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Abstract. Real hyperelliptic curves admit two structures suitable for cryptog-

raphy — the Jacobian (a finite abelian group) and the infrastructure. Mireles

Morales described precisely the relationship between these two structures, and
made the assertion that when implemented with balanced divisor arithmetic,

the Jacobian generically yields more efficient arithmetic than the infrastruc-

ture for cryptographic applications. We confirm that this assertion holds for
genus two curves, through rigorous analysis and the first detailed numerical

performance comparisons, showing that cryptographic key agreement can be
performed in the Jacobian without any extra operations beyond those required

for basic scalar multiplication. We also present a modified version of Mireles

Morales’ map that more clearly reveals the algorithmic relationship between
the two structures.

1. Introduction

In 1976, Diffie and Hellman [3] introduced their celebrated key agreement proto-
col. While they originally described their scheme in the context of finite fields, other
suitable finite abelian groups have since been successfully employed. In particular,
the Jacobian of a hyperelliptic curve over a finite field was first proposed for this
purpose by Koblitz [12], spawning a great deal of work on the subject; see [2] for a
partial survey.

The majority of work on hyperelliptic curve cryptosystems has been confined to
so-called imaginary hyperelliptic curves, those originally proposed in [12]. However,
two other models are available, including the more general real model, which often
arises naturally in constructive methods for generating cryptographically suitable
curves. In addition to the Jacobian, the real model admits a second structure called
the infrastructure. Although not a group, it was nevertheless shown by Scheidler,
Stein, and Williams [15] that it could also be used for cryptographic purposes.
First attempts to describe arithmetic in the Jacobian and the infrastructure of a
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real model required extra adjustment steps that were not required in the imag-
inary model. Consequently, the real model was deemed to be less desirable for
cryptographic applications due to its slower performance in practice.

Recent work on arithmetic in the real model has begun to close this performance
gap. Galbraith et al. [8] introduced the notion of balanced divisors for arithmetic in
the Jacobian, which heuristically removed almost all adjustment steps. Jacobson et
al. [9] described improvements to scalar multiplication in the infrastructure. In the
variable base case, where the base divisor is an input parameter, a technique was
introduced in which all adjustment steps were eliminated heuristically at the cost of
a small precomputation. In the fixed base case, a modified algorithm was described
that requires no adjustment steps and in which divisor additions were replaced by
the faster “baby step” operation.

Although both the Jacobian and the infrastructure can be used for cryptographic
applications, it was originally not clear exactly how they were related, or which one
offered faster performance in practice. In unpublished work, Mireles Morales [14]
described the relationship between the infrastructure and a particular cyclic sub-
group of the Jacobian. He showed explicitly that these two structures are equivalent
in the sense that any computation in one structure can be reduced to an analogous
computation in the other. Furthermore, he made the claim that when coupled with
the balanced divisor arithmetic from [8], performing the desired computations in
the Jacobian should always be more efficient than in the infrastructure. However,
he did not take into the account the improved infrastructure arithmetic from [9] in
his analysis.

In this paper, we investigate the assertion by Mireles Morales, considering state-
of-the-art algorithms for arithmetic in both settings, including the results of [9]. We
confirm that scalar multiplication in the Jacobian using balanced divisor represen-
tatives is slightly faster than the corresponding operations in the infrastructure. We
describe how to perform both types of scalar multiplication in the Jacobian using
the same performance improvements from the infrastructure. We formally analyze
the cost of the resulting algorithms as compared with those in the infrastructure,
and provide numerical experiments showing that key agreement using the Jaco-
bian is slightly faster in genus two. We also present a modified version of Mireles
Morales’ map that clarifies the algorithmic relationship between the Jacobian and
the infrastructure.

We stress that the main contribution of this paper is the analytical comparison
between scalar multiplication in the Jacobian and the infrastructure using the lat-
est algorithms, answering the question of which setting is faster based on operation
counts. The numerical results we provide are meant only to support these results
and give a relative performance comparison with the imaginary case. We use a com-
mon hardware and software platform in order to provide a fair comparison. Divisor
arithmetic is done using the affine representation in all cases, because projective for-
mulas in the real case are still under development and have not yet been published.
For these reasons, a highly-optimized dedicated software implementation using, for
example, special types of defining equations and coordinate systems, is beyond the
scope of this paper.

This paper is organized as follows. We describe real hyperelliptic curves and the
Jacobian in Section 2, as well as algorithms for computing in the Jacobian using
balanced divisors as presented in [8]. In Section 3, we review the infrastructure
of a real hyperelliptic curve and the main arithmetic operations in that context.
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Mireles Morales’ map between infrastructure and Jacobian [14] and our modified
map are presented in Section 4. The improved infrastructure arithmetic of [9] takes
advantage of certain heuristics involving “holes” (i.e. missing images) in this map;
these holes and their properties are the subject of Section 5. We describe how re-
sults of Fontein [6] justify the heuristic assumptions used in the arithmetic from [9],
and how these can be applied analogously in the Jacobian setting. The resulting
scalar multiplication algorithms in both settings, using fixed and variable base di-
visors, are discussed in Section 6; this includes a comparative analysis. Numerical
data supporting our analysis is presented in Section 7, followed by conclusions and
suggestions for future work in Section 8.

2. Hyperelliptic curves and balanced divisors

Much of the literature on hyperelliptic curve cryptography considers imaginary
hyperelliptic curves which have one rational point at infinity. Here, every degree
zero divisor class contains a unique reduced representative, and the resulting efficient
divisor arithmetic has been investigated extensively. In contrast, real models have
two rational infinite points, so any degree zero divisor class generally contains a large
number of reduced divisors. Thus, additional conditions are required in order to
establish a unique representation for each degree zero divisor class. In [8], Galbraith
et al. introduced a representation of elements in the Jacobian of a real hyperelliptic
curve which is balanced at the two points at infinity. In this section, we briefly review
the main definitions and operations for real hyperelliptic curves using balanced
divisors. For more details, we refer the reader to [4], [5], and [8].

Throughout, let k = Fq be a finite field of prime power order q, k[x] the ring of
polynomials in x over k, and k(x) the field of rational functions in x over k.

Definition 2.1. A hyperelliptic curve C of genus g (defined) over k is an affine
curve that is absolutely irreducible, smooth, and given by an equation of the form

C : y2 + h(x)y = f(x) ,

where f, h ∈ k[x] satisfy one of the following two conditions:

1. deg(f) = 2g + 1, f is monic, and h = 0 if q is odd whereas deg(h) ≤ g if q is
even. In this case, C is said to be imaginary ;

2. deg(f) = 2g + 2, f is monic and h = 0 if q is odd, whereas f has leading
coefficient e2 + e for some e ∈ k∗ and h is monic of degree g + 1 if q is even.
In this case, C is said to be real.1

The coordinate ring of C is k[C] = k[x, Y ]/(Y 2 + h(x)Y − f(x)) = k[x, y], and
its function field is k(C) = k(x, y). The roots of the curve equation C are y and
−(y + h(x)) ∈ k[C], and the hyperelliptic involution on C sends one root to the
other.

When C is imaginary, it has a unique k-rational point at infinity, denoted by
∞, whereas if C is real, there are two k-rational infinite points on C, denoted
by ∞+ and ∞−, respectively. For real models, we denote by ν∞+ and ν∞− the
two corresponding discrete valuations on k(C); it is straightforward to see that
v∞+(y) = v∞−(y) = −(g+ 1). We fix an embedding of k(C) into the field k((x−1))
of Puiseux series in x−1 over k, the completion of k(x) with respect to both ∞+

1If q is even, the variable transformation y → y + exg+1 produces an isomorphic curve of the
form y2 + h(x)y = F (x) with deg(F ) ≤ 2g + 1. Following [8], we will not consider such models

here.
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and∞−. Then the floor function on k((x−1)) is well-defined on k(C); in particular,
byc and −byc − h(x) are polynomials in k[x] of degree g + 1. Following [8], we let
a+ and a− be their respective leading coefficients, so {a+, a−} = {1,−1} if q is
odd and {a+, a−} = {e, e + 1} (with e as given in Definition 2.1) if q is even. The
quantities byc, a+ and a− are required in several algorithms later on.

For any hyperelliptic curve C over k, we denote by Div0(C) its group of degree
zero divisors on C defined over k. Henceforth, all divisors are assumed to be defined
over k. The hyperelliptic involution on C naturally extends to divisors, and the
image of a divisor D under this map is denoted by D.

We denote by div(α) the principal divisor of α ∈ k(C)∗. Two divisors D1, D2 ∈
Div0(C) are (linearly) equivalent, denoted D1 ≡ D2, if they differ by a principal
divisor. The(degree zero) divisor class group, or Jacobian, of C over k, denoted
Cl0(C), is the group of divisor classes under linear equivalence. The class of a
divisor D ∈ Div0(C) is written as [D].

A divisor D is affine if it is not supported at infinite points. Any affine semi-
reduced divisor D on C is determined by its Mumford representation consisting of
a pair of polynomials Q,P ∈ k[x] where Q is monic of degree deg(D) and divides
f + hP − P 2. The divisor D is uniquely represented by Q and P (mod Q), so we
write D = (Q,P ). D is reduced if deg(Q) ≤ g. If C is imaginary, then every degree
zero divisor class has a unique representative whose affine part is reduced, whereas
if C is real, then each such class contains many divisors with reduced affine support.
To establish a unique representation of divisor classes for real models, Galbraith et
al. in [8] introduced the effective k-rational degree g divisor

D∞ =
⌈g

2

⌉
∞+ +

⌊g
2

⌋
∞−

and showed that every element of Cl0(C) has a unique representative of the form
D −D∞, where

D = D′ + n∞+ + (g − n− deg(D′))∞−

is an effective k-rational divisor of degree g whose affine part D′ is reduced. D is
the balanced representative of its class and is written as D = (D′, n) for brevity.
Note that the effectiveness of D forces 0 ≤ n ≤ g− deg(D′). We will argue later on
that generically, almost all balanced divisors have n = 0; see Section 5.

Henceforth, up to and including Section 5, we only consider real hyperelliptic
curves. In the sequel, we will require the following balanced representations:

Example 2.2. For any real hyperelliptic curve of genus g, we have the following
balanced representations:

a) The balanced representative of the principal divisor class is ((1, 0), dg/2e).
b) The balanced representative of [∞+ −∞−] is ((1, 0), dg/2e+ 1).
c) The balanced representative of [∞− −∞+] is ((1, 0), dg/2e − 1).

Definition 2.3 (Definition 5 of [8]). For any two divisors D1 and D2, the integers
ω+ and ω− are said to be a pair of counterweights for D1 and D2 if

D1 ≡ D2 + ω+∞+ + ω−∞− .

The set of all pairs of counterweights for D1 and D2 is denoted by ω(D1, D2).

2.1. The Jacobian operation using balanced divisors. In this section, we
summarize the group operation on the Jacobian using balanced representatives.
The main algorithms for Jacobian arithmetic as introduced in [8] are given below.
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Throughout, we assume that C is a real hyperelliptic curve of genus g over k = Fq,
(although Algorithm 1 applies equally to imaginary hyperelliptic curves).

Algorithms 1 and 2 are simply Cantor’s well-known divisor addition and reduc-
tion of balanced divisors, respectively, with the relevant counterweights included in
the output.

Algorithm 1 Divisor Addition

Input: Two semi-reduced affine divisors D′1 = (Q1, P1), and D′2 = (Q2, P2).
Output: (D′, (ω+, ω−)) = add(D′1, D

′
2), whereD′ = (Q,P ) is a semi-reduced affine

divisor, and (ω+, ω−) ∈ ω(D′1 +D′2, D
′).

1: Use the extended Euclidean algorithm to find polynomials s′, e1, e2 ∈ Fq[x] such
that

s′ = gcd(Q1, Q2) = e1Q1 + e2Q2

2: Use the extended Euclidean algorithm to find polynomials s, c1, c2 ∈ Fq[x] such
that

s = gcd(s′, P1 + P2 + h) = c1s
′ + c2(P1 + P2 + h)

3: Let s1 = c1e1, s2 = c1e2, and s3 = c2, so that

s = s1Q1 + s2Q2 + s3(P1 + P2 + h)

4: Set

Q =
Q1Q2

s2
and P ≡ s1Q1P2 + s2Q2P1 + s3(P1P2 + f)

s
(mod Q)

5: return (Q,P ) and (deg(s),deg(s))

The output of Algorithm 2 is reduced, but need not be in balanced form. Algo-
rithms 3 and 4 accomplish this task. To see that these two algorithms are correct,
consider a reduced input divisor D0 = ((Q0, P0), n0), and let D′0 = (Q0, P0) be the
affine part of D0. If (D′1, (ω

+, ω−)) is the output of either Algorithm 3 or 4, then
D′0 ≡ D′1 + ω+∞+ + ω−∞−. Thus,

D0 = D′0 + n0∞+ + (g − n0 − deg(D′0))∞− −D∞
≡ D′1 + (n0 + ω+)∞+ + (g − n0 − deg(D′0) + ω−)∞− −D∞
= (D′1, n1) ,

where n1 = n0 + ω+. Therefore, if D0 is not balanced, i.e. n0 does not satisfy the
condition 0 ≤ n0 ≤ g − deg(Q0), then we can compute the balanced representative
of the divisor class [D0] by applying the appropriate number of successive red∞+ or
red∞− steps to D0 and updating n0 in the process. When n0 > g − deg(Q0), then
red∞+ (Algorithm 3) must be applied to decrease the value of n0, whereas when
n0 < 0, we use red∞− (Algorithm 4) to increase the value of n0.

As pointed out in Remark 2 of [8], Algorithm 3 can be interpreted generically as
composition with ∞+ −∞−; similarly, Algorithm 4 corresponds to composition by
its negative ∞− −∞+. Algorithms 6 and 7 support this observation; see Section 5
for further details.
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Algorithm 2 Divisor Reduction

Input: A semi-reduced affine divisor D′0 = (Q0, P0) of degree d0 ≥ g + 1.
Output: (D′1, (ω

+, ω−)) = red(D′0), where D′1 = (Q1, P1) is a reduced affine divi-
sor, and (ω+, ω−) ∈ ω(D′0, D

′
1).

1: Set (ω+, ω−) = (0, 0)
2: while d0 > g do
3: if d0 ≥ g + 2 then

4: Let Q1 =
f−P0h−P 2

0

Q0

5: Let P1 = (−h− P0) (mod Q)1
6: Set d1 = deg(Q1)
7: if the leading term of P0 is a+x

g+1 then
8: Update (ω+, ω−) = (ω+ + d0 − g − 1, ω− + g + 1− d1)
9: else if the leading term of P0 is a−x

g+1 then
10: Update (ω+, ω−) = (ω+ + g + 1− d1, ω− + d0 − g − 1)
11: else
12: Update (ω+, ω−) = (ω+ + d0−d1

2 , ω− + d0−d1

2 )
13: end if
14: else
15: Compute the leading coefficient a of (P0 + byc)/Q0

16: Let P1 = aQ0 − P0 + h

17: Let Q1 =
P 2

1 +hP1−f
Q0

made monic

18: Set d1 = deg(Q1)
19: Update (ω+, ω−) = (ω+ + d0 − g − 1, ω− + g + 1− d1)
20: end if
21: Set Q0 = Q1, P0 = P1, and d0 = d1;
22: end while
23: return (Q1, P1), and (ω+, ω−).

Algorithm 3 Balancing Step

Input: A reduced affine divisor D′0 = (Q0, P0) of degree d0.
Output: (D′1, (ω

+, ω−)) = red∞+(D′0), where D′1 = (Q1, P1) is a reduced affine
divisor of degree d1, and (ω+, ω−) ∈ ω(D′0, D

′
1).

1: P ′ = byc+ ((P0 − byc) (mod Q0))

2: Q1 = P ′2+hP ′−f
Q0

made monic

3: P1 = −h− P ′ (mod Q1)
4: d1 = deg(Q1)
5: (ω+, ω−) = (d0 − g − 1, g + 1− d1)
6: return (Q1, P1) and (ω+, ω−)

Note that when Algorithm 3 is applied to the affine part of a divisor without
considering the value of n, it corresponds exactly to the baby step operation in the
infrastructure (see Section 3). Similarly, Algorithm 4 corresponds to an inverse (or
backward) infrastructure baby step.

For any two balanced divisors D1 and D2 on C, the balanced representative of
the class of D1+D2 is denoted by D1⊕D2, so [D1]+[D2] = [D1⊕D2]. Algorithm 5
computes the divisor D1 ⊕D2, and is essentially Algorithm 4 of [8]. At most dg/2e
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Algorithm 4 Inverse Balancing Step

Input: A reduced affine divisor D′0 = (Q0, P0) of degree d0.
Output: (D′1, (ω

+, ω−)) = red∞−(D′0) =, where D′1 = (Q1, P1) is a reduced affine
divisor of degree d1, and (ω+, ω−) ∈ ω(D′0, D

′
1).

1: P ′ = −byc − h(x) + ((P0 + byc+ h(x)) (mod Q0))

2: Q1 = P ′2+hP ′−f
Q0

made monic

3: P1 = −h− P ′ (mod Q1)
4: d1 = deg(Q1)
5: (ω+, ω−) = (g + 1− d1, d0 − g − 1)
6: return (Q1, P1) and (ω+, ω−)

reduction steps (steps 3-7) are required in Algorithm 5 obtain a reduced divisor.
Since generically, almost all balanced divisors are of the form D = (D′, 0), generally
no balancing steps (steps 8-16) are needed.

Algorithm 5 Divisor Class Addition

Input: Two balanced divisors D1 = (D′1, n1) and D2 = (D′2, n2).
Output: The balanced divisor (D′3, n3) = D1 ⊕D2 equivalent to D1 +D2.

1: Call Algorithm 1 on inputs D′1 and D′2 to obtain (D′3, (a, b)) = add(D′1, D
′
2)

2: Set ω+ = n1 + n2 + a and ω− = 2g − deg(D′1)− deg(D′2)− n1 − n2 + b
3: while deg(D′3) > g + 1 do
4: Call Algorithm 2 on input D′3 to obtain D′, (a, b) = red(D′3)
5: Update (ω+, ω−) = (ω+ + a, ω− + b)
6: Set D′3 = D′

7: end while
8: while ω+ < dg/2e or ω− < bg/2c do
9: if ω+ > ω− then

10: Call Algorithm 3 on input D′3 to obtain (D′, (a, b)) = red∞+(D′3)
11: else
12: Call Algorithm 4 on input D′3 to obtain (D′, (a, b)) = red∞−(D′3)
13: end if
14: Update (ω+, ω−) = (ω+ + a, ω− + b)
15: Set D′3 = D′

16: end while
17: n3 = ω+ − dg/2e
18: return D3 = (D′3, n3)

Of particular interest in cryptographic applications is the special case of addi-
tion or subtraction by the class [∞+ − ∞−] as described in Algorithms 6 and 7,
respectively. This is used, for example, in round 1 of the Diffie-Hellman protocol if
∞+ −∞− is chosen as public base divisor and scalar multiplication is performed
using the non-adjacent form of the scalars. Here, Example 2.2 shows that compo-
sition and reduction (steps 1 and 3-7 of Algorithm 5, respectively) are unnecessary,
and only one balancing step is needed.

To prove Algorithms 6 and 7 correct, set d = deg(D′) and note that

D ± (∞+ −∞−) = D′ + (n± 1)∞+ + (g − n− d∓ 1)∞− −D∞ .
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Algorithm 6 Addition by [∞+ −∞−]

Input: A balanced divisor D = (D′, n).
Output: The balanced divisor D ⊕ ((1, 0), dg/2e+ 1).

1: if n = g − deg(D′) then
2: Call Algorithm 3 on input D′ to obtain (E′, (a, b)) = red∞+(D′)
3: return (E′, 0)
4: else
5: return (D′, n+ 1)
6: end if

Algorithm 7 Subtraction by [∞+ −∞−]

Input: A balanced divisor D = (D′, n)
Output: A balanced divisor equivalent to D ⊕ ((1, 0), dg/2e − 1)

1: if n = 0 then
2: Call Algorithm 4 on input D′ to obtain (E′, (a, b)) = red∞−(D′)
3: return (E′, g − deg(E′))
4: else
5: return (D′, n− 1)
6: end if

If 1 ≤ n ≤ g − d − 1, then this is balanced, else the output (E′, (a, b)) of step 2 of
both algorithms satisfies

D ± (∞+ −∞−) ≡ E′ + (n± 1 + a)∞+ + (g − n− d∓ 1 + b)∞− −D∞ .

If n = g − d, then Algorithm 6 calls Algorithm 3 which produces a = d − g − 1,
so n + 1 + a = 0. If n = 0, then Algorithm 7 calls Algorithm 4 which produces
a = g + 1− deg(E′), so n− 1 + a = g − deg(E′).

Our last algorithm (Algorithm 8) is Algorithm 5 in [8] which describes how to
compute a balanced representative of the inverse of a divisor class. Note that there
are minor errors on lines 4 (m1 instead of n1) and 7 (0 instead of n1) in [8] which
are corrected here.

For the correctness of Algorithm 8, observe that the conjugate divisor of (Q0, P0)
is D′ as given in step 4. Moreover, D∞ = D∞ if g is even, and D∞ = D∞− (∞+−
∞−) if g is odd. Hence

D0 = D′ + (g − deg(Q0)− n0)∞+ + n0∞− −D∞
if g is even and

D0 = D′ + (g − deg(Q0)− n0)∞+ + n0∞− + (∞+ −∞−)−D∞
if g is odd. So no balancing is needed unless g is odd and n0 = 0, in which case a
subtraction by ∞+ −∞− (Algorithm 7) produces a balanced divisor.

3. Infrastructure

We summarize the main properties of the infrastructure; details can be found in
[18] and [16]. As before, let C : y2 + h(x)y = f(x) be a real hyperelliptic curve
of genus g over k = Fq with coordinate ring k[C]. The infinite degree zero divisor
∞+ −∞− plays an important role here. The order R in Cl0(C) of the class of this
divisor is the regulator of C. The divisor R[∞+−∞−] is principal and is the divisor

Advances in Mathematics of Communications Volume 8, No. 4 (2014), 389–406



Comparison of scalar multiplication 397

Algorithm 8 Divisor Inversion

Input: A balanced divisor divisor D0 = ((Q0, P0), n0)
Output: A balanced divisor D1 = ((Q1, P1), n1) such that [D1] = −[D0]

1: if Q0 = 1 then
2: return D0

3: else
4: Let D′ = (Q0, (−h− P0 (mod Q0)))
5: if g is even then
6: return (D′, g − deg(Q0)− n0)
7: else if g is odd and n0 > 0 then
8: return (D′, g − n0 − deg(Q0) + 1)
9: else

10: Call Algorithm 7 on input (D′, g − deg(Q0)− n0) to obtain (D′1, n1)
11: return (D′1, n1)
12: end if
13: end if

of a fundamental unit of k[C], i.e. a generator of the infinite cyclic group k[C]∗/k∗.
The quotient |Cl0(C)|/R, i.e. the index of the cyclic subgroup G = 〈[∞+ −∞−]〉
in Cl0(C), is equal to the ideal class number of k[C]. This index is small for most
real hyperelliptic curves, and in fact frequently Cl0(C) = G. Since the Hasse-Weil
bounds establish (

√
q − 1)2g ≤ |Cl0(C)| ≤ (

√
q + 1)2g, the regulator is generally of

magnitude qg.
Every non-zero k[C]-ideal a is a k[x]-module of rank 2 with a basis of the form

{SQ, S(P + y)} where S,Q, P ∈ k[x], and Q divides P 2 + Ph − f ; write a =
[SQ, S(P + y)]. If we take S and Q to be monic, then Q is unique and P is unique
modulo Q. The ideal a is primitive if S = 1 and reduced if additionally deg(Q) ≤ g.
Hence, the primitive k[C]-ideals are in one-to-one correspondence with the semi-
reduced affine divisors on C by virtue of mapping the k[C]-ideal a = [Q, (P + y)] to
the affine divisor div(a) = (Q,P ). Under this mapping, reduced ideals are sent to
reduced affine divisors. In fact, this map is simply a restriction of the well-known
isomorphism from the group of non-zero fractional k[C]-ideals under multiplication
onto the group of affine divisors on C defined over k under addition. The degree
of a k[C]-ideal a is deg(a) = deg(div(a)), i.e. the degree of the corresponding affine
divisor.

A k[C]-ideal a is principal if it consists of all the k[C]-multiples of some fixed
element α ∈ a; write a = (α). Every non-zero principal k[C]-ideal has a generator
α with −R < ν∞+(α) ≤ 0 that is unique up to k∗-multiples.

Definition 3.1. The infrastructure of C is defined to be the set R of all reduced
principal ideals of k[C]. For every ideal a = (α) ∈ R with −R < ν∞+(α) ≤ 0, the
distance of a is defined to be δ(a) = −ν∞+(α). If a, b are infrastructure ideals with
δ(a) ≥ δ(b), then the distance from b to a is δ(a, b) = δ(a)− δ(b).

Example 3.2. The trivial k[C]-ideal a = (1) has basis {1, y} and is hence an
infrastructure ideal of distance zero.

The fact that no two infrastructure ideals have the same distance imposes an
ordering on R by distance:

R = {a1, a2, ..., ar}, 0 = δ1 < δ2 < · · · < δr < R ,
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where a1 = (1) and δi = δ(ai) for 1 ≤ i ≤ r.
Computing the distance of a given infrastructure ideal is computationally infea-

sible — this is equivalent to the Principal Ideal Problem in k[C] — but there is an
efficient way to compute the relative distance of two successive ideals. In [9] and
[18], it was shown that

(3.1) δi+1 = δi + g + 1− deg(Qi) for 0 ≤ i ≤ r − 1 ,

where ai+1 = [Qi, Pi + y]. It is now easy to see that δ1 = 0, δ2 = g + 1, 1 ≤
δi − δi−1 ≤ g for 3 ≤ i ≤ r, and R ≤ δr + g. Moreover, induction yields

(3.2) g + i− 1 ≤ δi ≤ (i− 1)g + 1 for 2 ≤ i ≤ r .

Also r + g ≤ R ≤ rg + 1. Since R is generally exponentially large compared to g,
this implies |R| = r ≈ R ≈ qg.

The infrastructure supports two main operations. The first operation, named
the baby step, computes ai+1 from ai, along with the relative distance δi+1 − δi.
Formulas for the baby step are given in [18] and [10]. The second operation on R,
referred to as the giant step and denoted ⊗, computes the first reduced ideal a⊗ b
equivalent to the ideal product ab when applying reduction. In fact, R is “almost”
an abelian group under ⊗, failing associativity only barely. More exactly, if a, b ∈ R,
then

δ(a⊗ b) = δ(a) + δ(b)− d with 0 ≤ d ≤ 2g .

Here, the “shortfall” d in distance tends to be very small compared to δ(a) and
δ(b), and is effectively computable as part of the giant step. It is expected to be
equal to dg/2e; see (H2) in Section 5. For more details, we refer the reader to [9],
[11], and [16].

Since baby steps almost always produce an increase of 1 in distance (see (H1) in
Section 5), we see that for almost all integers N ∈ [g+1, R−1], there exists an ideal
a ∈ R with δ(a) = N . However, δ2 = g + 1 implies that there are no infrastructure
ideals of distance between 1 and g, and there are generally other integers that do
not occur as distance values. In general, there exists a unique ideal ai ∈ R with
δ(ai) ≤ N < δ(ai+1), referred to as the infrastructure ideal below N . It can be
efficiently computed, along with the “error” N − δ(ai), using a technique akin to
exponentiation.

Remark 3.3. Let ai = [Qi−1, Pi−1 + y] be an infrastructure ideal, and let Di =
(Qi−1, Pi−1) be the corresponding reduced affine divisor. Then we can apply Algo-
rithm 6 to Di to obtain an output Di+1 = ((Qi, Pi), (ω

+, ω−)). By Proposition 2
of [8], Di+1 = Di−div((y−Pi)/Qi). Thus, the infrastructure ideal ai+1 = div(Di+1)
corresponding to Di+1 is the next ideal ai+1 = [Qi, Pi + y] in the ordering on R,
obtained by applying a baby step to ai, and ai = ((y − Pi)/Qi)ai+1. Moreover,
δ(ai+1) = −ω+ + δ(ai), so δ(ai+1, ai) = −ω+.

Remark 3.4. Algorithm 3 is exactly the same as the continued fraction algorithm
which was described in [18] and [9]. Therefore, r− 1 successive applications of this
algorithm to the trivial divisor D1 = (1, 0) generates the entire infrastructure.

4. Two maps from R to Cl0(C)

Mireles Morales in [14] introduced a map from the infrastructure into the degree
zero divisor class group of a real hyperelliptic curve C. In this section, we first review
the properties of his map. Then we define a second map between the same sets and
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show that this new map leads to efficiency improvements in scalar multiplication
using balanced divisors.

Mireles Morales’ map is defined as follows:

ψ : R → Cl0(C), ψ(a) = [div(a)− deg(a)∞−] .

This is the restriction to the infrastructure of the group homomorphism that sends
any non-zero fractional k[C]-ideal a to the degree zero divisor class [div(a)−deg(a)∞−].

Mireles Morales proved that ψ(a) = ψ(b) + δ(b, a)[∞+ −∞−] (Proposition 9 of
[14]) and hence ψ(a) = δ(a)[∞+ −∞−] (Theorem 1 of [14]). Thus, the image of ψ
consists precisely of the multiples [m(∞+ −∞−)] ∈ G for which m occurs as the
distance of some infrastructure ideal.

We wish to relate the infrastructure to the Jacobian in a different manner that
highlights the connection to balanced divisors. To that end, we define a second map
between these two structures, with the difference that representatives of the classes
in the image of this map are all balanced. Specifically, we define

φ : R → Cl0(C), φ(a) = [div(a) + (g − deg(a))∞− −D∞] .

Thus, φ maps any infrastructure ideal a to the class represented by the balanced
divisor (div(a), 0). Since balanced representatives are unique, we see that φ is
injective.

Remark 4.1. For any infrastructure ideal a, φ(a) = ψ(a) − dg/2e[∞+ −∞−]. In
other words, ψ can be interpreted as a shift of φ by dg/2e with respect to the class
of ∞+ −∞−.

This is essentially the observation made in Remark 5 of [14]. It also implies that
the map ψ, as a translation of the injective map φ, is itself injective. The following
result is an immediate consequence of Remark 4.1 and Theorem 1 of [14].

Proposition 4.2. For a ∈ R, φ(a) = (δ(a)− dg/2e) [∞+ −∞−].

Let B be the set of all classes in Cl0(C) whose balanced representative is of
the form (D′, 0), and recall that G = 〈[∞+ −∞−]〉 ⊆ Cl0(C). The next theorem
characterizes the image of the map φ.

Theorem 4.3. The image of R under φ is equal to G ∩B.

Proof. The definition of φ and Proposition 4.2 immediately yield Img(φ) ⊂ G ∩B.
Conversely, let [D] ∈ G∩B, so there exists m ∈ Z such that [D] = m[∞+−∞−].

Without loss of generality, assume that 0 < m < R. Let a be the infrastructure
ideal below m+ dg/2e. Then δ(a)−dg/2e ≤ m < δ(b)−dg/2e, where b is obtained
by applying a baby step to a. If δ(a)−dg/2e = m, then [D] ∈ Img(φ) and the proof
is complete. So suppose to the contrary that δ(a)− dg/2e < m < δ(b)− dg/2e, and
let n = m+ dg/2e − δ(a). By Proposition 4.2, φ(a) = (δ(a)− dg/2e)[∞+ −∞−], so

m[∞+ −∞−] = [n(∞+ −∞−) + φ(a)]

= [div(a) + n∞+ + (g − deg(a)− n)∞− −D∞] .(4.1)

On the other hand, by Remark 3.3 we have δ(b)−δ(a) = −ω+ = g+1−deg(a); thus,
0 < n < g − deg(a). Therefore, the right hand side of (4.1), which is the balanced
representative of m[∞+ − ∞−], is of the form of (D′, n) where n 6= 0. Thus,
m[∞+ −∞−] /∈ B which contradicts our assumption. Hence, Img(φ) = G ∩B.
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An important consequence of the results above, as already noted in [14], is that
the infrastructure discrete logarithm problem (computing δ(a) given a) can be re-
duced to the discrete logarithm problem in G, and vice versa. Thus, in terms of
security, either R and G can be used for cryptographic purposes. To implement
arithmetic in Cl0(C) using the infrastructure, it is most efficient if one avoids the
elements outside of the image of the map φ. This raises the obvious question of how
frequently these non-images occur.

5. Hole elements

Definition 5.1. The elements in Cl0(C) \B are called hole elements (or holes for
short). A hole divisor is the balanced representative of a hole.

In other words, hole divisors are balanced divisors of the form (D′, n) with n 6= 0.
By Theorem 4.3, the image of φ consists precisely of those multiples of ∞+ −∞−,
i.e. classes in G, that are not holes. Recall that the image of ψ consisted of exactly
those scalar multiples of [∞+−∞−] whose scalar does not occur as an infrastructure
distance. Informally, the map ψ misses distance values in its image, while φ misses
hole divisors. Note also that by Remark 4.1, m[∞+−∞−] is a hole element in G if
and only if m+ dg/2e (mod R) does not occur as an infrastructure distance value.

Divisor class addition involving hole divisors generally requires balancing steps
after divisor addition and reduction, which incur additional computational cost.
Therefore, we are interested in avoiding hole elements in practice. If the number of
holes is small, then the chance of avoiding them in our arithmetic is high.

Fontein [6] determined the number of hole elements for the entire collection of
infrastructures (arising from all ideal classes) of a global hyperelliptic function field.
In essence, he proved that the probability that a divisor class is a hole element is
asymptotically equal to 1/q, and gave an asymptotic error term, for g fixed and
q → ∞. Unfortunately, his results cannot be applied to our setting directly, as his
count includes all infrastructures, whereas we only consider the principal ideal class.

Recall from Section 3 that the quotient H = |Cl0(C)|/R is equal to the ideal
class number of k[C]. Heuristics of Friedman and Washington [7] predict that
H is generally small; for most real hyperelliptic curves, it is one (in which case
Cl0(C) = G). Since the size of the infrastructure is governed by R, H = 1 represents
the cryptographically ideal scenario, since R = |Cl0(C)| is maximal in this situation.
Thus, in most cases we expect that the principal infrastructure is in fact the only
infrastructure, and Fontein’s results would apply. It is an open problem to specialize
Fontein’s results to the principal infrastructure in the case that H exceeds one.

When the ideal class number is one, applying Fontein’s result yields the following.

Remark 5.2. For sufficiently large q and a real hyperelliptic curve C over k = Fq

with ideal class number one, the probability that a divisor class is a hole element is
asymptotically equal to 1/q.

Even if H > 1, we expect this probability to be roughly H/q. When H = 1,
Remark 5.2 implies the following properties, which were stated in [9] as heuristics
for the set of infrastructure ideals. Although they are proved through Fontein’s
results, we label them (H1) and (H2) in keeping with the notation of [9].

For sufficiently large q, the following properties hold with probability 1−O(q−1):

(H1) δ(ai+1)− δ(ai) = 1 for 2 ≤ i ≤ |R|.
(H2) δ(a⊗ b) = δ(a) + δ(b)− dg/2e for a, b ∈ R \ {0}.
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By (3.1), (H1) is equivalent to deg(ai) = g; if deg(ai) < g, then the ideal ai,
and its corresponding divisor div(ai), are said to be degenerate. (H1) asserts that
degenerate ideals (and divisors) are extremely rare for large q. Note also that if
ai0 is the first degenerate infrastructure ideal in the distance ordering, then for
2 ≤ i ≤ i0, we have δ(ai) = g + i − 1, and hence φ(ai) = (bg/2c + i − 1)(∞+∞−).
In particular, φ(ai) = [i(∞+ −∞−)] up to the first degenerate ideal when g = 2, 3.

(H2) is equivalent to the assumption that reducing the ideal product ab to obtain
a ⊗ b requires exactly dg/2e reduction steps. Moreover, (H1) and (H2) imply that
there is no need to keep track of relative distances when performing baby steps and
giant steps. For specific ideals, relative distances may not be exactly as given in
(H1) and (H2). However, in practice, when computing an infrastructure ideal via
a succession of baby steps and giant steps — as is the case, for example, for two
communicants executing the Diffie-Hellman protocol in the infrastructure — one
expects to obtain the same target ideal even if these steps are executed in different
sequence and relative distances are not computed, since the same degenerate ideals
(i.e. exceptions to (H1) and (H2)) are encountered in the respective computations.
Numerical computations of [9] and those found in Section 7 confirm this.

Based on (H1) and (H2), Jacobson et al. obtained improvements to scalar multi-
plication in the infrastructure in [9]. The map φ makes it possible to extend these
improvements to G, deriving properties of balanced divisors that are analogous to
(H1) and (H2).

For sufficiently large q, the following properties hold with probability 1−O(q−1):

(H1’) φ(ai+1)− φ(ai) = [∞+ −∞−] for 2 ≤ i ≤ |R|.
(H2’) φ(a⊗ b) = φ(a) + φ(b) for a, b ∈ R \ {0}.

(H1’) follows directly from Proposition 4.2 and shows that the baby step on R
generically corresponds to adding [∞+ − ∞−] in G. To see that the map φ is
generically additive as asserted by (H2’), note that

φ(a⊗ b) = (δ(a⊗ b)− dg/2e)[∞+ −∞−]

= (δ(a) + δ(b)− dg/2e − dg/2e)[∞+ −∞−]

= φ(a) + φ(b).

In contrast, ψ(ab) = ψ(a) +ψ(b)−dg/2e[∞+−∞−], so ψ is generally not additive.
(H1’) and (H2’) yield several more useful results.

Remark 5.3. LetD0 be an affine reduced divisor, and (D1, (ω
+, ω−)) = red∞+(D0).

Then generically, D1 ≡ D0 + (∞+ −∞−).

To see this, recall that in Algorithm 3, (ω+, ω−) = (d0 − g − 1, g + 1 − d1).
generically d0 = d1 = g; thus, (ω+, ω−) = (−1, 1).

Remark 5.4. The balanced representative of the conjugate of a balanced divisor
D = ((Q,P ), 0) is generically equal to D = ((Q,−P − h), 0) when g is even.

This is clear from Algorithm 8, since generically, deg(Q) = g and n0 = n1 = 0.
For odd genus, by Algorithm 8, D = ((Q,−P − h), 1). Therefore, one balancing
step is needed to obtain the balanced representative of [D].

Remark 5.5. Generically for two balanced divisors D1 and D2, dg/2e reduction
steps, no balancing steps for even genus and one for odd genus are needed to compute
the balanced divisor D1 ⊕D2.
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This important observation was already made in [8]. Note that Remark 5.5
implies in particular that in practice the n values of balanced divisor representatives
need not be computed, as they will generically be equal to zero. Once again, if Alice
and Bob perform the Diffie-Hellman protocol in G using balanced divisor arithmetic
without computing any n values and without any balancing (just addition and
reduction), they are expected to generate the same shared key divisor class, since
they encounter the same hole divisors (i.e. exceptions to Remarks 5.3-5.5) in their
respective sequences of reduction steps. Our computations in genus two confirm
this; see Section 7.

6. Scalar multiplication on R and G

In this section, we compare scalar multiplication on the infrastructure R and the
group G = 〈[∞+ −∞−]〉 (represented via balanced divisors) on real hyperelliptic
curves and on Cl0(C) (represented via reduced divisors) on imaginary hyperelliptic
curves. For the first two cases, we assume the assertions of Section 5 about de-
generate infrastructure ideals and hole elements in G, respectively. In particular,
we ignore relative distances in R and n values in G, and perform no “adjustment
steps” as described in [9] in the former setting and no balancing in the latter. This
implies in particular that the number of Jacobian operations to compute a divisor
class [aD], given a scalar a and a base divisor D = (Q,P ), is identical for imaginary
and real hyperelliptic curves.

We also consider two standard scenarios occurring in discrete logarithm based
cryptography. The fixed base scenario performs scalar multiplication on a fixed
base divisor in the group settings, and generates a reduced principal ideal of a
fixed distance in the infrastructure setting. This situation occurs in round 1 of the
Diffie-Hellman protocol for example. For imaginary hyperelliptic curves, this base
is usually a divisor of the form P − ∞ where P is a k-rational point on C. For
the group setting on real hyperelliptic curves, we assume that this base divisor is
∞+ −∞− written in balanced form as ((1, 0), dg/2e+ 1); the fact that this divisor
does not satisfy Remark 5.4 does not matter by our observations at the end of
Section 5. For the infrastructure, the fixed base scenario is described in [9]. The
variable base scenario performs scalar multiplication on an arbitrary divisor, as is
the case, for example, in round 2 of the Diffie-Hellman protocol.

Table 1 shows the operation counts for scalar multiplication on the Jacobian of
an imaginary hyperelliptic curve (“Imag”) as well as the group G (“Real”) and
the infrastructure (“Infra”) of a real hyperelliptic curve. As in [9], we assume a
random scalar of some bit length l given in non-adjacent form, so we expect that
about one third of the signed digits are non-zero. In each setting, we count the
number of doubles, adds, baby steps, and the expected number of multiplications
in Fq required in genus two based on the explicit formulas for divisor arithmetic
of [13] and [4]. For simplicity, we count squarings and multiplications in Fq as the
same operation. Adds refer to giant steps in the infrastructure and to Jacobian
operations in the group G (Algorithm 5) when C is real and in Cl0(C) when C
is imaginary. Doubles are simply adds of two identical divisors. Baby steps have
the usual meaning in the infrastructure, and refer to addition or subtraction of
∞+−∞− (Algorithm 6 or 7) in G when C is real and of a fixed degenerate divisor
P −∞ in Cl0(C) when C is imaginary. For the infrastructure, we use the operation
counts of VAR-DIST2 and FIXED-DIST2 as given in Table 1 of [9]. Note that in
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the fixed base scenario in G and the imaginary case, the first double can be replaced
by a baby step, which is reflected in our counts.

Table 1. Operation counts for scalar multiplication in Cl0(C) for
C imaginary and in G and R for C real

Doubles Adds Baby Steps Field Ops (g = 2)

Fixed Base, Imag l − 1 0 l/3 + 1 30.66l − 16

Fixed Base, Real, Even Genus l − 1 0 l/3 + 1 33l − 25

Fixed Base, Real, Odd Genus l − 1 0 4l/3

Fixed Base, Infra l 0 l/3 33l

Variable Base, Imag l l/3 0 30.66l

Variable Base, Real, Even Genus l l/3 0 40.33l

Variable Base, Real, Odd Genus l l/3 4l/3

Variable Base, Infra l l/3 dg/2e 40.33l + 6

Table 1 shows that for even genus, the group operation counts are identical for
the group settings on real and imaginary curves; the infrastructure operation count
is only very slightly higher. Thus, at the level of just counting baby steps and giant
steps, performance of scalar multiplication exhibits essentially equal performance
in all three settings under consideration. For odd genus, we observe that the per-
formance for the group setting on real curves is expected to be slower than the
other two, due to the single baby step required for balancing after each divisor class
addition or double.

For genus two, we expect G to be slightly faster than R at the level of field
operations, and the imaginary case to still be the fastest, due to the higher costs of
divisor arithmetic in the real case. We investigate practical performance for genus
two in the next section.

7. Numerical results

We implemented the Diffie-Hellman protocol in the Jacobian and infrastructure
of genus two real hyperelliptic curves, using the fixed and variable base scalar mul-
tiplication algorithms described in the previous section. We employed the explicit
formulas from [4] for divisor arithmetic in both cases, in place of the general-purpose
formulas given in Subsection 2.1. For comparison purposes, we also implemented
Diffie-Hellman in the Jacobian of genus two imaginary hyperelliptic curves, using
the explicit formulas from [13]. In the fixed base scenario, we used a base divisor of
the form P −∞ with P a k-rational point on the curve; this is the closest analogy
to performing baby steps in the real model. We used the affine representation of
divisors and applied the standard isomorphic transformations to the defining equa-
tions of our curves [13, 4] to minimize the number of non-zero coefficients, thereby
maximizing the efficiency of the curve arithmetic.

We used the computer algebra library NTL [17] for finite field and polynomial
arithmetic and the GNU C++ compiler version 4.4.5. The computations described
below were performed on an Intel Core i72600 3.4 GHz computer running Linux.

All three protocols were implemented using genus 2 curves defined over Fp and
F2n . The finite field was chosen so that the size of the infrastructures and Jacobians
under consideration were roughly 2160, 2224, 2256, 2384, and 2512. Thus, for F2n , we
used n ∈ {80, 112, 128, 192, 256}, and for Fp, we chose a random prime p such that
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p2 had the required bit length. These settings offer 80, 112, 128, 192, and 256 bits
of security, respectively, for cryptographic protocols based on the corresponding
discrete logarithm problem. NIST [1] currently recommends these five levels of
security for key establishment in U.S. Government applications.

For each finite field, we randomly selected 100,000 curves and executed Diffie-
Hellman once for each curve. The random scalars used had 160, 224, 256, 384,
and 512 bits, respectively, ensuring that the number of bits of security provided
corresponds to the five levels recommended by NIST (again, considering only generic
attacks). In order to provide a fair comparison between the three algorithms, the
same sequence of random exponents was used for each run of the key agreement
protocol. As the algorithms in the real model rely on our heuristic assumptions
to ensure correctness, we also checked that the resulting key divisors were in fact
equal; across all our computations, this was always the case.

Tables 2 and 3 contain the average CPU time in milliseconds for each of the three
algorithms. The headings “Imag”, “Real” and “Infra” have the same meaning as
for Table 1. The times required to generate domain parameters are not included
in these timings, as domain parameter generation is a one-time computation. As
predicted by our analysis, the algorithms using the Jacobian in the real model
slightly out-perform those using the infrastructure. The imaginary model is still
the fastest of all, but by no more than approximately 1.7 milliseconds for q even
and 1.1 milliseconds for q odd.

Table 2. Scalar multiplication and key exchange timings over Fp

(in milliseconds).

Security
Level Fixed Base Variable Base Total Diffie-Hellman

(in bits) Imag Real Infra Imag Real Infra Imag Real Infra

80 1.114 1.162 1.173 1.227 1.374 1.383 2.341 2.536 2.556
112 1.648 1.732 1.749 1.817 2.033 2.022 3.465 3.766 3.771
128 2.288 2.388 2.404 2.525 2.811 2.818 4.813 5.199 5.223
192 4.397 4.610 4.634 4.802 5.353 5.364 9.200 9.963 9.997
256 6.526 6.799 6.813 7.117 7.856 7.864 13.643 14.655 14.677

Table 3. Scalar multiplication and key exchange timings over F2n

(in milliseconds).

Security
Level Fixed Base Variable Base Total Diffie-Hellman

(in bits) Imag Real Infra Imag Real Infra Imag Real Infra

80 3.119 3.351 3.408 3.540 4.079 4.096 6.660 7.430 7.504
112 1.767 1.844 1.854 1.931 2.126 2.143 3.698 3.970 3.996
128 2.055 2.131 2.145 2.231 2.443 2.450 4.286 4.574 4.595
192 4.545 4.781 4.807 4.937 5.459 5.532 9.482 10.240 10.339
256 8.393 8.969 8.996 9.119 10.213 10.223 17.512 19.182 19.219

8. Conclusions and future directions

Our analysis and numerical experiments show that Mireles Morales’ claim that
the Jacobian of a real hyperelliptic curve is more efficient than the infrastructure
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for cryptographic applications is true for even genus curves. According to Table 1,
Jacobian arithmetic needs more baby steps than infrastructure when the genus of
the curve is odd. It should be possible to mirror and interpret the scalar multipli-
cation algorithms for the Jacobian described here in the infrastructure. However,
this will not result in anything more efficient, and it seems more natural to describe
the algorithms in the Jacobian.

On the other hand, our analysis suggests that scalar multiplication in the infras-
tructure may be faster than in the Jacobian of an odd-genus real hyperelliptic curve
due to the fact that each Jacobian operation requires generically at least one baby
step for balancing. Our current work includes a more careful investigation of this
case, especially for genus three. One possible approach to closing the performance
gap is to apply the same trick from the infrastructure described in [9] to the Jaco-
bian to reduce the number of baby steps. Another idea for reducing the number
of balancing steps required for odd genus, suggested by Galbraith, is to work with
divisors of degree g + 1 instead of fully reducing after each operation. The advan-
tage is that no balancing steps would be required, but this approach would incur
the additional cost of performing divisor arithmetic with higher-degree operands. A
careful analysis of these approaches will be required to determine which will work
best in practice.

The current state-of-the-art is that scalar multiplication on imaginary and real
hyperelliptic curves of even genus both require exactly the same number of opera-
tions on divisors, with no adjustment or balancing steps required in practice in the
real case. The only remaining difference in performance is in the costs of the basic
divisor operation. Baby steps in genus two require five fewer field operations than
adding the divisor of a point in the imaginary case, but additions and doublings re-
quire four more field multiplications in the real case. However, there has been much
less work on explicit formulas for divisor arithmetic on real model. It is conceivable
that more attention to this setting may result in a sufficient decrease in the number
of field multiplications required per operation, so that the real model will achieve
the same or better performance compared to the imaginary model, and become an
accepted alternative for practical applications.
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