[1]
|
A. Ashikhmin and E. Knill, Nonbinary quantum stabilizer codes, IEEE Trans. Inf. Theory, 47 (2001), 3065-3072.
doi: 10.1109/18.959288.
|
[2]
|
B. Chen, S. Ling and G. Zhang, Application of constacyclic codes to quantum MDS codes, IEEE Trans. Inf. Theory, 61 (2015), 1474-1484.
doi: 10.1109/TIT.2015.2388576.
|
[3]
|
X. Fang and J. Luo, New quantum MDS codes over finite fields, Quantum Inf. Process, 19 (2020), Paper No. 16, 17 pp.
doi: 10.1007/s11128-019-2506-0.
|
[4]
|
M. Grassl, T. Beth and M. Rötteler, On optimal quantum codes, In. J. Quantum Inf., 2 (2004), 55-64.
|
[5]
|
G. Guo, R. Li and Y. Liu, Application of Hermitian self-orthogonal GRS codes to some quantum MDS codes, Finite Fields Appl., 76 (2021), 101901, 17 pp.
doi: 10.1016/j.ffa.2021.101901.
|
[6]
|
X. He, L. Xu and H. Chen, New q-ary quantum MDS codes with distance bigger than q2, Quantum Inf. Process, 15 (2016), 2745-2758.
doi: 10.1007/s11128-016-1311-2.
|
[7]
|
L. Hu, Q. Yue and X. Zhu, New quantum MDS codes from constacyclic codes, Chin. Ann. Math. Ser. B, 37 (2016), 891-898.
doi: 10.1007/s11401-016-1043-8.
|
[8]
|
L. Jin, H. Kan and J. Wen, Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes, Des. Codes Cryptogr., 84 (2017), 463-471.
doi: 10.1007/s10623-016-0281-9.
|
[9]
|
X. Kai and S. Zhu, New quantum MDS codes from negacyclic codes, IEEE Trans. Inf. Theory, 59 (2013), 1193-1197.
doi: 10.1109/TIT.2012.2220519.
|
[10]
|
X. Kai, S. Zhu and P. Li, Constacyclic codes and some new quantum MDS codes, IEEE Trans. Inf. Theory, 60 (2014), 2080-2086.
doi: 10.1109/TIT.2014.2308180.
|
[11]
|
A. Ketkar, A. Klappenecker, S. Kumar and P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE Trans. Inform. Theory, 52 (2006), 4892-4914.
doi: 10.1109/TIT.2006.883612.
|
[12]
|
E. Knill and R. Laflamme, Theory of quantum error-correcting codes, Phys. Rev. A, 55 (1997), 900-911.
doi: 10.1103/PhysRevA.55.900.
|
[13]
|
F. Li and Q. Yue, New quantum MDS-convolutional codes derived from constacyclic codes, Mod. Phys. Lett. B, 29 (2015), 1550252, 12 pp.
doi: 10.1142/S0217984915502528.
|
[14]
|
S. Li, M. Xiong and G. Ge, Pseudo-cyclic codes and the construction of quantum MDS codes, IEEE Trans. Inf. Theory, 62 (2016), 1703-1710.
doi: 10.1109/TIT.2016.2535180.
|
[15]
|
X. Shi, Q. Yue and Y. Chang, Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes, Cryptogr. Commun., 10 (2018), 1165-1182.
doi: 10.1007/s12095-017-0274-1.
|
[16]
|
X. Shi, Q. Yue and X. Zhu, Construction of some new quantum MDS codes, Finite Fields Appl., 46 (2017), 347-362.
doi: 10.1016/j.ffa.2017.04.002.
|
[17]
|
F. Tian and S. Zhu, Some new quantum MDS codes from generalized Reed-Solomon codes, Discrete Math., 342 (2019), 111593, 10 pp.
doi: 10.1016/j.disc.2019.07.009.
|
[18]
|
L. Wang and S. Zhu, New quantum MDS codes derived from constacyclic codes, Quantum Inf. Process, 14 (2015), 881-889.
doi: 10.1007/s11128-014-0903-y.
|
[19]
|
G. Zhang and B. Chen, New quantum MDS codes, Int. J. Quantum Inf., 12 (2014), 1450019, 10 pp.
doi: 10.1142/S0219749914500191.
|
[20]
|
T. Zhang and G. Ge, Quantum MDS codes with large minimun distance, Des. Codes Cryptogr., 83 (2016), 503-517.
doi: 10.1007/s10623-016-0245-0.
|