , Uv},
the target database DB, and an external observer, O. We assume all communication in a P2P UPIR
scheme is encrypted, including communication between the users and DB.

In a basic P2P UPIR scheme, users have access to secure drop boxes known as memory spaces.
More precisely, a memory space is an abstract (encrypted) storage space in which some subset of
users can store and extract queries and query responses; the exact structure of these spaces is not
specified. We let S = {S1, . . . , Sb} denote the set of memory spaces, and we let Ki denote the
(symmetric) key associated with Si, for 1 ≤ i ≤ b. We assume that encryption keys for memory
spaces are only known to a given subset of users, as specified by the P2P UPIR protocol. For the
sake of simplicity, we assume that these keys are initially distributed in a secure manner by some
trusted external entity (not the database DB). However, the precise method by which these keys are
distributed is not relevant to the results we prove in this paper. If two distinct users Ui, Uj ∈ U have
access to a common memory space, then we say Ui and Uj are neighbors. Similarly, the neighborhood
of a user Ui is defined as the set of all neighbors of Ui, and it is denoted as N(Ui).

When a user Ui wishes to send a query q to DB, we say Ui is the source of the query. Rather
than sending the query directly to DB, Ui writes an encrypted copy of q, together with a requested
proxy Uj, to a memory space Sℓ. Here Uj is the proxy for Ui’s query q, and consequently Uj must
know the encryption key Kℓ corresponding to the memory space Sℓ. The user Uj decrypts the query,

re-encrypts q under a secret key shared with DB, say Kj
DB , and forwards this re-encrypted query

e
K

j
DB

(q) to DB. DB sends back a response, which Uj first decrypts, then re-encrypts under Kℓ and

records in the memory space Sℓ. We give a schematic of the information flow of a basic P2P UPIR
scheme in Figure 1.

2.1 Attack Model

We consider each type of player as a possible adversary A. We assume that A has full knowledge
of the P2P UPIR scheme specification, including any public parameters, as well as any secret
information assigned to A as part of the P2P UPIR scheme. In addition, we assume A does not
conduct traffic analysis. The following definition will be useful.

Definition 2.1. Consider a set of one or more users C. The query sphere for C is the set of
memory spaces that C can (collectively) access via the P2P UPIR scheme.

3

Fig. 1. Schematic of Information Flow

User Ui Memory Space Sℓ Proxy Uj DB

query q

and
proxy Uj

eKℓ
(q), Uj

−−−−−−−→ (eKℓ
(q), Uj) stored

eKℓ
(q)

−−−−−−−→ reads q

from Sℓ

e
K

j
DB

(q)
−−−−−−−→ processes q

reads r

from Sℓ

eKℓ
(r)

←−−−−−−− eKℓ
(r) stored

eKℓ
(r)

←−−−−−−− receives r
from DB

e
K

j
DB

(r)
←−−−−−−− response r

In addition to the above, we make the following assumptions about each specific type of adver-
sary A:

– Suppose A is the database DB. As stated above, we assume that DB does not observe infor-
mation being posted to or read from memory spaces. In addition, we assume that DB does not
collaborate with any users and answers queries honestly. We note DB necessarily observes the
content of all queries and the proxy of each query.

– Suppose A consists of a user or a subset of colluding users C ⊂ U . We assume users are
honest-but-curious. Users in C can communicate outside of the given P2P UPIR scheme and
collaborate using joint information. The users of C can see the content of any queries within
C’s query sphere, but cannot identify the original source of these queries.

– Suppose A is an external adversary O. An external observer O can see the encrypted content of
memory spaces. We consider the possibility of key leakage as the main attack launched by O.
This refers to a party gaining access to a memory space key outside of the P2P UPIR scheme
specification (e.g., by social engineering or other means).

Although we do not specifically treat traffic analysis as an attack, we wish to avoid a trivial
analysis of traffic entering and leaving a given memory space. That is, we assume that memory
spaces have encryption and decryption capabilities, so that a user acting as a proxy may decrypt
and re-encrypt a given query within its associated memory space, before forwarding the query to
the database.

2.2 Privacy and Adversarial Goals in P2P UPIR

In considering the privacy guarantees for a user Ui, we assume either the database DB or a group
of other users may try to determine whether Ui is the source of a given set of queries, or try to
establish whether or not a given set of queries originates from the same source. We will need the
following definition:

Definition 2.2. We say two or more queries q1, q2, . . . are linked if, given the subject matter, one
can infer that the queries are likely to be from the same source.

We also consider the possibility of an external observer O gaining information that compromises
the privacy of Ui. We recognize the following goals for Ui’s privacy:

– Confidentiality : the content of Ui’s queries is protected;

4

– Anonymity : the identity of a query source is protected;

– Untraceability : a user’s query history cannot be reconstructed as having originated from the
same user;

– Pseudonymity in the presence of linked queries: given a set of linked queries, the identity of the
source is protected.

We now analyze each type of adversary A with respect to the above privacy goals:

– Suppose A is the database DB. We are not concerned with confidentiality against DB, but
rather anonymity, untraceability, and pseudonymity in the presence of linked queries. The goal
of the database is to create a profile of Ui. That is, the database would like to establish the set
of queries for which Ui is the source. The database also attempts to trace user query histories;
that is, DB would like to establish that a given set of queries came from the same source, even
if DB cannot determine the identity of the source.

– SupposeA consists of a user or a subset of colluding users C ⊂ U . The coalition C collaborates to
try to determine the query history of another user Ui /∈ C. Here we are interested in maintaining
anonymity, untraceability, and pseudonymity in the presence of linked queries against C. We
are also interested in maintaining confidentiality, in the sense that C should not have access to
the content of queries outside the query sphere for C.

– Suppose A is an external adversary O. The goal of O is to compromise both the confidentiality
and the anonymity of Ui. External adversaries may try to compromise the encryption mechanism
of the memory spaces.

We are now almost ready to consider the P2P UPIR protocols of Domingo-Ferrer, Bras-Amorós
et al. [2,3], as well as the subsequent modification of Stokes and Bras-Amorós [8,9]. Both these
protocols and ours, however, draw heavily from the field of combinatorial designs. In the next
section, we introduce the requisite background knowledge on combinatorial designs.

3 Background on Designs

For a general reference on designs, we refer the reader to Stinson [7].

Definition 3.1. A set system is a pair (X,A) such that the following are satisfied:

1. X is a set of elements called points, and

2. A is a collection (i.e., multiset) of nonempty proper subsets of X called blocks.

In the rest of this section, we abuse notation by writing blocks in the form abc instead of {a, b, c}.

Definition 3.2. The degree of a point x ∈ X is the number of blocks containing x. If all points
have the same degree, r, we say (X,A) is regular (of degree r).

Definition 3.3. The rank of (X,A) is the size of the largest block. If all blocks contain the same
number of points, say k, then (X,A) is uniform (of rank k). Note that k < v.

Definition 3.4. A covering design is a set system in which every pair of points occurs in at least
one block.

5

Example 3.1. A covering design.

X = {1, 2, 3, 4, 5, 6, 7} and A = {13, 23, 157, 124, 347, 356, 2567, 14567}.

Definition 3.5. A pairwise balanced design (or PBD) is a set system such that every pair of
distinct points is contained in exactly λ blocks, where λ is a fixed positive integer. Note that any
PBD is a covering design.

Example 3.2. A PBD with λ = 2.

X = {1, 2, 3, 4, 5} and A = {12, 25, 135, 145, 1234, 2345}.

Definition 3.6. Let (X,A) be a regular and uniform set system of degree r and rank k, where
|X| = v and |A| = b. We say (X,A) is a (v, b, r, k)-1 design.

Example 3.3. A (5, 5, 3, 3)-1 design.

X = {1, 2, 3, 4, 5} and A = {123, 451, 234, 512, 345}.

Definition 3.7. A (v, b, r, k, λ)-balanced incomplete block design (or BIBD) is a (v, b, r, k)-1 de-
sign in which every pair of points occurs in exactly λ blocks. Equivalently, a (v, b, r, k, λ)-BIBD is
a PBD that is regular and uniform of degree r and rank k.

Example 3.4. A (10, 15, 6, 4, 2)-BIBD.

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

and

A = {0123, 0147, 0246, 0358, 0579, 0689, 1258, 1369,

1459, 1678, 2379, 2489, 2567, 3478, 3456}.

Definition 3.8. A (v, b, r, k)-configuration is a (v, b, r, k)-1 design such that every pair of distinct
points is contained in at most 1 block.

Example 3.5. A (9, 9, 3, 3)-configuration.

X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {147, 258, 369, 159, 267, 348, 168, 249, 357}.

Remark 3.1. A (v, b, r, k)-configuration with v = r(k−1)+1 is a (v, b, r, k, 1)-BIBD. A (v, b, r, k, 1)-
BIBD with parameters of the form (n2+n+1, n2+n+1, n+1, n+1, 1) is a finite projective plane
of order n.

Definition 3.9. A symmetric BIBD is a BIBD in which b = v.

Remark 3.2. A projective plane is a symmetric BIBD.

Theorem 3.1. (Fisher’s Inequality) In any (v, b, r, k, λ)-BIBD, b ≥ v.

Theorem 3.2. In a symmetric BIBD any two blocks intersect in exactly λ points.

6

3.1 P2P UPIR using Combinatorial Designs

We model a P2P UPIR scheme using a combinatorial design. That is, we consider pairs (U ,S)
(where as before |U| = v and |S| = b), such that each memory space, or block, consists of k users
and each user, or point, is associated with r memory spaces. That is, we assume that the pair (U ,S)
is a (v, b, r, k)-1 design.

We can also view the b memory spaces as points and define v blocks, each of which contains
the memory spaces to which a given user belongs. This yields the dual design (S,U), which is a
(b, v, k, r)-1 design.

4 Previous Work: Using Configurations

We briefly review the P2P UPIR scheme proposed by Domingo-Ferrer et al. [3] and the proposed
modification of Stokes and Bras-Amorós [9]. We fix a (v, b, r, k)-configuration (U ,S). As before,
we have a finite set of users U = {U1, . . . , Uv}, a database DB, and a finite set of memory spaces
S = {S1, . . . , Sb}.

Each user has access to r memory spaces, and each memory space is accessible to k users. Each
memory space is encrypted via a symmetric encryption scheme; for each memory space, only the k
users assigned to that memory space are given the key. The following protocol [3] assumes the user
Ui has a query to submit to the database:

Protocol 1 Domingo-Ferrer–Bras-Amorós–Wu–Manjón (DBWM) Protocol
We fix a (v, b, r, k)-configuration.

1. The user Ui randomly selects a memory space Sℓ to which he has access

2. The user Ui decrypts the content on the memory sector Sℓ using the corresponding key. His
behavior is then determined by the content on the memory space as follows:

(a) The content is garbage. Then Ui encrypts his query and records it in Sℓ.

(b) The content is a query posted by another user. Then Ui forwards the query to the database
and awaits the answer. When Ui receives the answer, he encrypts it and records it in Sℓ. He
then restarts the protocol with the intention to post his query.

(c) The content is a query posted by the user himself. Then Ui does not forward the query to
the database. Instead Ui restarts the protocol with the intention to post his query.

(d) The content is an answer to a query posted by another user. Then Ui restarts the protocol
with the intention to post his query;

(e) The content is an answer to a query posted by the user himself. Then Ui reads the query
answer and erases it from the memory space. Subsequently Ui encrypts his new query and
records it in Sℓ.

The modification proposed by Stokes and Bras-Amorós [9] replaces 2c as follows:

Protocol 2 DBWM–Stokes (DBWMS) Protocol

2′(c). If the content is a query posted by the user himself, then Ui forwards the query to the database
with a specified probability p. If Ui forwards the query to the database, he records the answer in
Sℓ. The user Ui restarts the protocol with the intention to post his current query.

7

Remark 4.1. This protocol is ambiguous as stated by Stokes and Bras-Amorós. The intent of the
system is that users periodically run the protocol with “garbage” queries, in this way collecting the
answers to their previous queries.

Stokes and Bras-Amorós [8,9] argue that the finite projective planes are the optimal configura-
tions to use for P2P UPIR. Their argument is that privacy against the database is an increasing
function of r(k−1), since there are r(k−1) users in the anonymity set of any given user Ui. That is,
the query profile of Ui is diffused among r(k− 1) other users in the neighborhood of Ui. Now, since
r(k− 1) ≤ v− 1 in a configuration, the authors consider configurations satisfying r(k− 1) = v− 1,
which yield the finite projective planes. In our protocols, introduced in Section 5, we also have
neighborhoods of maximum size, without limiting ourselves to configurations. We also ensure that
the database DB has no advantage in guessing the identity of the source of any given query.

4.1 Attacks

We consider the privacy properties of the DBWM and DBWMS protocols with respect to the
database, before offering an improved protocol in Section 5. We fix a (v, b, r, k)-configuration, where
v is the number of users and b is the number of memory spaces. We associate a block with each
memory space, where the block consists of the users that have access to the memory space.

The weakness of the DBWM and DBWMS protocols lies in the possibility of a user’s query
history being identifiable as originating from one user. That is, if a series of queries is on some
esoteric subject, the adversary (such as the database) can surmise that the source of these queries
is the same. As before, we refer to such queries as linked.

Stokes and Bras-Amorós [9] noticed a weakness in the DBWM protocol when a projective plane
is used as the configuration, that is, when v = r(k − 1) + 1. In this case, each user Ui has a
neighborhood consisting of all other users. Then, given a large enough set of linked queries, the
only user who never submits one of these linked queries is the source, Ui. That is, the database
can eventually identify Ui as the source. Subsequent to our research, Stokes and Bras-Amorós [10]
noted this weakness applies more generally to (v, k, 1)-BIBDs.

We introduce another type of attack, which we call the intersection attack. This attack only
applies to configurations satisfying v > r(k−1)+1, as it requires that all users have neighborhoods
of cardinality less than v − 1. The idea behind the intersection attack is that, given a query q1
submitted by proxy Uj, an attacker can, by analyzing the neighborhood of Uj, compute a list of
possible sources Q1. If the attacker has access to a set of linked queries q1, q2, . . . , qn, and the
neighborhoods of these users do not consist of all users in the system, the intersection of the
possible source sets Q1, Q2, . . . , Qn can perhaps identify the source (or narrow down the list of
possible sources). We demonstrate this attack in the following example.

Example 4.1. Suppose v = 12 and b = 8 and we have the following blocks (memory spaces):

{U1, U2, U3} {U4, U5, U6} {U7, U8, U9} {U10, U11, U12}
{U1, U4, U7} {U2, U5, U10} {U3, U8, U11} {U6, U9, U12}

Note this is a (12, 8, 2, 3)-configuration. We consider the DBWM protocol here; that is, we
assume that the proxy of a given query is always different from the source of the query. Now
suppose three queries are transmitted from users U2, U11, and U8.

– If the proxy is U2, then the source Ui ∈ {U1, U3, U5, U10}.

8

– If the proxy is U11, then the source Ui ∈ {U3, U8, U10, U12}.
– If the proxy is U8, then the source Ui ∈ {U3, U7, U9, U11}.

Suppose that the subject of the queries is similar, so it can be inferred that the source of the three
queries is probably the same user. Then it is easy to identify the source of the queries:

Ui ∈ {U1, U3, U5, U10} ∩ {U3, U8, U10, U12} ∩ {U3, U7, U9, U11},

so Ui = U3. Clearly, user-privacy with respect to the database is not achieved here.

We do not claim that the above-described attack will always work for any configuration; it
is easy to come up with examples where the attack does not work. For example, suppose that
N(Ui) ∪ {Ui} = N(Uj) ∪ {Uj} for two distinct users Ui and Uj . Then it would be impossible for
DB to determine whether Ui or Uj is the source of a sequence of linked queries. Independently of
this research, Stokes and Bras-Amorós [10] noted that by choosing the configuration carefully, it
is possible to ensure the neighborhood-to-user mapping is not unique, and to guarantee a specified
lower bound on the number of possible users for a given neighborhood.

Observe that the intersection attack is not useful when one uses a finite projective plane as the
configuration and users are allowed to submit their own queries. This follows because, at each stage
of the intersection attack, the set of possible sources includes all users in the set system. In the
next section, we formalize this observation and discuss the use of more general types of designs in
P2P UPIR protocols that resist the intersection attack in a very strong sense.

5 Using More General Designs

As observed in Section 4, in order to achieve user-privacy with respect to the database, we need to
allow users to sometimes transmit their own queries. We suggest a different solution to the problem
than that given by Bras-Amorós et al., however. In particular, we see no reason to limit the P2P
network topology to configurations. Bras-Amorós et al. indicate use of configurations as a method
to increase service availability and decrease the number of required keys. Indeed, configurations
were proposed as key rings in wireless sensor networks by Lee and Stinson [5] due to memory
constraints of sensor nodes. However, storage constraints are not so much an issue in P2P UPIR.
We therefore consider the possibility of using other types of designs.

We will make use of memory spaces that “balance” proxies for every source. We suggest to use
a balanced incomplete block design (BIBD) for the set of memory spaces. We will show that these
designs provide optimal resistance against the intersection attack.

Our scheme also differs from DBWMS in the treatment of proxies. In the previous schemes, the
identity of a proxy was not specified by the source. Queries were simply forwarded to the database
by whichever user had most recently checked the corresponding memory space. We propose that
each source designates the proxy for each query. This enables us to balance the proxies for each
possible source, thereby providing “perfect” anonymity with respect to the database. Moreover, we
do not assume that each memory space holds only a single query; rather, we assume that memory
spaces are capable of storing multiple queries.

Protocol 3 Proxy-designated BIBD Protocol (Version 1)
We fix a (v, b, r, k, λ)-BIBD. To submit a query, a user Ui uses the following steps:

1. With probability 1/v, user Ui acts as his own proxy and transmits his own query to the DB.

9

2. Otherwise, user Ui chooses uniformly at random one of the r memory spaces with which he is
associated, say Sℓ, and then he chooses uniformly at random a user Uj ∈ Sℓ\{Ui}. Finally, user
Ui requests that user Uj act as his proxy using the memory space Sℓ.

Protocol 4 Proxy-designated BIBD Protocol (Version 2)
We fix a (v, b, r, k, λ)-BIBD. To submit a query, a user Ui uses the following steps:

1. With probability 1/v, user Ui chooses to act as his own proxy. User Ui then writes the query
uniformly at random to one of the r memory spaces with which he is associated, and transmits
his own query to DB.

2. Otherwise, user Ui chooses uniformly at random one of the r memory spaces with which he is
associated, say Sℓ, and then he chooses uniformly at random a user Uj ∈ Sℓ\{Ui}. Finally, user
Ui requests that user Uj act as his proxy using the memory space Sℓ.

Remark 5.1. We note that Protocol 4 differs from Protocol 3 only in the first step.

Remark 5.2. We assume users check memory spaces regularly and act as proxies as requested within
a reasonable time interval.

Remark 5.3. We make the assumption that, when a source Ui requests Uj to be his proxy, everyone
in the associated memory space knows that this request has been made, but no one (except for Ui)
knows the identity of the source.

Remark 5.4. The choice between Protocol 3 and Protocol 4 impacts the amount of privacy the
scheme provides against other users. This will be discussed in Section 6.

We analyze the situation from the point of view of the database. For the rest of the paper, we
let variables S,P,M be random variables for source, proxy, and memory space, respectively.

Theorem 5.1. From the point of view of the database, the Proxy-designated BIBD Protocols (Pro-
tocols 3 and 4) satisfy Pr[S = Ui|P = Uj] = Pr[S = Ui] for all Ui, Uj ∈ U .

Proof. First, the schemes ensure that Pr[P = Uj |S = Ui] =
1
v
for all Ui, Uj . To see this, first note

that Ui will pick himself as the source with probability 1
v
. In Protocol 3, Ui will then submit his

query directly to the database. In Protocol 4, Ui will pick one of the r memory spaces with which
he is associated uniformly at random and then act as his own proxy. So in both cases, we have

Pr[P = Ui|S = Ui] =
1

v
.

Then in both protocols, with probability v−1
v

, user Ui will pick a memory space Sℓ (with Ui ∈ Sℓ)
uniformly at random, followed by a proxy Uj associated with Sℓ. The probability that a fixed Uj

with i 6= j will act as proxy can be computed as follows.
For i 6= j, we have

Pr[P = Uj|S = Ui] =
v − 1

v

∑

Sℓ:Ui,Uj∈Sℓ

Pr[M = Sℓ]Pr[P = Uj|M = Sℓ]

=
v − 1

v

∑

Sℓ:Ui,Uj∈Sℓ

1

r(k − 1)
=

(

v − 1

v

)(

λ

r(k − 1)

)

=
1

v
.

10

Similarly, we can see that Pr[P = Uj] = 1/v for all Uj ∈ U :

Pr[P = Uj] =
∑

Sℓ:Uj∈Sℓ

Pr[M = Sℓ]Pr[P = Uj |M = Sℓ] =
r

bk
=

1

v
.

Now we have

Pr[S = Ui|P = Uj] =
Pr[P = Uj|S = Ui]Pr[S = Ui]

Pr[P = Uj]
= Pr[S = Ui]

so the identity of the proxy gives no information about the identity of the source.

We observe that this analysis is independent of any computational assumptions, so the security
is unconditional. Since we have achieved a perfect anonymity property, it follows that no information
is obtained by analyzing linked queries.

Example 5.1. To illustrate, consider a projective plane of order 2 with the following blocks:

{U1, U2, U3} {U1, U4, U5} {U1, U6, U7} {U2, U4, U6}
{U2, U5, U7} {U3, U4, U7} {U3, U5, U6}

We note that this is a (7, 3, 3, 3, 1)-BIBD. Suppose that the first query uses block {U2, U4, U6}
with proxy U4, and the second query uses block {U2, U5, U7} with proxy U2. From the first query,
DB knows that one of three blocks were used: {U1, U4, U5}, {U2, U4, U6}, or {U3, U4, U7}. However,
Pr[S = Ui|P = U4] = Pr[S = Ui] for all possible sources Ui, so DB has no additional information
about the identity of the source, given that P = U4. From the second query, DB knows that one
of three blocks were used: {U1, U2, U3}, {U2, U4, U6}, or {U2, U5, U7}. Again, Pr[S = Ui|P = U2] =
Pr[S = Ui] for all possible sources Ui, so DB has no additional information about the identity of the
source, given that P = U2. So even if DB suspects that both queries came from the same source,
he has no way to identify the source.

5.1 Extensions

We can consider using less structured designs than BIBDs, such as pairwise balanced designs or
covering designs. It turns out that we can still achieve perfect anonymity with respect to DB,
because our anonymity argument remains valid provided that Pr[P = Uj |S = Ui] = 1

v
for all

Ui, Uj ∈ U .
We next give a generalized protocol based on an arbitrary covering design. That is, we do not

require constant block size k or constant replication number r.

Protocol 5 Proxy-designated Covering Design Protocol (Version 1)
We fix a covering design. To submit a query, a user Ui performs the following steps:

1. User Ui chooses the designated proxy Uj uniformly at random. If Ui = Uj , then Ui submits his
query directly to DB and skips Step 2.

2. If Ui 6= Uj , then user Ui chooses uniformly at random one of the memory spaces that contains
both Ui and Uj , say Sℓ. Then Ui requests that user Uj act as his proxy using memory space Sℓ.

11

Protocol 6 Proxy-designated Covering Design Protocol (Version 2)
We fix a covering design. To submit a query, a user Ui performs the following steps:

1. User Ui chooses the designated proxy Uj uniformly at random. (The user Ui may choose himself
as the proxy Uj.)

2. User Ui chooses uniformly at random one of the memory spaces that contains both Ui and Uj,
say Sℓ. Then Ui requests that user Uj act as his proxy using memory space Sℓ.

Remark 5.5. If the covering design is a BIBD, then Protocol 5 is equivalent to Protocol 3 and
Protocol 6 is equivalent to Protocol 4.

Remark 5.6. We must have a covering design to ensure that a suitable memory space Sℓ always
exists in Step 2 of Protocols 5 and 6.

Remark 5.7. As in Protocols 3 and 4, we assume users check memory spaces regularly, and act as
proxies as requested within a reasonable time interval. We also assume, as before, that when source
Ui requests that Uj 6= Ui be his proxy, everyone in the associated memory space knows that this
request has been made, but no one (except for Ui) knows the identity of the source.

Theorem 5.2. From the point of view of the database, for a given query, the Proxy-designated
Covering Design Protocols (Protocols 5 and 6) satisfy Pr[S = Ui|P = Uj] = Pr[S = Ui] for all
Ui, Uj ∈ U .

Proof. Step 1 of both Protocol 5 and Protocol 6 ensures that Pr[P = Uj |S = Ui] = 1
v
for all

Ui, Uj ∈ U . Similarly, we can see that Pr[P = Uj] =
1
v
for all Uj . We once again have

Pr[S = Ui|P = Uj] =
Pr[P = Uj|S = Ui]Pr[S = Ui]

Pr[P = Uj]
= Pr[S = Ui]

so the identity of the proxy gives no information about the identity of the source.

As before, we observe that this analysis is independent of any computational assumptions, so
the security is unconditional. Since we have achieved a perfect anonymity property, no information
is obtained by analyzing linked queries.

5.2 Dynamic P2P UPIR Schemes

One benefit of using less structured designs than BIBDs is that the scheme can be dynamic. That
is, we can add and remove users, which allows greater flexibility in practice.

To delete a user Ui from Protocols 5 and 6, we simply remove Ui from all the memory spaces
with which he is associated. To avoid Ui from reading any more queries written to these memory
spaces, we also need a rekeying mechanism to update the associated keys. The same external entity
that distributed the initial set of keys could be responsible for rekeying. The end result is a covering
design with one fewer users than before.

To add a user Unew in Protocols 5 and 6, we may use the following method. We first find
M = {Sh1

, . . . , Shℓ
} ⊆ S such that Sh1

∪ · · · ∪ Shℓ
= U . That is, we need a set of memory spaces

whose union contains all current users. A greedy algorithm could be used to accomplish this task,
although the resultant set M would likely not be optimal. Indeed, finding the minimum such set is
NP-hard. (This is the minimum cover problem, which is problem SP5 in Garey and Johnson [4].)

12

Once we have identified a suitable set M, we simply add Unew to each memory space in M,
and give Unew the associated keys. In addition, we need a mechanism by which to inform all users
of Unew’s presence in the scheme. The resulting set system is still a covering design—one which
contains one more user than before.

6 Privacy Against Other Users

In this section, we consider our Protocols 3, 4, 5, and 6 in the context of analyzing user-privacy
against other users. We remind the reader of Remarks 5.3 and 5.7: we assume that when a source Ui

requests that Uj be his proxy, everyone in the associated memory space knows that this request has
been made, but no one (except for Ui) knows the identity of the source. We now analyze the privacy
of a given user relative to other users of the scheme. As we will see, if we wish to provide privacy
against other users, a design that has more structure than a general covering design becomes useful.
In particular, we will observe that the use of a regular PBD (see Definition 3.5) in Protocols 5 and 6
is desirable.

It is helpful to begin with an example:

Example 6.1. Consider the projective plane from Example 5.1 and suppose we use Protocol 3.
Suppose that user P = U4 is requested to make a query in memory space {U1, U4, U5} by source
S = U1. User U4 knows that the source must be U1 or U5 (since he did not make the request
himself). User U5, however, knows that the source must be U1 because

1. U5 did not make the request himself, and
2. U4 would not post a request to himself to transmit a query—he would just go ahead and transmit

it himself.

We can generalize the concept from Example 6.1. Observe that in Protocols 3 and 5, the
requested proxy can rule out one possible source, and anyone else in the memory space (who is
not the source) can rule out two possible sources. If we consider Protocols 4 and 6, then users
can rule out only one possible source (namely, themselves). That is, Protocols 4 and 6 improve
the information theoretic privacy guarantees of the scheme with respect to the viewpoint of other
users. However, we remark that in these versions, when a source acts as his own proxy, other users
associated with the chosen memory space can see the content of the query. In Protocols 3 and 5, if a
user Ui is both the source and proxy of a given query, then Ui is the only user who sees the content
of that query. Hence it may still be desirable to use Protocols 3 and 5, if additional confidentiality
is required.

An interesting related question is, when a particular user Ut sees a query q posted to the memory
space Sℓ that is not his own, whether or not Ut has a probabilistic advantage in guessing the source
of q. The following theorems show that, in order to minimize any such advantage, it is helpful to
use a regular PBD in our protocols.

Theorem 6.1. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the Proxy-
designated Covering Design Protocol (Protocol 5) and assume that Pr[S = Ui] =

1
v
for all Ui ∈ U .

Suppose Ut ∈ Sℓ sees a query q posted to Sℓ that is not his own. Then, from the point of view of
Ut, for a given query q and Ui, Uj ∈ Sℓ such that i 6= t, it holds that

Pr[S = Ui|M = Sℓ,P = Uj] =

{

0 if i = j
1

|Sℓ|−2 if i 6= j.

13

Proof. We first note that the protocol definition ensures that when i = j, we have Pr[S = Ui|M =
Sℓ,P = Uj] = 0.

We now consider the case i 6= j. We set λij = |{Sq|Ui, Uj ∈ Sq}| = λ. Thus, we have

Pr[M = Sℓ,P = Uj|S = Ui] = Pr[M = Sℓ|P = Uj ,S = Ui]Pr[P = Uj|S = Ui]

=
1

λijv
=

1

λv
.

Then because i 6= t, j, we have Pr[S = Ui] =
1

v−2 and

Pr[S = Ui|M = Sℓ,P = Uj] =
Pr[S = Ui]Pr[M = Sℓ,P = Uj |S = Ui]

Pr[M = Sℓ,P = Uj]

=
Pr[S = Ui]Pr[M = Sℓ,P = Uj |S = Ui]

∑

Uh∈Sℓ
h 6=t,j

Pr[S = Uh]Pr[M = Sℓ,P = Uj |S = Uh]

=

1
v(v−2)λ

∑

Uh∈Sℓ
h 6=t,j

1
v(v−2)λ

=
1

|Sℓ| − 2
,

as desired.

Theorem 6.2. Let (X,A) be a regular PBD of degree r. Assume (X,A) is used in the Proxy-
designated Covering Design Protocol (Protocol 6) and assume that Pr[S = Ui] =

1
v
for all Ui ∈ U .

Suppose Ut ∈ Sℓ sees a query q posted to Sℓ that is not his own. Then, from the point of view of
Ut, for a given query q and Ui, Uj ∈ Sℓ such that i 6= t, it holds that

Pr[S = Ui|M = Sℓ,P = Uj] =

{

λ
λ+r(|Sℓ|−2) if i = j

r
λ+r(|Sℓ|−2) if i 6= j.

Proof. We first calculate Pr[M = Sℓ,P = Uj|S = Ui], where Ui ∈ Sℓ. We again set λij =
|{Sq|Ui, Uj ∈ Sq}|. Since (X,A) is a PBD of degree r, we have

λij =

{

r if i = j
λ if i 6= j.

We have

Pr[M = Sℓ,P = Uj|S = Ui] = Pr[M = Sℓ|P = Uj ,S = Ui]Pr[P = Uj|S = Ui]

=

(

1

λij

)(

1

v

)

.

14

Then because i 6= t, we have Pr[S = Ui] =
1

v−1 and

Pr[S = Ui|M = Sℓ,P = Uj] =
Pr[S = Ui]Pr[M = Sℓ,P = Uj |S = Ui]

Pr[M = Sℓ,P = Uj]

=
Pr[S = Ui]Pr[M = Sℓ,P = Uj |S = Ui]

∑

Uh∈Sℓ
h 6=t

Pr[S = Uh]Pr[M = Sℓ,P = Uj |S = Uh]

=

1
v(v−1)λij

∑

Uh∈Sℓ
h 6=t

1
v(v−1)λhj

=
1

λij

(

1
r
+ |Sℓ|−2

λ

) ,

which yields the desired result.

Remark 6.1. Theorems 6.1 and 6.2 apply to Protocols 3 and 4, respectively, since a BIBD is also a
PBD that is regular of degree r.

Theorems 6.1 and 6.2 demonstrate that the use of a regular PBD increases privacy against other
users. This is because, from the point of view of another user, the possible source distribution is
closer to uniform.

Theorem 6.1 implies that for Ut ∈ Sℓ, if Ut sees a query q with proxy Uj posted to Sℓ that is not
his own, any of the remaining |Sℓ| − 2 users in Sℓ are equally likely to be the source. If Protocol 6
is used instead of Protocol 5, then Ut can no longer completely eliminate the possibility of the
proxy Uj being the source. However, as Theorem 6.2 shows, the likelihood of the proxy Uj being
the source is not the same as the likelihood of Ui 6= Uj being the source. Indeed, it is far less likely
that Uj is acting as both proxy and source for q in this situation. Intuitively, if a user Ui is acting
as both source and proxy, he has r possible memory spaces to choose from, whereas if Ui chooses
another user Uj as proxy, he has only λ many memory spaces to choose from.

6.1 Linked Queries and Coalitions of Users

Users can also launch an intersection attack against a series of linked queries, similar to the inter-
section attack launched by DB against the DBWM and DBWMS protocols (Protocols 1 and 2).
The difference here is that users have access to the content of queries via the shared memory spaces;
that is, users of a given memory space know which queries have been posted to that memory space,
whereas the database only knows the identity of the proxy.

Example 6.2. Consider the projective plane from Example 5.1 and suppose we use Protocol 4.
Suppose that U1 is the source of two linked queries, where the first query uses memory space
{U1, U2, U3} and the second query uses memory space {U1, U4, U5}. Now suppose that users U2 and
U5 collude. From the first query, user U2 knows that Ui ∈ {U1, U3} (regardless of the proxy). From
the second query, user U5 knows that Ui ∈ {U1, U4} (regardless of the proxy). If users U2 and U5

collude, then they can identify U1 as the source.

In general, we can consider a sequence of ρ linked queries made by the same (unknown) user,
and a coalition C of at most c users that is trying to identify the source of the ρ queries. We
introduce the following terminology.

15

Definition 6.1. Consider a set of ρ linked queries and fix a maximum coalition size c. If there
are always at least κ users who could possibly be the source (regardless of the queries and coalition)
then we say that the scheme provides (ρ, c, κ)-anonymity.

Remark 6.2. Of course we want κ ≥ 2 because the source might be identified if κ = 1.

First, we consider security against a single user (i.e., the case c = 1). Here, it is advantageous
to use a design with λ = 1:

Lemma 6.1. Suppose the BIBD chosen for Protocol 4 satisfies λ = 1. Then we achieve (ρ, 1, k−1)-
anonymity for any ρ.

Proof. If Ui sees a sequence of ρ linked queries from the same source, the queries must all involve
the same memory space, because λ = 1. The result then follows from Theorem 6.2.

Remark 6.3. The result of Lemma 6.1 does not apply to Protocol 3. This is because in Protocol 3,
given a series of linked queries posted to a given memory space, the only user who will never act
as proxy for one of these queries is the query issuer. This is similar to the projective plane attack
in [9] that we mentioned in Section 4.1.

On the other hand, the security of Protocol 4 against a single user might be completely elim-
inated if we use a design with λ > 1. For example, suppose we use a BIBD with λ = 2 in which
every pair of blocks intersects in at most two points (such a BIBD is termed supersimple). Consider
two users Ui and Uj . There exist two memory spaces, say S1 and S2, where S1 ∩ S2 = {Ui, Uj}.
Suppose Ui observes two linked queries, say q1 and q2, that involve S1 and S2, respectively. Then
Ui can deduce that Uj is the source.

We now consider some more special cases of this problem, for small values of ρ and for certain
special types of designs. This is because, in order to analyze the problem of linked queries, it
becomes necessary to understand the block intersection properties of the scheme’s chosen design.
In Section 6.2, we consider a more general approach to mitigate this type of attack in the Proxy-
designated Covering Design Protocols (Protocols 5 and 6).

The case ρ = 1 (i.e., security against a single query) is easy to analyze:

Lemma 6.2. We achieve (1, c, k− c− 1)-anonymity in Protocol 3, where c ≤ k− 3. In Protocol 4,
we achieve (1, c, k − c)-anonymity, with the requirement that c ≤ k − 2.

Proof. We first consider Protocol 3. Let C be a coalition of size at most c and let Sh be the memory
space used for the query q1. Then |C ∩ Sh| ≤ c. C can rule out as possible sources the users in
C ∩Sh as well as the proxy Uj (provided that Uj 6∈ C ∩Sh). Since |Sh\(C ∪ {Uj})| ≥ k− c− 1, the
result follows. An obvious requirement here is c ≤ k − 3.

For Protocol 4, all other users with access to the given memory space can only eliminate them-
selves as the possible source of the query. This improves the information theoretic security for
user-privacy against other users, as we now have |Sh\C| ≥ k − c. An obvious requirement here is
c ≤ k − 2.

For the case ρ = 2, we consider BIBDs with a special intersection property.

Lemma 6.3. Suppose the BIBD of Protocols 3 and 4 satisfies the additional property that any
two blocks intersect in at least µ points. Consider two linked queries, q1 and q2. Then we achieve
(2, c, µ − c− 2)-anonymity, where c ≤ µ − 4, in Protocol 3. In Protocol 4, we achieve (2, c, µ − c)-
anonymity, with the requirement c ≤ µ− 2.

16

Proof. Let C be a coalition of size at most c and let Sh1
be the memory space used for the query

q1 and Sh2
be the memory space used for q2. Let Ui be the proxy for q1 and let Uj be the proxy

for q2.
In Protocol 3, we have

|(Sh1
\(C ∪ {Ui})) ∩ (Sh2

\(C ∪ {Uj}))| = |(Sh1
∩ Sh2

)\(C ∪ {Ui, Uj})| ≥ µ− c− 2,

so we achieve (2, c, µ − c− 2)-anonymity. An obvious requirement here is c ≤ µ− 4.
In Protocol 4, we have

|(Sh1
\C) ∩ (Sh2

\C)| = |(Sh1
∩ Sh2

)\C| ≥ µ− c,

so we achieve (2, c, µ − c)-anonymity. Here, an obvious requirement is c ≤ µ− 2.

We can apply Lemma 6.3 to the case of a symmetric BIBD, in which any two blocks intersect
in exactly λ points, as noted in Theorem 3.2. This achieves the following result:

Corollary 6.1. Suppose the BIBD chosen for Protocols 3 and 4 is a symmetric (v, v, k, k, λ)-BIBD.
Then Protocol 3 provides (2, c, λ − c − 2)-anonymity for any c ≤ λ − 4 and Protocol 4 provides
(2, c, λ − c)-anonymity for any c ≤ λ− 2.

An interesting extension to the concept of (ρ, c, κ)-anonymity is to consider an average-case
analysis of privacy against other users. With (ρ, c, κ)-anonymity, we are analyzing the worst-case
scenario—the minimum level of privacy the scheme achieves against any possible coalition. While
this is useful in some respects, schemes exhibiting powerful worst-case scenario attacks might actu-
ally perform quite well against a typical coalition. In particular, if a scheme needs to be concerned
about random coalitions of users, such an average-case analysis might prove informative, as the
following example shows.

Example 6.3. Suppose we use a symmetric (v, v, k, k, 3)-BIBD in any of our P2P UPIR protocols.
Consider linked queries q1 and q2 submitted by Ui, with corresponding memory spaces Sh1

and Sh2
.

By Theorem 3.2, since the BIBD is symmetric, we have |Sh1
∩ Sh2

| = 3. That is, there are exactly
two other users, say Uj and Ut, in both Sh1

and Sh2
. This implies that there is only one coalition of

users of size 2 that can identify Ui as the source. If we consider random coalitions, the probability

that a random coalition of size 2 consists of {Uj , Ut} is
1

(

v−1
2

) .

Let us consider other coalitions of size 2. Suppose C = {Uj , Uℓ}, for some user Uℓ 6= Ut, Ui. Then
C knows the source is either Ut or Ui. There are v−3 such coalitions. The analysis for C containing
Ut but not Uj is similar. If we consider C = {Uℓ, Uℓ′} such that Ut, Uj /∈ C, the most advantageous
coalition satisfies (without loss of generality) Uℓ ∈ Sh1

, Uℓ′ ∈ Sh2
. In this case, C sees both q1 and

q2 and can conclude that the source is one of {Ui, Uj , Ut}. There are (k− 3)2 such coalitions. Other
coalitions of size 2 either see only one of {q1, q2}, in which case the analysis reduces to that of
Theorem 6.1 or 6.2, or neither of the linked queries, in which case C can do nothing.

6.2 Some Methods to Increase Privacy

t-anonymity sets Beyond the limited cases described above, it is difficult to analyze the privacy
guarantees of the proxy-designated BIBD and covering design protocols in the presence of linked

17

queries. In particular, it becomes difficult to analyze the case of intersections of three or more
memory spaces, and the size of these intersections probably decreases quickly. We might, however,
wish to provide privacy for ρ > 2. One possible solution is to introduce the notion of built-in
permanent anonymity sets for each user. That is, suppose the set of users U is partitioned into
anonymity sets T1, . . . Tg, where each Tℓ consists of at least t users. We further assume that the set
system satisfies the property Tℓ ∩ Sj ∈ {∅,Tℓ} for all ℓ, j. We call such a construction a covering
design with t-anonymity sets.

Theorem 6.3. Fix a partition T = {T1, . . . Tg} of the set of users U , such that each Tℓ consists of
at least t users. Then we can construct a covering design with t-anonymity sets.

Proof. We can construct a covering design with t-anonymity sets by the following method. First,
we construct a covering design on a set of g points, say X = {x1, . . . , xg}. We then define a bijection
σ between the set of g points and the g anonymity sets, so σ(X) = T . Finally, for each xℓ ∈ X ,
we replace the point xℓ by the anonymity set σ(xℓ) = Tℓ′ , where 1 ≤ ℓ′ ≤ g. This yields a covering
design satisfying the desired property.

Theorem 6.4. Fix a covering design with permanent anonymity sets of minimum size t. Then we
achieve (ρ, c, t− c− ρ)-anonymity in Protocol 5 and (ρ, c, t − c)-anonymity in Protocol 6:

Proof. Let C be a coalition of size at most c and consider a set of linked queries q1, . . . , qρ. Let Shℓ

be the memory space used for the query qℓ and let Uhℓ
denote the proxy for qℓ, for 1 ≤ ℓ ≤ ρ.

In Protocol 5, we have

|(Sh1
\(C ∪ {Uh1

})) ∩ (Sh2
\(C ∪ {Uh2

})) ∩ · · · ∩ (Shρ
\(C ∪ {Uqρ}))|

= |(Sh1
∩ Sh2

∩ · · · ∩ Shρ
)\(C ∪ {Uh1

, Uh2
, . . . , Uhρ

})| ≥ t− c− ρ.

In Protocol 6, we have

|(Sh1
\C) ∩ (Sh2

\C) ∩ · · · ∩ (Shρ
\C)| = |(Sh1

∩ Sh2
∩ · · · ∩ Shρ

)\C| ≥ t− c.

This completes the proof.

The idea of using permanent anonymity sets changes the trust requirements of the scheme. In
particular, Ui must trust the users contained in Ti to a greater extent than users in U\Ti, since
members of Ti necessarily have access to Ui’s query sphere. That is, there is no confidentiality
among members of an anonymity set.

Query hops Another possible method to increase privacy against other users, which we briefly
introduce here, involves the introduction of query hops into the protocols. That is, we can consider
allowing a designated proxy to rewrite a given query to another memory space, rather than simply
forwarding the query to DB. We can establish a probabilistic approach, such that a designated
proxy Uj will, with some fixed probability p, forward the query to DB; otherwise Uj rewrites the
query uniformly at random to one of his associated memory spaces. When a response is received, a
user simply posts the response back to the memory space where it was read from. This can continue
until the query response reaches the source. In this case, it is easy to see that on average a query
is posted 1/p times. This method removes the certainty a curious user has that the source of a
given query is associated with the memory space in which that query is written. It is an interesting
problem to analyze the privacy guarantees such a scheme provides against other users.

18

7 Conclusion

In this paper, we have given an overview and analysis of current research in UPIR, including
introducing an attack by the database on user privacy. We have established a new model for P2P
UPIR and considered the problem of user privacy against other users in detail, going well beyond
previous work. We have given two new P2P UPIR protocols and provided an analysis of the privacy
properties provided by these protocols. Our P2P UPIR schemes, by taking advantage of the wide
variety of available combinatorial designs, provide flexibility in the set-up phase, allowing for a
choice between having a dynamic scheme (in which users are permitted to enter and leave the
system), or providing increased privacy against other users. Finally, we have pointed out several
directions for future research in this area. In particular, there is much work to be done regarding
user privacy against other users, such as moving beyond the worst-case analysis we provide here
and considering an average-case analysis, as well as the construction of P2P UPIR schemes that
utilize query hops to mitigate loss of privacy against other users.

Acknowledgements

We would like to thank the referees for their helpful remarks and suggestions.

References

1. J. Domingo-Ferrer, Coprivacy: towards a theory of sustainable privacy, in Proceedings of the 2010 International
Conference on Privacy in Statistical Databases (PSD 2010), LNCS, 6344 (2010), 258–268.

2. J. Domingo-Ferrer and M. Bras-Amorós, Peer-to-peer user-private information retrieval, in Proceedings of the
2008 International Conference on Privacy in Statistical Databases (PSD 2008), LNCS, 5262 (2008), 315–323.

3. J. Domingo-Ferrer, M. Bras-Amorós, Q. Wu and J. Manjón, User-private information retrieval based on a peer-

to-peer community, Data & Knowledge Engineering, 68 (2009), 1237–1252.
4. M. Garey and D. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H.

Freeman, 1979.
5. J. Lee and D. Stinson, A combinatorial approach to key predistribution for distributed sensor networks, in Wireless

Communications and Networking Conference (WCNC 2005), IEEE, 2 (2005), 1200–1205.
6. A. Pfitzmann and M. Hansen, A terminology for talking about privacy by data minimization: anonymity, unlink-

ability, undetectability, unobservability, pseudonymity, and identity management, version 0.34, 2010. Available
from: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf.

7. D. Stinson, “Combinatorial Designs: Constructions and Analysis,” Springer-Verlag, 2003.
8. K. Stokes and M. Bras-Amorós, Optimal configurations for peer-to-peer user-private information retrieval, Com-

puters and Mathematics with Applications, 59 (2010), 1568–1577.
9. K. Stokes, and M. Bras-Amorós, On query self-submission in peer-to-peer user-private information retrieval, in

Proceedings of the 4th International Workshop on Privacy and Anonymity in the Information Society (PAIS
2011), ACM (2011).

10. K. Stokes, and M. Bras-Amorós, Combinatorial structures for an anonymous data search protocol, in Workshop
on Computational Security, Centre de Recerca Matemàtica (CRM), Barcelona, Spain (2011).

19

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

	Extended Combinatorial Constructions for Peer-to-peer User-Private Information Retrieval

