Processing math: 70%
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial direct product difference sets and almost quaternary sequences

  • * Corresponding author

    * Corresponding author 

This paper is a part of Büşra Özden's PhD thesis

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • In this paper, we study the m-ary sequences with (non-consecutive) two zero-symbols and at most two distinct autocorrelation coefficients, which are known as almost m-ary nearly perfect sequences. We show that these sequences are equivalent to -partial direct product difference sets (PDPDS), then we extend known results on the sequences with two consecutive zero-symbols to non-consecutive case. Next, we study the notion of multipliers and orbit combination for -PDPDS. Finally, we present two construction methods for a family of almost quaternary sequences with at most two out-of-phase autocorrelation coefficients.

    Mathematics Subject Classification: 05B10 and 94A55.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Orbits of G=Z10×Z3 under x19x

    orbits of length 1
    (0, 0)}, {(0, 1)}, {(0, 2)}, {(5, 0)}, {(5, 1)}, {(5, 2)
    orbits of length 2
    (4, 0), (6, 0)}, {(1, 1), (9, 1)}, {(7, 0), (3, 0)}, {(8, 2), (2, 2)},
    (9, 0), (1, 0)} {(7, 2), (3, 2)}, {(7, 1), (3, 1)}, {(1, 2), (9, 2)},
    (8, 1), (2, 1)}, {(6, 2), (4, 2)}, {(6, 1), (4, 1)}, {(2, 0), (8, 0)
     | Show Table
    DownLoad: CSV

    Table 2.  Sequences, their autocorrelation and alphabet

    Construction Out-of-phase autocorrelation Alphabet
    [29], [36] 0 p-ary
    [17], [18] -1 p-ary
    [3], [10], [15], [16], [30], [32], [35], [41], [42], [43], [44] -1 binary
    [12], [27], [40], [44] ±2 binary
    [2], [40], [27], [44] (0,4) binary
    [45], [50] (0,±4) binary
    [4], [11], [44] (1,3) binary
    [25] (2p,2) or (±2p,±2) binary
    [1], [19], [21] -1 ternary
    [23] (0,3,3ζ3,3ζ23) ternary
    (0,±2i,4,2,2±2i) or (0,±2i,±2,2±2i) quaternary
    [24] (2,±2i) quaternary
    [25], [44] (0,2) quaternary
    [31] (1,±3) quaternary
    [46] (1,±(1+2i)) or (±1,3) quaternary
    [48] (pn1(p7)2,pn1(p3)2,pn) quaternary
    [6] 0 p-ary with one zero
    1 p-ary with one zero
    [38] 1 m-ary with one zero
    [13] (0,3qn1) 6-ary with one zero
    [47] (0,p(k1)n) pkn-ary with zeros
    (0,p(k1)n) pn1gcd-ary with zeros
    -ary with one zero
    Theorem 3.7 quaternary with one zero
    Proposition 7 -ary with zeros
     | Show Table
    DownLoad: CSV
  • [1] K. T. ArasuJ. F. Dillon and K. J. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.
    [2] K. T. ArasuC. DingT. HellesethP. V. Kumar and H. M. Martinsen, Almost difference sets and their sequences with optimal autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 2934-2943.  doi: 10.1109/18.959271.
    [3] T. BethD. Jungnickel and  H. LenzDesign Theory: Volume 1, Cambridge University Press, 1999. 
    [4] Y. Cai and C. Ding, Binary sequences with optimal autocorrelation, Theoretical Computer Science, 410 (2009), 2316-2322.  doi: 10.1016/j.tcs.2009.02.021.
    [5] A. Çeșmelioǧlu and O. Olmez, Graphs of vectorial plateaued functions as difference sets, Finite Fields and Their Applications, 71 (2021), 101795. doi: 10.1016/j.ffa.2020.101795.
    [6] Y. M. Chee, Y. Tan and Y. Zhou, Almost p-ary perfect sequences, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-642-15874-2_34.
    [7] I. Chih-Lin and R. D. Gitlin, Multi-code CDMA wireless personal communications networks, Proceedings IEEE International Conference on Communications ICC'95, 2 (1995), 1060-1064.  doi: 10.1109/ICC.1995.524263.
    [8] C. J. Colbourn and  J. H. DinitzHandbook of Combinatorial Designs, CRC press, 2006.  doi: 10.1201/9781420049954.
    [9] L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, American Journal of Mathematics, 57 (1935), 391-424.  doi: 10.2307/2371217.
    [10] J. F. Dillon and H. Dobbertin, New cyclic difference sets with singer parameters, Finite Fields and Their Applications, 10 (2004), 342-389.  doi: 10.1016/j.ffa.2003.09.003.
    [11] C. DingT. Helleseth and K. Y. Lam, Several classes of binary sequences with three-level autocorrelation, IEEE Transactions on Information Theory, 45 (1999), 2606-2612.  doi: 10.1109/18.796414.
    [12] C. DingT. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation, IEEE Transactions on Information Theory, 47 (2001), 428-433.  doi: 10.1109/18.904555.
    [13] V. E. Gantmakher and M. V. Zaleshin, Almost six-phase sequences with perfect periodic autocorrelation function, in International Conference on Sequences and Their Applications doi: 10.1007/978-3-319-12325-7_8.
    [14] S. W. Golomb and  G. GongSignal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511546907.
    [15] B. GordonW. Mills and L. Welch, Some new difference sets, Canadian Journal of Mathematics, 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.
    [16] M. Hall, A survey of difference sets, Proceedings of the American Mathematical Society, 7 (1956), 975-986.  doi: 10.1090/S0002-9939-1956-0082502-7.
    [17] T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Transactions on Information Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.
    [18] T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of coding theory, Vol. I, II
    [19] T. HellesethP. V. Kumar and H. Martinsen, A new family of ternary sequences with ideal two-level autocorrelation function, Des. Codes Cryptogr., 23 (2001), 157-166.  doi: 10.1023/A:1011208514883.
    [20] J. R. HollonM. Rangaswamy and P. Setlur, New families of optimal high-energy ternary sequences having good correlation properties, Journal of Algebraic Combinatorics, 50 (2019), 1-38.  doi: 10.1007/s10801-018-0835-1.
    [21] H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Transactions on Information Theory, 60 (2014), 5054-5064.  doi: 10.1109/TIT.2014.2327625.
    [22] D. Jungnickel and A. Pott, Perfect and almost perfect sequences, Discrete Applied Mathematics, 95 (1999), 331-359.  doi: 10.1016/S0166-218X(99)00085-2.
    [23] Y.-S. KimJ.-S. ChungJ.-S. No and H. Chung, On the autocorrelation distributions of Sidel'nikov sequences, IEEE Transactions on Information Theory, 51 (2005), 3303-3307.  doi: 10.1109/TIT.2005.853310.
    [24] Y.-S. Kim, J.-W. Jang, S.-H. Kim and J.-S. No, New quaternary sequences with optimal autocorrelation, ISIT, (2009), 286–289.
    [25] Y.-S. KimJ.-W. JangS.-H. Kim and J.-S. No, New quaternary sequences with ideal autocorrelation constructed from Legendre sequences, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 96 (2013), 1872-1882.  doi: 10.1587/transfun.E96.A.1872.
    [26] P. V. KumarR. A. Scholtz and L. R. Welch, Generalized bent functions and their properties, Journal of Combinatorial Theory, Series A, 40 (1985), 90-107.  doi: 10.1016/0097-3165(85)90049-4.
    [27] A. LempelM. Cohn and W. Eastman, A class of balanced binary sequences with optimal autocorrelation properties, IEEE Transactions on Information Theory, 23 (1977), 38-42.  doi: 10.1109/tit.1977.1055672.
    [28] S. L. Ma and W. S. Ng, On non-existence of perfect and nearly perfect sequences, International Journal of Information and Coding Theory, 1 (2009), 15-38.  doi: 10.1504/IJICOT.2009.024045.
    [29] S. L. Ma and B. Schmidt, On -relative difference sets, Designs, Codes and Cryptography, 6 (1995), 57-71.  doi: 10.1007/BF01390771.
    [30] A. Maschietti, Difference sets and hyperovals, Designs, Codes and Cryptography, 14 (1998), 89-98.  doi: 10.1023/A:1008264606494.
    [31] J. Michel and Q. Wang, Some new balanced and almost balanced quaternary sequences with low autocorrelation, Cryptography and Communications, 11 (2019), 191-206.  doi: 10.1007/s12095-018-0281-x.
    [32] J.-S. NoH. Chung and M.-S. Yun, Binary pseudorandom sequences of period with ideal autocorrelation generated by the polynomial , IEEE Transactions on Information Theory, 44 (1998), 1278-1282.  doi: 10.1109/18.669400.
    [33] B. Özden and O. Yayla, Cryptographic functions and bit-error-rate analysis with almost -ary sequences, International Journal of Information Security Science, 8.3 (2019), 44-52.  doi: 10.1007/s12095-020-00423-5.
    [34] B. Özden and O. Yayla, Almost p-ary sequences, Cryptography and Communications, 12 (2020), 1057-1069.  doi: 10.1007/s12095-020-00423-5.
    [35] R. E. Paley, On orthogonal matrices, Journal of Mathematics and Physics, 12 (1933), 311-320.  doi: 10.1002/sapm1933121311.
    [36] A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics, 1601, Springer-Verlag, Berlin, 1995. doi: 10.1007/BFb0094449.
    [37] K.-U. Schmidt, Quaternary constant-amplitude codes for multicode CDMA, IEEE Trans. Information Theory, 55 (2009), 1824-1832.  doi: 10.1109/TIT.2009.2013041.
    [38] X. ShiX. ZhuX. Huang and Q. Yue, A family of -ary -sequences with good autocorrelation, IEEE Communications Letters, 23 (2019), 1132-1135.  doi: 10.1109/LCOMM.2019.2915234.
    [39] G. L. Sicuranza and A. Carini, Nonlinear system identification using quasi-perfect periodic sequences, Signal Processing, 120 (2016), 174-184.  doi: 10.1016/j.sigpro.2015.08.018.
    [40] V. M. Sidel'nikov, Some k-valued pseudo-random sequences and nearly equidistant codes, Problemy Peredachi Informatsii, 5 (1969), 16-22. 
    [41] J. Singer, A theorem in finite projective geometry and some applications to number theory, Transactions of the American Mathematical Society, 43 (1938), 377-385.  doi: 10.1090/S0002-9947-1938-1501951-4.
    [42] R. G. Stanton and D. Sprott, A family of difference sets, Canadian Journal of Mathematics, 10 (1958), 73-77.  doi: 10.4153/CJM-1958-008-5.
    [43] T. Storer, Cyclotomy and Difference Sets, Lectures in Advanced Mathematics, 2, Markham Publishing Co., Chicago, IL, 1967.
    [44] X. Tang and C. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Transactions on Information Theory, 56 (2010), 6398-6405.  doi: 10.1109/TIT.2010.2081170.
    [45] X. Tang and G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Transactions on Information Theory, 56 (2010), 1278-1286.  doi: 10.1109/TIT.2009.2039159.
    [46] X. Tang and J. Lindner, Almost quadriphase sequence with ideal autocorrelation property, IEEE Signal Processing Letters, 16 (2008), 38-40. 
    [47] A. Tirkel and T. Hall, New quasi-perfect and perfect sequences of roots of unity and zero, in International Conference on Sequences and Their Applications
    [48] Q. Wang, W. Kong, Y. Yan, C. Wu and M. Yang, Autocorrelation of a class of quaternary sequences of period , preprint, arXiv: 2002.00375.
    [49] O. Yayla, Nearly perfect sequences with arbitrary out-of-phase autocorrelation, Advances in Mathematics of Communications, 10 (2016), 401-411.  doi: 10.3934/amc.2016014.
    [50] N. Y. Yu and G. Gong, New binary sequences with optimal autocorrelation magnitude, IEEE Transactions on Information Theory, 54 (2008), 4771-4779.  doi: 10.1109/TIT.2008.928999.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(3596) PDF downloads(615) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return