Loading [MathJax]/jax/output/SVG/jax.js
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some new quantum MDS codes derived from generalized Reed-Solomon codes

  • *Corresponding author: Qin Yue

    *Corresponding author: Qin Yue

The work is supported by the National Natural Science Foundation of China (No. 12001396, No. 61772219), the Natural Science Foundation of Jiangsu Province of China (No. BK20200268), the Natural Science Foundation of the Jiangsu Higher Education Institution of China (No. 20KJB110005) and Qing Lan Project of the Jiangsu Higher Education Institutions.

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • Quantum maximum-distance-separable (MDS) codes are very important in coding theory. In this paper, we construct three classes of new quantum MDS codes with large minimum distance by classical Hermitian self-orthogonal generalized Reed-Solomon codes. Furthermore, these quantum MDS codes have more flexible lengths and larger minimum distance than those of some known quantum MDS codes.

    Mathematics Subject Classification: 81P70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Quantum MDS Codes

    h1 h2 r1 r2 [[n,k,d]]q d
    7 3 6 1 [[2(q21)3,2(q21)32d+2,d]]q 2d5q+97
    5 7 4 2 [[4(q21)7,4(q21)72d+2,d]]q 2d3q+75
     | Show Table
    DownLoad: CSV

    Table 2.  Quantum MDS Codes

    h1 h2 r1 r2 [[n,k,d]]q d
    6 9 2 4 [[4(q21)9,4(q21)92d+2,d]]q 2d2q+83
    5 11 2· 5 [[6(q21)11,6(q21)112d+2,d]]q 2d8q+3011
     | Show Table
    DownLoad: CSV

    Table 3.  Quantum MDS Codes

    h1 h2 r1 r2 [[n,k,d]]q d
    12 19 5 15 [[8(q21)19,8(q21)192d+2,d]]q 2d3q+54 if q112 is odd
    16 5 6 4 [[7(q21)16,7(q21)162d+2,d]]q 2d11q+2116if q116 is odd
     | Show Table
    DownLoad: CSV
  • [1] A. Ashikhmin and E. Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inf. Theory, 47 (2001), 3065-3072.  doi: 10.1109/18.959288.
    [2] B. ChenS. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 1474-1484.  doi: 10.1109/TIT.2015.2388576.
    [3] X. Fang and J. Luo, New quantum MDS codes over finite fields, Quantum Inf. Process, 19 (2020), Paper No. 16, 17 pp. doi: 10.1007/s11128-019-2506-0.
    [4] M. GrasslT. Beth and M. Rötteler, On optimal quantum codes, In. J. Quantum Inf., 2 (2004), 55-64. 
    [5] G. Guo, R. Li and Y. Liu, Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes, Finite Fields Appl., 76 (2021), 101901, 17 pp. doi: 10.1016/j.ffa.2021.101901.
    [6] X. HeL. Xu and H. Chen, New q-ary quantum MDS codes with distance bigger than q2, Quantum Inf. Process, 15 (2016), 2745-2758.  doi: 10.1007/s11128-016-1311-2.
    [7] L. HuQ. Yue and X. Zhu, New quantum MDS codes from constacyclic codes, Chin. Ann. Math. Ser. B, 37 (2016), 891-898.  doi: 10.1007/s11401-016-1043-8.
    [8] L. JinH. Kan and J. Wen, Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes, Des. Codes Cryptogr., 84 (2017), 463-471.  doi: 10.1007/s10623-016-0281-9.
    [9] X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 1193-1197.  doi: 10.1109/TIT.2012.2220519.
    [10] X. KaiS. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 2080-2086.  doi: 10.1109/TIT.2014.2308180.
    [11] A. KetkarA. KlappeneckerS. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914.  doi: 10.1109/TIT.2006.883612.
    [12] E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A, 55 (1997), 900-911.  doi: 10.1103/PhysRevA.55.900.
    [13] F. Li and Q. Yue, New quantum MDS-convolutional codes derived from constacyclic codes, Mod. Phys. Lett. B, 29 (2015), 1550252, 12 pp. doi: 10.1142/S0217984915502528.
    [14] S. LiM. Xiong and G. Ge, Pseudo-cyclic codes and the construction of quantum MDS codes, IEEE Trans. Inf. Theory, 62 (2016), 1703-1710.  doi: 10.1109/TIT.2016.2535180.
    [15] X. ShiQ. Yue and Y. Chang, Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes, Cryptogr. Commun., 10 (2018), 1165-1182.  doi: 10.1007/s12095-017-0274-1.
    [16] X. ShiQ. Yue and X. Zhu, Construction of some new quantum MDS codes, Finite Fields Appl., 46 (2017), 347-362.  doi: 10.1016/j.ffa.2017.04.002.
    [17] F. Tian and S. Zhu, Some new quantum MDS codes from generalized Reed-Solomon codes, Discrete Math., 342 (2019), 111593, 10 pp. doi: 10.1016/j.disc.2019.07.009.
    [18] L. Wang and S. Zhu, New quantum MDS codes derived from constacyclic codes, Quantum Inf. Process, 14 (2015), 881-889.  doi: 10.1007/s11128-014-0903-y.
    [19] G. Zhang and B. Chen, New quantum MDS codes, Int. J. Quantum Inf., 12 (2014), 1450019, 10 pp. doi: 10.1142/S0219749914500191.
    [20] T. Zhang and G. Ge, Quantum MDS codes with large minimun distance, Des. Codes Cryptogr., 83 (2016), 503-517.  doi: 10.1007/s10623-016-0245-0.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(2331) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return