[1]
|
C. Ding, Designs from Linear Codes, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2019.
|
[2]
|
C. Ding, A construction of binary linear codes from Boolean functions, Discret. Math., 339 (2016), 2288-2303.
doi: 10.1016/j.disc.2016.03.029.
|
[3]
|
C. Ding, Linear codes from some 2-designs, IEEE Trans. Inf. Theory., 61 (2015), 3265-3275.
doi: 10.1109/TIT.2015.2420118.
|
[4]
|
C. Ding and H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inf. Theory, 53 (2007), 2274-2277.
doi: 10.1109/TIT.2007.896886.
|
[5]
|
K. Ding and C. Ding, A class of two-weight and three-weight codes and their applications in secret sharing, IEEE Trans. Inf. Theory, 61 (2015), 5835-5842.
doi: 10.1109/TIT.2015.2473861.
|
[6]
|
K. Ding and C. Ding, Binary linear codes with three weights, IEEE Commun. Lett., 18 (2014), 1879-1882.
|
[7]
|
X. Du and Y. Wan, Linear codes from quadratic forms, Appl. Algebra Eng. Commun. Comput., 28 (2017), 535-547.
doi: 10.1007/s00200-017-0319-x.
|
[8]
|
Z. Heng and Q. Yue, A class of binary linear codes with at most three weights, IEEE Commun. Lett., 19 (2015), 1488-1491.
|
[9]
|
Z. Heng and Q. Yue, Complete weight distributions of two classes of cyclic codes, Cryptogr. Commun., 9 (2017), 323-343.
doi: 10.1007/s12095-015-0177-y.
|
[10]
|
Z. Heng and Q. Yue, Two classes of two-weight linear codes, Finite Fields Their Appl., 38 (2016), 72-92.
doi: 10.1016/j.ffa.2015.12.002.
|
[11]
|
W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
doi: 10.1017/CBO9780511807077.
|
[12]
|
N. Li and S. Mesnager, Recent results and problems on constructions of linear codes from cryptographic functions, Cryptogr. Commun., 12 (2020), 965–986.
doi: 10.1007/s12095-020-00435-1.
|
[13]
|
Y. Liu, C. Ding and C. Tang, Shortened linear codes over finite fields, IEEE Trans. Inf. Theory, 67 (2021), 5119-5132.
doi: 10.1109/TIT.2021.3087082.
|
[14]
|
S. Mesnager, Linear codes with few weights from weakly regular bent functions based on a generic construction, Cryptogr. Commun., 9 (2017), 71-84.
doi: 10.1007/s12095-016-0186-5.
|
[15]
|
S. Mesnager and A. Sinak, Several classes of minimal linear codes with few weights from weakly regular plateaued functions, IEEE Trans. Inf. Theory, 66 (2020), 2296-2310.
doi: 10.1109/TIT.2019.2956130.
|
[16]
|
C. Tang, C. Ding and M. Xiong, Steiner systems S(2,4,3m−12) and 2-designs from ternary linear codes of length 3m−12, Des. Codes Cryptogr., 87 (2019), 2793-2811.
doi: 10.1007/s10623-019-00651-8.
|
[17]
|
C. Tang, C. Ding and M. Xiong, Codes, differentially δ -Uniform Functions, and t-designs, IEEE Trans. Inf. Theory, 66 (2020), 3691-3703.
doi: 10.1109/TIT.2019.2959764.
|
[18]
|
C. Tang, N. Li, Y. Qi, Z. Zhou and T. Helleseth, Linear codes with two or three weights from weakly regular bent functions, IEEE Trans. Inf. Theory, 62 (2016), 1166-1176.
doi: 10.1109/TIT.2016.2518678.
|
[19]
|
C. Tang, C. Xiang and K. Feng, Linear codes with few weights from inhomogeneous quadratic functions, Des. Codes Cryptogr., 83 (2017), 691-714.
doi: 10.1007/s10623-016-0267-7.
|
[20]
|
X. Wang, D. Zheng and C. Ding, Some punctured codes of several families of binary linear codes, IEEE Trans. Inf. Theory, 67 (2021), 5133-5148.
doi: 10.1109/TIT.2021.3088146.
|
[21]
|
C. Xiang, It is indeed a fundamental construction of all linear codes, 2016, arXiv: 1610.06355.
|
[22]
|
C. Xiang, C. Tang and C. Ding, Shortened linear codes from APN and PN functions, IEEE Trans. Inf. Theory, 68 (2022), 3780-3795.
|
[23]
|
C. Xiang, C. Tang and K. Feng, A class of linear codes with a few weights, Cryptogr. Commun., 9 (2017), 93-116.
doi: 10.1007/s12095-016-0200-y.
|
[24]
|
Z. Zhou and C. Ding, Seven classes of three-weight cyclic codes, IEEE Trans. Communications, 61 (2013), 4120-4126.
|
[25]
|
Z. Zhou, C. Ding and J. Luo, et al., A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.
doi: 10.1109/TIT.2013.2267722.
|
[26]
|
Z. Zhou, N. Li, C. Fan and T. Helleseth, Linear codes with two or three weights from quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), 283-295.
doi: 10.1007/s10623-015-0144-9.
|