[1]
|
H. Cai, Z. Zhou, Y. Yang and X. Tang, A new construction of frequency-hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790.
doi: 10.1109/TIT.2014.2332996.
|
[2]
|
T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, North-Holland Mathematical Library, 55. North-Holland Publishing Co., Amsterdam, 1998.
|
[3]
|
L. E. Dickson, Cyclotomy, higher congruences, and waring's problem, Amer. J. Math., 57 (1935), 391-424.
doi: 10.2307/2371217.
|
[4]
|
C. Ding, T. Helleseth and K. Y. Lam, Several classes of binary sequences with three-level autocorrelation, IEEE Trans. Inf. Theory, 45 (1999), 2606-2612.
doi: 10.1109/18.796414.
|
[5]
|
C. Ding, T. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation, IEEE Trans. Inf. Theory, 47 (2001), 428-433.
doi: 10.1109/18.904555.
|
[6]
|
C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.
doi: 10.1109/TIT.2010.2048504.
|
[7]
|
S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco 1967.
|
[8]
|
T. Helleseth and P. V. Kumar, Sequences with low correlation, Handbook of Coding Theory, 1/2 (1998), 1765-1854.
|
[9]
|
R. Hofer and A. Winterhof, On the 2-adic complexity of the two-prime generator, IEEE Trans. Inf. Theory, 64 (2018), 5957-5960.
doi: 10.1109/TIT.2018.2811507.
|
[10]
|
H. Hu, Comments on a new method to compute the 2-adic complexity of binary sequences, IEEE Trans. Inf. Theory, 60 (2014), 5803-5804.
doi: 10.1109/TIT.2014.2336843.
|
[11]
|
L. Hu and Q. Yue, Gauss periods and codebooks from generalized cyclotomic sets of order four, Des. Codes Cryptogr, 69 (2013), 233-246.
doi: 10.1007/s10623-012-9648-8.
|
[12]
|
A. Klapper and M. Goresky, Feedback shift registers, 2-adic span, and combiners with memory, J. Cryptol., 10 (1997), 111-147.
doi: 10.1007/s001459900024.
|
[13]
|
A. Lempel, M. Cohn and W. L. Eastman, A class of binary sequences with optimal autocorrelation properties, IEEE Trans. Inf. Theory, 23 (1977), 38-42.
doi: 10.1109/tit.1977.1055672.
|
[14]
|
X. Shi, T. Yan, X. Huang and Q. Yue, An extension method to construct M-ary sequences of period 4N with low autocorrelation, IEICE Trans. Fundam. Electron. Commun. Comput. Sci, 104 (2021), 332-335.
|
[15]
|
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread spectrum communications. rockville, MD: Computer Sci, 1 (1985).
|
[16]
|
T. Storer, Cyclotomy and Difference Sets, Markham Pub. Co., 1967.
|
[17]
|
Y. Sun, Q. Wang and T. Yan, The exact autocorrelation distribution and 2-adic complexity of a class of binary sequences with almost optimal autocorrelation, Cryptogr. Commun, 10 (2018), 467-477.
doi: 10.1007/s12095-017-0233-x.
|
[18]
|
Y. Sun, Q. Wang and T. Yan, A lower bound on the 2-adic complexity of the modified Jacobi sequence, Cryptogr. Commun, 11 (2019), 337-349.
doi: 10.1007/s12095-018-0300-y.
|
[19]
|
Y. Sun, T. Yan and Z. Chen, The 2-adic complexity of a class of binary sequences with optimal autocorrelation magnitude, Cryptogr. Commun, 12 (2020), 675-683.
doi: 10.1007/s12095-019-00411-4.
|
[20]
|
X. Tang and C. Ding, New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value, IEEE Trans. Inf. Theory, 56 (2010), 6398-6405.
doi: 10.1109/TIT.2010.2081170.
|
[21]
|
X. Tang and G. Gong, New constructions of binary sequences with optimal autocorrelation value/magnitude, IEEE Trans. Inf. Theory, 56 (2010), 1278-1286.
doi: 10.1109/TIT.2009.2039159.
|
[22]
|
T. Tian and W. F. Qi, 2-adic complexity of binary m-sequences, IEEE Trans. Inf. Theory, 56 (2010), 450-454.
doi: 10.1109/TIT.2009.2034904.
|
[23]
|
A. L. Whiteman, The cyclotomic numbers of order twelve, Acta Arith, 6 (1960), 53-76.
doi: 10.4064/aa-6-1-53-76.
|
[24]
|
Z. Xiao, X. Zeng and Z. Sun, 2-adic complexity of two classes of generalized cyclotomic binary sequences, Int. J. Found. Comput. Sci, 27 (2016), 879-893.
doi: 10.1142/S0129054116500350.
|
[25]
|
H. Xiong, L. Qu and C. Li, A new method to compute the 2-adic complexity of binary sequences, IEEE Trans. Inf. Theory, 60 (2014), 2399-2406.
doi: 10.1109/TIT.2014.2304451.
|
[26]
|
Y. Yang, F. Huo and G. Gong, Large zero odd periodic autocorrelation zone of Golay sequences and QAM Golay sequences, Proceedings of the 2012 International Symposium on Information Theory, Cambridge, MA, USA, (2012), 1024–1028.
|
[27]
|
Y. Yang, X. Tang, D. Peng and U. Parampalli, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.
doi: 10.1109/TIT.2011.2162571.
|
[28]
|
L. Zhang, J. Zhang, M. Yang and K. Feng, On the 2-adic complexity of the Ding-Helleseth-Martinsen binary sequences, IEEE Trans. Inf. Theory, 66 (2010), 4613-4620.
doi: 10.1109/TIT.2020.2964171.
|
[29]
|
Z. Zhou, T. Helleseth and U. Parampalli, A family of polyphase sequences with asymptotically optimal correlation, IEEE Trans. Inf. Theory, 64 (2010), 2896-2900.
doi: 10.1109/TIT.2018.2796597.
|
[30]
|
Z. Zhou, X. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inf. Theory, 54 (2008), 4267-4273.
doi: 10.1109/TIT.2008.928256.
|
[31]
|
Z. Zhou, X. Tang, X. Niu and U. Parampalli, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458.
doi: 10.1109/TIT.2011.2167126.
|
[32]
|
Z. Zhou, X. Tang, D. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840.
doi: 10.1109/TIT.2011.2137290.
|
[33]
|
Z. Zhou, D. Zhang, T. Helleseth and J. Wen, A construction of multiple optimal ZCZ sequence sets with good cross correlation, IEEE Trans. Inf. Theory, 64 (2018), 1340-1346.
doi: 10.1109/TIT.2017.2756845.
|