[1]
|
R. J. R. Abel, F. E. Bennett and G. G. Ge, Super-simple holey steiner pentagon systems and related designs, J. Combin. Des., 16 (2008), 301-328.
doi: 10.1002/jcd.20171.
|
[2]
|
C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phy. Rev. Lett., 68 (1992), 3121-3124.
doi: 10.1103/PhysRevLett.68.3121.
|
[3]
|
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Phys. Rev. Lett., 70 (1993), 1895-1899.
doi: 10.1103/PhysRevLett.70.1895.
|
[4]
|
R. C. Bose, A note on orthogonal arrays, Ann. Math. Stat., 21 (1950), 304-305.
|
[5]
|
K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952), 426-434.
doi: 10.1214/aoms/1177729387.
|
[6]
|
G. Z. Chen, K. J. Chen and Y. Zhang, Super-simple (5, 4)-GDDs of group type gu, Front. Math. China, 9 (2014), 1001-1018.
doi: 10.1007/s11464-014-0393-3.
|
[7]
|
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman
and Hall/CRC Press, 2007.
|
[8]
|
Y. H. Chen, Constructions of Optimal Detecting Arrays of Degree 5 and Strength 2, Master Thesis, Soochow University, 2011.
|
[9]
|
P. Facchi, Multipartite entanglement in qubit systems, Rend. Lincei Mat. Appl., 20 (2009), 25-67.
doi: 10.4171/RLM/532.
|
[10]
|
P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev. A, 77 (2008), 060304, 1–4.
doi: 10.1103/PhysRevA.77.060304.
|
[11]
|
K. Q. Feng, L. F. Jin, C. P. Xing and C. Yuan, Multipartite entangled states, symmetric matrices and error-correcting codes, IEEE Trans. Inform. Theory, 63 (2017), 5618-5627.
doi: 10.1109/tit.2017.2700866.
|
[12]
|
D. Goyeneche, Z. Raissi, S. D. Martino and K. ˙Zyczkowski, Entanglement and quantum combinatorial designs, Physical Review A, 97 (2018), 062326, 1–12.
doi: 10.1103/PhysRevA.97.062326.
|
[13]
|
D. Goyeneche and K. ˙Zyczkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A, 90 (2014), 022316, 1–18.
doi: 10.1103/PhysRevA.90.022316.
|
[14]
|
A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Array: Theory and Applications, Springer-Verlag, 1999.
doi: 10.1007/978-1-4612-1478-6.
|
[15]
|
S. Hartman, On simple and supersimple transversal designs, J. Comb. Des., 8 (2000), 311-322.
doi: 10.1002/1520-6610(2000)8:5<311::AID-JCD1>3.0.CO;2-1.
|
[16]
|
W. Helwig, Absolutely maximally entangled qudit graph states, preprint, arXiv: 1306.2879.
|
[17]
|
W. Helwig, W. Cui, J. I. Latorre, A. Riera and H. K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev. A, 86 (2012), 052335, 1–5.
doi: 10.1103/PhysRevA.86.052335.
|
[18]
|
P. Horodecki, Ł. Rudnicki and K. ˙Zyczkowski, Five open problems in quantum information, preprint, arXiv: 2002.03233.
|
[19]
|
L. J. Ji and J. X. Yin, Construction of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory Ser. A, 117 (2010), 236-247.
doi: 10.1016/j.jcta.2009.06.002.
|
[20]
|
R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, Proc. R. Soc. A, 459 (2003), 2011-2032.
doi: 10.1098/rspa.2002.1097.
|
[21]
|
M. S. Li and Y. L. Wang, K-uniform quantum states arising from orthogonal arrays, Phy. Rev. A, 99 (2019), 042332, 1–7.
|
[22]
|
H. K. Lo, M. Curty and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012), 130503, 1–5.
doi: 10.1103/PhysRevLett.108.130503.
|
[23]
|
S. Q. Pang, X. Zhang, X. Lin and Q. J. Zhang, Two and three-uniform states from irredundant orthogonal arrays, NPJ Quantum Inf., 5 (2019), 1-10.
doi: 10.1038/s41534-019-0165-8.
|
[24]
|
A. J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quan-tum evolutions, Phys. Rev. A, 69 (2004), 052330, 1–10.
|
[25]
|
E. Seiden and R. Zemach, On orthogonal arrays, Ann. Math. Stat., 37 (1966), 1355-1370.
doi: 10.1214/aoms/1177699280.
|
[26]
|
C. Shi, Y. Tang and J. X. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Crypogr., 62 (2012), 131-142.
doi: 10.1007/s10623-011-9498-9.
|
[27]
|
Y. J. Zang, H. J. Zuo and Z. H. Tian, 3-uniform states and orthogonal arrays of strength 3, Int. J. Quantum Information, 17 (2019), 1950003, 1–8.
doi: 10.1142/S0219749919500035.
|
[28]
|
X. W. Zha, I. Ahmed and Y. P. Zhang, 3-uniform states and orthognal arrays, Results Phys., 6 (2016), 26-28.
|
[29]
|
X. W. Zha, C. Z. Yuan and Y. P. Zhang, Generalized criterion for a maximally multi-qubit entangled states, Laser Phys. Lett., 10 (2013), 045201, 1–6.
doi: 10.1088/1612-2011/10/4/045201.
|