Loading [MathJax]/jax/output/SVG/jax.js
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Public key protocols over the ring E(m)p

Abstract / Introduction Related Papers Cited by
  • In this paper we use the nonrepresentable ring E(m)p to introduce public key cryptosystems in noncommutative settings and based on the Semigroup Action Problem and the Decomposition Problem respectively.
    Mathematics Subject Classification: Primary: 94A60; Secondary: 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Anshel, M. Anshel, B. Fisher and D. Goldfeld, New key agreement protocols in braid group cryptography, in Topics Crypt. - CT-RSA 2001 (ed. D. Naccache), Springer, 2001, 13-27.doi: 10.1007/3-540-45353-9_2.

    [2]

    I. Anshel, M. Anshel and D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett., 6 (1999), 1-5.doi: 10.4310/MRL.1999.v6.n3.a3.

    [3]

    G. M. Bergman, Some examples in PI ring theory, Israel J. Math., 18 (1974), 257-277.

    [4]

    J.-J. Climent, F. Ferrández, J.-F. Vicent and A. Zamora, A nonlinear elliptic curve cryptosystem based on matrices, Appl. Math. Comput., 174 (2006), 150-164.doi: 10.1016/j.amc.2005.03.032.

    [5]

    J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End(Zp×Zp2), Proc. 11th Int. Conf. Comput. Math. Methods Sci. Engin. (CMMSE 2011), 2011, 357-364.doi: 10.1080/00207160.2012.696105.

    [6]

    J.-J. Climent, P. R. Navarro and L. Tortosa, On the arithmetic of the endomorphisms ring End (Zp×Zp2), Appl. Algebr. Eng, Comm., 22 (2011), 91-108.doi: 10.1007/s00200-011-0138-4.

    [7]

    J.-J. Climent, P. R. Navarro and L. Tortosa, Key exchange protocols over noncommutative rings. The case of End (Zp×Zp2), Int. J. Comput. Math., 89(13-14) (2012), 1753-1763.doi: 10.1080/00207160.2012.696105.

    [8]

    J.-J. Climent, P. R. Navarro and L. Tortosa, An extension of the noncommutative Bergman's ring with a large number of noninvertible elements, Appl. Algebr. Eng. Comm., 25 (2014), 347-361.doi: 10.1007/s00200-014-0231-6.

    [9]

    W. D. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE Trans. Inform. Theory, 22 (1976), 644-654.

    [10]

    T. ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory, 31 (1985), 469-472.doi: 10.1109/TIT.1985.1057074.

    [11]

    A. A. Kamal and A. M. Youssef, Cryptanalysis of a key exchange protocol based on the endomorphisms ring End (Zp×Zp2), Appl. Algebr. Eng. Comm., 23) (2012), 143-149.doi: 10.1007/s00200-012-0170-z.

    [12]

    K. H. Ko, J. W. Lee and T. Thomas, Towards generating secure keys for braid cryptography, Design. Code. Cryptogr., 45 (2007), 317-333.doi: 10.1007/s10623-007-9123-0.

    [13]

    K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J.-S. Kang and C. Park, New public-key cryptosystem using braid groups, Adv. Crypt. - CRYPTO 2000 (ed. M. Bellare), Springer, 2000, 166-183.doi: 10.1007/3-540-44598-6_10.

    [14]

    A. Mahalanobis, A simple generalization of the ElGamal cryptosystem to non-abelian groups, Commun. Algebra, 36 (2008), 3878-3889.doi: 10.1080/00927870802160883.

    [15]

    A. Mahalanobis, The Diffie-Hellman key exchange and non-abelian nilpotent groups, Israel J. Math., 165 (2008), 161-187.doi: 10.1007/s11856-008-1008-z.

    [16]

    A. Mahalanobis, Are matrices useful in public-key cryptography?, Int. Math. Forum, 8 (2013), 1939-1953.doi: 10.12988/imf.2013.310187.

    [17]

    A. Mahalanobis, The MOR cryptosystem and finite p-groups, in Algorithmic Problems of Group Theory, Their Complexity, and Applications to Cryptography, Amer. Math. Soc., 2015, 81-95.doi: 10.1090/conm/633/12653.

    [18]

    G. Maze, C. Monico and J. Rosenthal, Public key cryptography based on semigroup actions, Adv. Math. Commun., 1 (2007), 489-507.doi: 10.3934/amc.2007.1.489.

    [19]

    A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1996.

    [20]

    A. G. Myasnikov, V. Shpilrain and A. Ushakov, Group-Based Cryptography, Birkhäuser Verlag, Basel, 2008.

    [21]

    S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New public key cryptosystem using finite non abelian groups, in Adv. Crypt. - CRYPTO 2001 (ed. J. Kilian), Springer, 2001, 470-485.doi: 10.1007/3-540-44647-8_28.

    [22]

    R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM, 21 (1978), 120-126.doi: 10.1145/359340.359342.

    [23]

    E. Sakalauskas and T. Burba, Basic semigroup primitive for cryptographic session key exchange protocol (SKEP), Inf. Technol. Control, 28 (2003), 76-80.

    [24]

    V. Shpilrain and A. Ushakov, A new key exchange protocol based on the decomposition problem, Contemp. Math., Amer. Math. Soc., 418 (2006), 161-167.doi: 10.1090/conm/418/07954.

    [25]

    V. Shpilrain and G. Zapata, Combinatorial group theory and public key cryptography, Appl. Algebr. Eng. Comm., 17 (2006), 291-302.doi: 10.1007/s00200-006-0006-9.

    [26]

    V. M. Sidelnikov, M. A. Cherepnev and V. V. Yashchenko, Systems of open distribution of keys on the basis of noncommutative semigroups, Russ. Ac. Sc. Doklady Math., 48 (1994), 384-386.

    [27]

    E. Stickel, A new method for exchanging secret keys, in Proc. 3rd Int. Conf. Inform. Techn. Appl. (ICITA'05), Sidney, 2005, 426-430.

    [28]

    D. R. Stinson, Cryptography. Theory and Practice, CRC Press, Boca Raton, 1995.

    [29]

    T. Thomas and A. K. Lal, A zero-knowledge undeniable signature scheme in non-abelian group setting, Int. J. Netw. Secur., 6 (2008), 265-269.

    [30]

    H. Yoo, S. Hong, S. Lee, J. Lim, O. Yi and M. Sung, A proposal of a new public key cryptosystem using matrices over a ring, in Information Security and Privacy, Springer, 2000, 41-48.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return