[1]
|
M. Ajtai, The shortest vector problem in l2 is NP-hard for randomized reductions (extended abstract), Thirtieth Annual ACM Symposium on the Theory of Computing (STOC 1998), (1998), 10–19.
|
[2]
|
G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner, A. Robinson and D. Smith-Tone, Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process, Tech. Report NIST IR 8309, National Institute of Standards and Technology, July 2020.
|
[3]
|
L. Babai, On Lovász' lattice reduction and the nearest lattice point problem, Combinatorica, 6 (1986), 1-13.
doi: 10.1007/BF02579403.
|
[4]
|
J. C. Bajard and S. Duquesne, Montgomery-friendly primes and applications to cryptography, Journal of Cryptographic Engineering, 11 (2021), 399-415.
doi: 10.1007/s13389-021-00260-z.
|
[5]
|
J.-C. Bajard, L. Imbert and T. Plantard, Arithmetic operations in the polynomial modular number system, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), IEEE, (2005), 206–213.
doi: 10.1109/ARITH.2005.11.
|
[6]
|
——, Modular number systems: Beyond the Mersenne family, Selected Areas in Cryptography, Springer, (2005), 159–169.
|
[7]
|
J.-C. Bajard, L. Imbert, P.-Y. Liardet and Y. Teglia, Leak resistant arithmetic, Cryptographic Hardware and Embedded Systems - CHES 2004 (Berlin, Heidelberg) (Marc Joye and Jean-Jacques Quisquater, eds.), Springer Berlin Heidelberg, (2004), 62–75.
doi: 10.1007/978-3-540-28632-5_5.
|
[8]
|
P. Van Emde Boas, Another NP-Complete Problem and the Complexity of Computing Short Vectors in Lattices, Tech. Report 81-04, Mathematics Department, University of Amsterdam, 1981.
|
[9]
|
N. C. Bonciocat, On an irreducibility criterion of Perron for multivariate polynomials, Bull. Math. Soc. Sci. Math. Roumanie, 53 (2010), 213-217.
|
[10]
|
——, Schönemann–Eisenstein–Dumas-type irreducibility conditions that use arbitrarily many prime numbers, Journal Communications in Algebra, 43 (2015).
|
[11]
|
D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing, Advances in Cryptology—CRYPTO 2001 (Santa Barbara, CA), Lecture Notes in Comput. Sci., Springer, Berlin, 2139 (2001), 213-229.
doi: 10.1007/3-540-44647-8_13.
|
[12]
|
J. W. Bos, C. Costello, H. Hisil and K. E. Lauter, Fast cryptography in genus 2, Advances in cryptology—EUROCRYPT 2013, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7881 (2013), 194-210.
doi: 10.1007/978-3-642-38348-9_12.
|
[13]
|
J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler and D. Stehle, Crystals–kyber: A CCA-secure module-lattice-based KEM, 3rd IEEE European Symposium on Security and Privacy, (2018), 353–367.
doi: 10.1109/EuroSP.2018.00032.
|
[14]
|
C. Bouvier and L. Imbert, An alternative approach for SIDH arithmetic, Public-key cryptography—PKC 2021, Part I, Lecture Notes in Comput. Sci., Springer, Cham, 12710 (2021), 27-44.
doi: 10.1007/978-3-030-75245-3_2.
|
[15]
|
D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite fields, Mathematics of Computation, 36 (1981), 587-592.
doi: 10.1090/S0025-5718-1981-0606517-5.
|
[16]
|
J. W. S. Cassels, An Introduction to the Geometry of Numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997.
|
[17]
|
A. Chaouch, L.-S. Didier, F. Y. Dosso, N. El Mrabet, B. Bouallegue and B. Ouni, Two hardware implementations for modular multiplication in the AMNS: Sequential and semi-parallel, J. Inf. Secur. Appl., 58 (2021), 102770.
doi: 10.1016/j.jisa.2021.102770.
|
[18]
|
T. Coladon, P. Elbaz-Vincent and C. Hugounenq, Mphell: A fast and robust library with unified and versatile arithmetics for elliptic curves cryptography, 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), (2021), 78–85.
doi: 10.1109/ARITH51176.2021.00026.
|
[19]
|
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundlehren der mathematischen Wissenschaften, 290. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4757-2016-7.
|
[20]
|
R. Crandall, Method and Apparatus for Public Key Exchange in a Cryptographic System, U.S. Patent number 5159632, 1992.
|
[21]
|
J.-P. D'Anvers, A. Karmakar, S. Sinha Roy and F. Vercauteren, Saber: Module-lwr based key exchange, CPA-secure encryption and CCA-secure KEM, Progress in cryptology—AFRICACRYPT 2018, Lecture Notes in Comput. Sci., Springer, Cham, 10831 (2018), 282-305.
doi: 10.1007/978-3-319-89339-6_16.
|
[22]
|
L.-S. Didier, F.-Y. Dosso, N. El Mrabet, J. Marrez and P. Véron, Randomization of arithmetic over polynomial modular number system, 26th IEEE International Symposium on Computer Arithmetic, IEEE Computer Society, 1 (2019), 199-206.
doi: 10.1109/ARITH.2019.00048.
|
[23]
|
L.-S. Didier, F.-Y. Dosso and P. Véron, Efficient modular operations using the adapted modular number system, Journal of Cryptographic Engineering, 10 (2020), 111-133.
doi: 10.1007/s13389-019-00221-7.
|
[24]
|
G. Dumas, Sur quelques cas d'irreductibilité des polynômes à coefficients rationnels, Journal de Mathématique Pure et Appliquée, 2 (1906).
|
[25]
|
N. El Mrabet and N. Gama, Efficient multiplication over extension fields, Arithmetic of Finite Fields, Lecture Notes in Comput. Sci., Springer, Heidelberg, 7369 (2012), 136-151.
doi: 10.1007/978-3-642-31662-3_10.
|
[26]
|
N. El Mrabet and C. Nègre, Finite field multiplication combining AMNS and DFT approach for pairing cryptography, ACISP, Lecture Notes in Computer Science, Springer, 5594 (2009), 422-436.
|
[27]
|
C. Finch and L. Jones, On the irreducibility of {−1,0,1}-quadrinomials, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), A16, 4 pp.
|
[28]
|
S. D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press, Cambridge, 2012.
doi: 10.1017/CBO9781139012843.
|
[29]
|
V. Guruswami, D. Micciancio and O. Regev, The complexity of the covering radius problem on lattices and codes, IEEE Conference on Computational Complexity, (2004), 161–173.
|
[30]
|
M. Hamburg, Fast and compact elliptic-curve cryptography, IACR Cryptol. ePrint Arch., 2012 (2012), 309.
|
[31]
|
G. Hanrot, X. Pujol and D. Stehlé, Algorithms for the shortest and closest lattice vector problems, Coding and Cryptology, Lecture Notes in Comput. Sci., Springer, Heidelberg, 6639 (2011), 159-190.
doi: 10.1007/978-3-642-20901-7_10.
|
[32]
|
G. Hanrot and D. Stehle, Improved analysis of Kannan's shortest lattice vector algorithm, Advances in Cryptology—CRYPTO 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4622 (2007), 170-186.
doi: 10.1007/978-3-540-74143-5_10.
|
[33]
|
D. Harvey and J. van der Hoeven, Faster integer multiplication using short lattice vectors, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., Math. Sci. Publ., Berkeley, CA, 2 2019,293–310.
|
[34]
|
J. Hoffstein, J. Pipher and J. H. Silverman, NTRU: A ring-based public key cryptosystem, Algorithmic Number Theory (ANTS 1998), LNCS, Springer, 1423 (1998), 267-288.
doi: 10.1007/BFb0054868.
|
[35]
|
D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, G. Pereira, J. Renes, V. Soukharev and D. Urbanik, SIKE: Supersingular Isogeny Key Encapsulation, Submission to the NIST's Post-Quantum Cryptography Standardization Process, 2019.
|
[36]
|
N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5.
|
[37]
|
A. Korkine and G. Zolotareff, Sur les formes quadratiques, Mathematische Annalen, 6 (1873), 366-389.
doi: 10.1007/BF01442795.
|
[38]
|
J. C. Lagarias, H. W. Lenstra and C.-P. Schnorr, Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice, Combinatorica, 10 (1990), 333-348.
doi: 10.1007/BF02128669.
|
[39]
|
A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, 261 (1982), 513-534.
doi: 10.1007/BF01457454.
|
[40]
|
W. Ljunggren, On the irreducibility of certain trinomials and quadrinomials, Mathematica Scandinavica, 8 (1960), 65-70.
doi: 10.7146/math.scand.a-10593.
|
[41]
|
L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics, 50, SIAM Publications, 1986.
doi: 10.1137/1.9781611970203.
|
[42]
|
V. S. Miller, Use of elliptic curves in cryptography, Advances in Cryptology—CRYPTO '85 (Santa Barbara, Calif., 1985), Lecture Notes in Comput. Sci., Springer, Berlin, 218 (1986), 417–426.
doi: 10.1007/3-540-39799-X_31.
|
[43]
|
W. H. Mills, The factorization of certain quadrinomials, Mathematica Scandinavica, 57 (1985), 44-50.
doi: 10.7146/math.scand.a-12105.
|
[44]
|
H. Minkowski, Geometrie der Zahlen, B. G. Teubner, Leipzig, 1896.
|
[45]
|
P. L. Montgomery, Modular multiplication without trial division, Mathematics of Computation, 44 (1985), 519-521.
doi: 10.1090/S0025-5718-1985-0777282-X.
|
[46]
|
D. Moody, G. Alagic, D. Apon, D. Cooper, Q. Dang, J. Kelsey, Y.-K. Liu, C. Miller, R. Peralta, Ra. Perlner, A. Robinson, D. Smith-Tone and J. Alperin-Sheriff, Status Report on the Second Round of the Nist Post-Quantum Cryptography Standardization Process, 2020-07-22 2020.
doi: 10.6028/NIST.IR.8309.
|
[47]
|
National Institute for Standards and Technology, Digital Signature Standard (DSS), Jun 2009.
|
[48]
|
C. Negre and T. Plantard, Efficient modular arithmetic in adapted modular number system using lagrange representation, ACISP 2008: Information Security and Privacy, 463–477.
doi: 10.1007/978-3-540-70500-0_34.
|
[49]
|
C. Negre, Side Channel Counter-Measures Based on Randomized AMNS Modular Multiplication, Proceedings of the 18th International Conference on Security and Cryptography, SCITEPRESS - Science and Technology Publications, 2021.
|
[50]
|
T. Plantard, Arithmétique Modulaire Pour la Cryptographie, Theses, Université Montpellier II - Sciences et Techniques du Languedoc, 2005.
|
[51]
|
T. Plantard, W. Susilo and Z. Zhang, LLL for ideal lattices: Re-evaluation of the security of gentry–halevi's fhe scheme, Designs, Codes and Cryptography, 76 (2015), 325-344.
doi: 10.1007/s10623-014-9957-1.
|
[52]
|
T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Ricosset, G. Seiler, W. Whyte and Z. Zhang, Falcon: Fast-Fourier Lattice-Based Compact Signatures Over NTRU, Submission to the NIST's post-quantum cryptography standardization process, 2017.
|
[53]
|
R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, 21 (1978), 120–126.
doi: 10.1145/359340.359342.
|
[54]
|
C.-P. Schnorr, Block reduced lattice bases and successive minima, Combin. Probab. Comput., 3 (1994), 507-522.
doi: 10.1017/S0963548300001371.
|
[55]
|
J. A. Solinas, Generalized Mersenne Numbers, Research Report CORR-99-39, Center for Applied Cryptographic Research, University of Waterloo, Waterloo, ON, Canada, 1999.
|
[56]
|
D. R. Stinson and M. Paterson, Cryptography Theory and Practice, Fourth edition ed., Chapman and Hall/CRC, 2018.
|