Subspace codes, especially cyclic subspace codes, have attracted wide attention due to their applications in random network coding. In [14], Roth et al. presented the idea that cyclic subspace codes can be constructed employing Sidon spaces. In this paper, several kinds of Sidon spaces are first constructed and a cyclic subspace code with size lqk(⌈n4k⌉−1)qn−1q−1 and minimum distance 2k−2 is further given which improves and generalizes the previously known constructions, where n,k,l are positive integers, n is a multiple of k and l≤k. Furthermore, in the case n=3k, by considering the orbits of distinct Sidon spaces and the orbit of Fqk, a cyclic subspace code with size 2(qk−1)qn−1q−1+q2k+qk+1 and minimum distance 2k−2 is obtained. As a consequence, we obtain more cyclic subspace codes with larger size of codewords than the previous works without decreasing the minimum distance.
Citation: |
[1] |
C. Bachoc, O. Serra and G. Zeˊmor, An analogue of Vosper's theorem for extension fields, Math. Proc. Cambridge Philos. Soc., 163 (2017), 423-452.
doi: 10.1017/S0305004117000044.![]() ![]() ![]() |
[2] |
E. Ben-Sasson, T. Etzion, A. Gabizon and N. Raviv, Subspace polynomials and cyclic subspace codes, IEEE Trans. Inf. Theory, 62 (2016), 1157-1165.
doi: 10.1109/TIT.2016.2520479.![]() ![]() ![]() |
[3] |
B. Chen and H. Liu, Constructions of cyclic constant dimension codes, Des. Codes Cryptogr., 86 (2018), 1267-1279.
doi: 10.1007/s10623-017-0394-9.![]() ![]() ![]() |
[4] |
T. Feng and Y. Wang, New constructions of large cyclic subspace codes and Sidon spaces, Discrete Math., 344 (2021), 112273, 7 pp.
doi: 10.1016/j.disc.2020.112273.![]() ![]() ![]() |
[5] |
É. M. Gabidulin, N. I. Pilipchuk and M. Bossert, Decoding of random network codes, Probl. Inf. Transm., 46 (2010), 300-320.
doi: 10.1134/S0032946010040034.![]() ![]() ![]() |
[6] |
H. Gluesing-Luerssen and H. Lehmann, Distance distributions of cyclic orbit codes, Des. Codes Cryptogr., 89 (2021), 447-470.
doi: 10.1007/s10623-020-00823-x.![]() ![]() ![]() |
[7] |
H. Gluesing-Luerssen, K. Morrison and C. Troha, Cyclic orbit codes and stabilizer subfields, Adv. Math. Commun., 9 (2015), 177-197.
doi: 10.3934/amc.2015.9.177.![]() ![]() ![]() |
[8] |
R. Gow and R. Quinlan, Galois theory and linear algebra, Linear Algebra Appl., 430 (2009), 1778-1789.
doi: 10.1016/j.laa.2008.06.030.![]() ![]() ![]() |
[9] |
R. Ktter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory, 54 (2008), 3579-3591.
doi: 10.1109/TIT.2008.926449.![]() ![]() ![]() |
[10] |
Y. Li and H. Liu, Cyclic subspace codes via the sum of Sidon spaces, preprint, (2021), arXiv: 2105.12520.
![]() |
[11] |
R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
![]() ![]() |
[12] |
Y. Niu, Q. Yue and Y. Wu, Several kinds of large cyclic subspace codes via Sidon spaces, Discrete Math., 343 (2020), 111788, 11 pp.
doi: 10.1016/j.disc.2019.111788.![]() ![]() ![]() |
[13] |
K. Otal and F. budak, Cyclic subspace codes via subspace polynomials, Des. Codes Cryptogr., 85 (2017), 191-204.
doi: 10.1007/s10623-016-0297-1.![]() ![]() ![]() |
[14] |
R. M. Roth, N. Raviv and I. Tamo, Construction of Sidon spaces with applications to coding, IEEE Trans. Inf. Theory, 64 (2017), 4412-4422.
doi: 10.1109/TIT.2017.2766178.![]() ![]() ![]() |
[15] |
A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes, IEEE Trans. Inf. Theory, 59 (2013), 7386-7404.
doi: 10.1109/TIT.2013.2274266.![]() ![]() ![]() |
[16] |
H. Zhang and X. Cao, Further constructions of cyclic subspace codes, Cryptogr. Commun., 13 (2021), 245-262.
doi: 10.1007/s12095-020-00463-x.![]() ![]() ![]() |
[17] |
W. Zhao and X. Tang, A characterization of cyclic subspace codes via subspace polynomials, Finite Fields Appl., 57 (2019), 1-12.
doi: 10.1016/j.ffa.2019.01.002.![]() ![]() ![]() |
[18] |
F. Zullo, Multi-Sidon spaces over finite fields, preprint, (2021), arXiv: 2112.08781.
![]() |