Processing math: 100%
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the multiple threshold decoding of LDPC codes over GF(q)

A part of the results of this paper were presented at the 2015 IEEE International Symposium on Information Theory, June 2015, Hong Kong [7].

The research was carried out at the IITP RAS and supported by the Russian Science Foundation (project no. 14-50-00150)

Abstract / Introduction Full Text(HTML) Figure(5) / Table(2) Related Papers Cited by
  • We consider decoding of LDPC codes over GF(q) with a harddecision low-complexity majority algorithm, which is a generalization of the bit-flipping algorithm for binary LDPC codes. A modification of this algorithm with multiple thresholds is suggested. A lower estimate on the decoding radius realized by the new algorithm is derived. The estimate is shown to be better than the estimate for a single threshold majority decoder. At the same time, introducing multiple thresholds does not affect the order of decoding complexity.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Tanner graph

    Figure 2.  Single threshold decoding. The lower estimate L(W) is valid only up to W, that is why the line is dashed after the point. Points A, C and B have coordinates (W/2; W/2), (W(S); W(S)) and (W; W/2) accordingly

    Figure 3.  A subgraph of Tanner graph

    Figure 4.  Multiple thresholds. The lower estimate L(W) is valid only up to W, that is why the line is dashed after the point

    Figure 5.  The dependency of α(S) and α(M) on

    Table 1.  Results for q=16

    (, n0); R δ ω ρ(S) ρ(M) ρ(M)/ρ(S)
    (45, 52); 0.135 0.6130 0.0103 0.0053 0.0065 1.226
    (43, 58); 0.26 0.4855 0.0095 0.0049 0.0060 1.224
    (40, 64); 0.375 0.3797 0.0085 0.0044 0.0054 1.227
    (31, 62); 0.5 0.2808 0.0072 0.0037 0.0046 1.243
    (24, 64); 0.625 0.1935 0.0053 0.0028 0.0034 1.214
    (24, 96); 0.75 0.1168 0.0033 0.0017 0.0021 1.235
    (26,208);0.875 0.0507 0.0015 0.0008 0.0010 1.250
     | Show Table
    DownLoad: CSV

    Table 2.  Results for q=64

    (, n0); R δ ω ρ(S) ρ(M) ρ(M)/ρ(S)
    (21, 24); 0.125 0.7355 0.0156 0.0082 0.0099 1.207
    (24, 32); 0.25 0.5863 0.0131 0.0068 0.0083 1.221
    (20, 32); 0.375 0.4585 0.0104 0.0054 0.0066 1.222
    (22, 44); 0.5 0.3445 0.0081 0.0042 0.0052 1.238
    (27, 72); 0.625 0.2415 0.0059 0.0031 0.0038 1.226
    (24, 96); 0.75 0.1485 0.0037 0.0019 0.0024 1.263
    (26,208); 0.875 0.0661 0.0017 0.0009 0.0011 1.222
     | Show Table
    DownLoad: CSV
  • [1] N. Alon, Eigenvalues and expanders, Combinarorica, 6 (1986), 83-96.  doi: 10.1007/BF02579166.
    [2] A. Barg and A. Mazumdar, On the number of errors correctable with codes on graphs, IEEE Trans. Inf. Theory, 57 (2011), 910-919.  doi: 10.1109/TIT.2010.2094812.
    [3] J. Boutros, O. Pothier and G. Zémor, Generalized low density (Tanner) codes, in Proc. IEEE Int. Conf. Comm. , Vancouver, 1999,441-445. doi: 10.1109/ICC.1999.767979.
    [4] D. Burshtein, On the error correction of regular LDPC codes using the flipping algorithm, IEEE Trans. Inf. Theory, 54 (2008), 517-530.  doi: 10.1109/TIT.2007.913261.
    [5] M. C. Davey and D. MacKay, Low-density parity check codes over GF(q), IEEE Commun. Lett., 2 (1998), 165-167.  doi: 10.1109/ITW.1998.706440.
    [6] A. Frolov and V. Zyablov, Asymptotic estimation of the fraction of errors correctable by q-ary LDPC codes, Probl. Inf. Transm., 46 (2010), 142-159.  doi: 10.1134/S0032946010020043.
    [7] A. Frolov and V. Zyablov, On the multiple threshold decoding of LDPC codes over GF(q), in Proc. 2015 IEEE Int. Symp. Inf. Theory, Hong Kong, 2015,2673-2677. doi: 10.1109/ISIT.2015.7282941.
    [8] R. G. GallagerLow-Density Parity-Check Codes, MIT Press, Cambridge, 1963.  doi: 10.1109/TIT.1962.1057683.
    [9] F. Garcia-FerreroD. Declercq and J. Valls, Non-binary LDPC decoder based on symbol flipping with multiple votes, IEEE Commun. Lett., 18 (2014), 749-752. 
    [10] N. Kahale, On the second eigenvalue and linear expansion of regular graphs, in Proc. IEEE Symp. Found. Comp. Sci. , 1992,296-303. doi: 10.1109/SFCS.1992.267762.
    [11] S. Kovalev, Decoding of low-density codes, Probl. Inf. Transm., 27 (1991), 51-56. 
    [12] M. Lentmaier and K. Zigangirov, On generalized low-density parity-check codes based on Hamming component codes, IEEE Commun. Lett., 3 (1999), 248-250.  doi: 10.1109/4234.781010.
    [13] A. LubotzkyR. Phillips and P. Sarnak, Ramanujan graphs, Combinarorica., 8 (1988), 261-277.  doi: 10.1007/BF02126799.
    [14] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1991.
    [15] G. A. Margulis, Explicit constructions of concentrators, Probl. Inform. Transm., 9 (1975), 325-332. 
    [16] J. MasseyThreshold Decoding, MIT Press, Cambridge, 1963. 
    [17] P. Rybin, On the error-correcting capabilities of low-complexity decoded irregular LDPC codes, in Proc. 2014 IEEE Int. Symp. Inf. Theory, Honolulu, 2014,3165-3169. doi: 10.1109/ISIT.2014.6875418.
    [18] M. Sipser and D. A. Spielman, Expander codes, IEEE Trans. Inf. Theory, 42 (1996), 1710-1722.  doi: 10.1109/18.556667.
    [19] H. Song and J. R. Cruz, Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording, IEEE Transact. Magnetics, 39 (2003), 1081-1087. 
    [20] R. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inf. Theory, 27 (1981), 533-547.  doi: 10.1109/TIT.1981.1056404.
    [21] J. Webber, T. Nishimura, T. Ohgane and Y. Ogawa, A study on adaptive thresholds for reduced complexity bit-flip decoding, in Proc. Int. Conf. Adv. Commun. Techn. , 2012,497-501.
    [22] J. Webber, T. Nishimura, T. Ohgane and Y. Ogawa, Performance investigation of reduced complexity bit-flipping using variable thresholds and noise perturbation, in Proc. Int. Conf. Adv. Commun. Techn. , 2014,206-2013. doi: 10.1109/ICACT.2014.6779175.
    [23] K. ZigangirovA. PusaneD. Zigangirov and D. Costello, On the error-correcting capability of LDPC codes, Probl. Inf. Transm., 44 (2008), 214-225.  doi: 10.1134/S0032946008030046.
    [24] V. ZyablovR. Johannesson and M. Lonċar, Low-complexity error correction of Hammingcode-based LDPC codes, Probl. Inf. Trans., 45 (2009), 95-109.  doi: 10.1134/S0032946009020021.
    [25] V. Zyablov and M. Pinsker, Estimation of the error-correction complexity for Gallager lowdensity codes, Probl. Inf. Transm., 11 (1975), 18-28. 
  • 加载中

Figures(5)

Tables(2)

SHARE

Article Metrics

HTML views(2187) PDF downloads(301) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return