We consider discrete memoryless channels with input alphabet size n and output alphabet size m , where for some constant . The channel transition matrix consists of entries that, before being normalized, are independent and identically distributed nonnegative random variables and such that . We prove that in the limit as the capacity of such a channel converges to almost surely and in , where denotes the entropy of . We further show that, under slightly different model assumptions, the capacity of these random channels converges to this asymptotic value exponentially in . Finally, we present an application in the context of Bayesian optimal experiment design.
Citation: |
Figure 1.
For different alphabet sizes
Figure 2.
For different alphabet sizes
[1] |
S. Arimoto, An algorithm for computing the capacity of arbitrary discrete memoryless channels, IEEE Transactions on Information Theory, 18 (1972), 14-20.
![]() ![]() |
[2] |
D. P. Bertsekas,
Convex Optimization Theory Athena Scientific optimization and computation series, Athena Scientific, 2009.
![]() ![]() |
[3] |
E. Biglieri, J. Proakis and S. Shamai, Fading channels: Information-theoretic and communications aspects, IEEE Transactions on Information Theory, 44 (1998), 2619-2692.
doi: 10.1109/18.720551.![]() ![]() ![]() |
[4] |
R.E. Blahut, Computation of channel capacity and rate-distortion functions, IEEE Transactions on Information Theory, 18 (1972), 460-473.
![]() ![]() |
[5] |
S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities Oxford University Press, Oxford, 2013, URL http://dx.doi.org/10.1093/acprof:oso/9780199535255.001.0001, A nonasymptotic theory of independence.
![]() ![]() |
[6] |
A. G. Busetto, A. Hauser, G. Krummenacher, M. Sunnåker, S. Dimopoulos, C. S. Ong, J. Stelling and J. M. Buhmann, Near-optimal experimental design for model selection in systems biology., Bioinformatics, 29 (2013), 2625-2632, URL http://dblp.uni-trier.de/db/journals/bioinformatics/bioinformatics29.html#BusettoHKSDOSB13.
doi: 10.1093/bioinformatics/btt436.![]() ![]() |
[7] |
M. Chiang, Geometric programming for communication systems, Foundations and Trends in Communications and Information Theory, 2 (2005), 1-154.
doi: 10.1561/0100000005.![]() ![]() |
[8] |
M. Chiang and S. Boyd, Geometric programming duals of channel capacity and rate distortion, IEEE Transactions on Information Theory, 50 (2004), 245-258.
doi: 10.1109/TIT.2003.822581.![]() ![]() ![]() |
[9] |
T. M. Cover and J. A. Thomas,
Elements of Information Theory Wiley Interscience, 2006.
![]() ![]() |
[10] |
L. Devroye, Nonuniform Random Variate Generation Springer-Verlag, New York, 1986, URL http://dx.doi.org/10.1007/978-1-4613-8643-8.
![]() ![]() |
[11] |
R. Durrett,
Probability: Theory and Examples Cambridge University Press, 2010.
![]() ![]() |
[12] |
M.B. Hastings, Superadditivity of communication capacity using entangled inputs, Nature Physics, 5 (2009), 255-257.
doi: 10.1038/nphys1224.![]() ![]() |
[13] |
A. S. Holevo,
Quantum Systems, Channels, Information De Gruyter Studies in Mathematical Physics 16,2012.
![]() ![]() |
[14] |
J. Huang and S.P. Meyn, Characterization and computation of optimal distributions for channel coding, IEEE Transactions on Information Theory, 51 (2005), 2336-2351.
doi: 10.1109/TIT.2005.850108.![]() ![]() ![]() |
[15] |
D.V. Lindley, On a measure of the information provided by an experiment, Ann. Math. Statist., 27 (1956), 986-1005.
doi: 10.1214/aoms/1177728069.![]() ![]() ![]() |
[16] |
M. Raginsky and I. Sason, Concentration of measure inequalities in information theory, communications, and coding, Foundations and Trends in Communications and Information Theory, 10 (2013), 1-246.
doi: 10.1561/0100000064.![]() ![]() |
[17] |
R. T. Rockafellar,
Convex Analysis Princeton Landmarks in Mathematics and Physics Series, Princeton University Press, 1997.
![]() ![]() |
[18] |
W. Rudin,
Principles of Mathematical Analysis 3rd edition, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976, International Series in Pure and Applied Mathematics.
![]() ![]() |
[19] |
C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27 (1948), 379-423,623-656, URL http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf.
doi: 10.1002/j.1538-7305.1948.tb01338.x.![]() ![]() ![]() |
[20] |
T. Sutter, D. Sutter, P. Mohajerin Esfahani and J. Lygeros, Efficient approximation of channel capacities, Information Theory, IEEE Transactions on, 61 (2015), 1649-1666.
doi: 10.1109/TIT.2015.2401002.![]() ![]() ![]() |
[21] |
A.M. Tulino and S. Verdú, Random matrix theory and wireless communications, Foundations and Trends in Communications and Information Theory, 1 (2014), 1-182.
doi: 10.1561/0100000001.![]() ![]() |