Loading [MathJax]/jax/output/SVG/jax.js
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Further results on 2-uniform states arising from irredundant orthogonal arrays

  • * Corresponding author: Zihong Tian

    * Corresponding author: Zihong Tian

This work was supported by the National Natural Science Foundation of China (Grant No. 11871019) and the Graduate Innovation Project of Hebei Province (Grant No. CXZZBS2019077).

Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • The notion of an irredundant orthogonal array (IrOA) was introduced by Goyeneche and ˙Zyczkowski who showed an IrOAλ(t,k,v) corresponds to a t-uniform state of k subsystems with local dimension v (Physical Review A. 90 (2014), 022316). In this paper, we construct some kinds of 2-uniform states by establishing the existence of IrOAλ(2,5,v) for any integer v4, v6; IrOAλ(2,6,v) for any integer v2; IrOAλ(2,q,q) and IrOAλ(2,q+1,q) for any prime power q>3.

    Mathematics Subject Classification: Primary: 05B15, 81P99; Secondary: 05B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Correspondence between parameters of OAs and quantum states

    Parameters Orthogonal array Multipartite quantum state |Φ
    r Runs Number of linear terms in the state
    k Factors Number of qudits
    v Levels Dimension of the subsystem (v=2 for qubits)
    t Strength Class of entanglement (t-uniform)
     | Show Table
    DownLoad: CSV
  • [1] R. J. R. AbelF. E. Bennett and G. G. Ge, Super-simple holey steiner pentagon systems and related designs, J. Combin. Des., 16 (2008), 301-328.  doi: 10.1002/jcd.20171.
    [2] C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phy. Rev. Lett., 68 (1992), 3121-3124.  doi: 10.1103/PhysRevLett.68.3121.
    [3] C. H. BennettG. BrassardC. CrépeauR. JozsaA. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Phys. Rev. Lett., 70 (1993), 1895-1899.  doi: 10.1103/PhysRevLett.70.1895.
    [4] R. C. Bose, A note on orthogonal arrays, Ann. Math. Stat., 21 (1950), 304-305. 
    [5] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952), 426-434.  doi: 10.1214/aoms/1177729387.
    [6] G. Z. ChenK. J. Chen and Y. Zhang, Super-simple (5, 4)-GDDs of group type gu, Front. Math. China, 9 (2014), 1001-1018.  doi: 10.1007/s11464-014-0393-3.
    [7] C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Chapman and Hall/CRC Press, 2007.
    [8] Y. H. Chen, Constructions of Optimal Detecting Arrays of Degree 5 and Strength 2, Master Thesis, Soochow University, 2011.
    [9] P. Facchi, Multipartite entanglement in qubit systems, Rend. Lincei Mat. Appl., 20 (2009), 25-67.  doi: 10.4171/RLM/532.
    [10] P. Facchi, G. Florio, G. Parisi and S. Pascazio, Maximally multipartite entangled states, Phys. Rev. A, 77 (2008), 060304, 1–4. doi: 10.1103/PhysRevA.77.060304.
    [11] K. Q. FengL. F. JinC. P. Xing and C. Yuan, Multipartite entangled states, symmetric matrices and error-correcting codes, IEEE Trans. Inform. Theory, 63 (2017), 5618-5627.  doi: 10.1109/tit.2017.2700866.
    [12] D. Goyeneche, Z. Raissi, S. D. Martino and K. ˙Zyczkowski, Entanglement and quantum combinatorial designs, Physical Review A, 97 (2018), 062326, 1–12. doi: 10.1103/PhysRevA.97.062326.
    [13] D. Goyeneche and K. ˙Zyczkowski, Genuinely multipartite entangled states and orthogonal arrays, Phys. Rev. A, 90 (2014), 022316, 1–18. doi: 10.1103/PhysRevA.90.022316.
    [14] A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Array: Theory and Applications, Springer-Verlag, 1999. doi: 10.1007/978-1-4612-1478-6.
    [15] S. Hartman, On simple and supersimple transversal designs, J. Comb. Des., 8 (2000), 311-322.  doi: 10.1002/1520-6610(2000)8:5<311::AID-JCD1>3.0.CO;2-1.
    [16] W. Helwig, Absolutely maximally entangled qudit graph states, preprint, arXiv: 1306.2879.
    [17] W. Helwig, W. Cui, J. I. Latorre, A. Riera and H. K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev. A, 86 (2012), 052335, 1–5. doi: 10.1103/PhysRevA.86.052335.
    [18] P. Horodecki, Ł. Rudnicki and K. ˙Zyczkowski, Five open problems in quantum information, preprint, arXiv: 2002.03233.
    [19] L. J. Ji and J. X. Yin, Construction of new orthogonal arrays and covering arrays of strength three, J. Combin. Theory Ser. A, 117 (2010), 236-247.  doi: 10.1016/j.jcta.2009.06.002.
    [20] R. Jozsa and N. Linden, On the role of entanglement in quantum computational speed-up, Proc. R. Soc. A, 459 (2003), 2011-2032.  doi: 10.1098/rspa.2002.1097.
    [21] M. S. Li and Y. L. Wang, K-uniform quantum states arising from orthogonal arrays, Phy. Rev. A, 99 (2019), 042332, 1–7.
    [22] H. K. Lo, M. Curty and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012), 130503, 1–5. doi: 10.1103/PhysRevLett.108.130503.
    [23] S. Q. PangX. ZhangX. Lin and Q. J. Zhang, Two and three-uniform states from irredundant orthogonal arrays, NPJ Quantum Inf., 5 (2019), 1-10.  doi: 10.1038/s41534-019-0165-8.
    [24] A. J. Scott, Multipartite entanglement, quantum-error-correcting codes, and entangling power of quan-tum evolutions, Phys. Rev. A, 69 (2004), 052330, 1–10.
    [25] E. Seiden and R. Zemach, On orthogonal arrays, Ann. Math. Stat., 37 (1966), 1355-1370.  doi: 10.1214/aoms/1177699280.
    [26] C. ShiY. Tang and J. X. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Crypogr., 62 (2012), 131-142.  doi: 10.1007/s10623-011-9498-9.
    [27] Y. J. Zang, H. J. Zuo and Z. H. Tian, 3-uniform states and orthogonal arrays of strength 3, Int. J. Quantum Information, 17 (2019), 1950003, 1–8. doi: 10.1142/S0219749919500035.
    [28] X. W. ZhaI. Ahmed and Y. P. Zhang, 3-uniform states and orthognal arrays, Results Phys., 6 (2016), 26-28. 
    [29] X. W. Zha, C. Z. Yuan and Y. P. Zhang, Generalized criterion for a maximally multi-qubit entangled states, Laser Phys. Lett., 10 (2013), 045201, 1–6. doi: 10.1088/1612-2011/10/4/045201.
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(3065) PDF downloads(566) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return