[1]
|
T. L. Alderson, Extending MDS codes, Ann. Comb., 9 (2005), 125-135.
doi: 10.1007/s00026-005-0245-7.
|
[2]
|
I. Bouyukliev and J. Simonis, Some new results on optimal codes over F5, Des. Codes Cryptogr., 30 (2003), 97-111.
doi: 10.1023/A:1024763410967.
|
[3]
|
S. Bouyuklieva and P. R. J. Östergảrd, New constructions of optimal self-dual binary codes of length 54, Des. Codes Cryptogr., 41 (2006), 101-109.
doi: 10.1007/s10623-006-0018-2.
|
[4]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system, J. Symb. Comput., 24 (1997), 235-265.
|
[5]
|
Y. L. Cao and Y. Gao, Repeated root cyclic Fq-linear codes over Fql, Finite Fields Appl., 31 (2015), 202-227.
doi: 10.1016/j.ffa.2014.10.003.
|
[6]
|
Y. L. Cao, X. X. Chang and Y. Cao, Constacyclic Fq-linear codes over Fql, Appl. Algebra Engrg. Comm. Comput., 26 (2015), 369-388.
doi: 10.1007/s00200-015-0257-4.
|
[7]
|
Y. L. Cao, J. Gao and F.-W. Fu, Semisimple multivariable Fq-linear codes over Fql, Des. Codes Cryptogr., 77 (2015), 153-177.
doi: 10.1007/s10623-014-9994-9.
|
[8]
|
B. C. Chen and H. W. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inform. Theory, 64 (2018), 5776-5782.
doi: 10.1109/TIT.2017.2748955.
|
[9]
|
B. K. Dey and B. S. Rajan, Fq-linear cyclic codes over Fqm: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.
doi: 10.1007/s10623-003-4196-x.
|
[10]
|
S. Dodunekov and I. Landgev, On near-MDS codes, J. Geom., 54 (1995), 30-43.
doi: 10.1007/BF01222850.
|
[11]
|
R. Gabrys, E. Yaakobi, M. Blaum and P. H. Siegel, Constructions of partial MDS codes over small fields, IEEE Internat. Symposium Inform. Theory, 65 (2019), 3692-3701.
doi: 10.1109/TIT.2018.2890201.
|
[12]
|
M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE Internat. Symposium Inform. Theory, (2008), 1954-1957.
|
[13]
|
W. C. Huffman, Cyclic Fq-linear Fqt-codes, Int. J. Inf. and Coding Theory, 1 (2010), 249-284.
doi: 10.1504/IJICOT.2010.032543.
|
[14]
|
W. C. Huffman, Self-dual Fq-linear Fqt-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.
doi: 10.3934/amc.2013.7.57.
|
[15]
|
W. C. Huffman, On the theory of Fq-linear Fqt-codes, Adv. Math. Commun., 7 (2013), 349-378.
doi: 10.3934/amc.2013.7.349.
|
[16]
|
B. Hurley and T. Hurley, Systems of MDS codes from units and idempotents, Discrete Math., 335 (2014), 81-91.
doi: 10.1016/j.disc.2014.07.010.
|
[17]
|
L. F. Jin, S. Ling, J. Q. Luo and C. P. Xing, Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes, IEEE Trans. Inform. Theory, 56 (2010), 4735-4740.
doi: 10.1109/TIT.2010.2054174.
|
[18]
|
L. F. Jin and C. P. Xing, New MDS self-dual codes from generalized Reed-Solomon codes, IEEE Trans. Inform. Theory, 63 (2017), 1434-1438.
doi: 10.1109/TIT.2016.2645759.
|
[19]
|
T. Maruta, On the existence of cyclic and pseudo-cyclic MDS codes, Europ. J. Combinatorics, 19 (1998), 159-174.
doi: 10.1006/S0195-6698(97)90000-7.
|
[20]
|
R. M. Roth and G. Seroussi, On cyclic MDS codes of length q over GF(q), IEEE Trans. Inform. Theory, 32 (1986), 284-285.
doi: 10.1109/TIT.1986.1057151.
|
[21]
|
R. M. Roth and G. Seroussi, On generator matrices of MDS codes, IEEE Trans. Inform. Theory, 31 (1985), 826-830.
doi: 10.1109/TIT.1985.1057113.
|
[22]
|
M. J. Shi and P. Solé, Optimal p-ary codes from one-weight and two-weight codes over Fp+vFp∗, J. Syst. Sci. Complex., 28 (2015), 679-690.
doi: 10.1007/s11424-015-3265-3.
|
[23]
|
Z.-X. Wan, Cyclic codes over Galois rings∗, Algebra Colloquium, 6 (1999), 291-304.
|