\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the rank decoding problem over finite principal ideal rings

  • *Corresponding author: Hervé Talé Kalachi

    *Corresponding author: Hervé Talé Kalachi 

The first author is supported by the UNESCO-TWAS and the German Federal Ministry of Education and Research (BMBF) under the SG-NAPI grant number 4500454079. The Second author is supported by the Swiss Government Excellence Scholarship (ESKAS No. 2022.0689).

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The rank decoding problem has been the subject of much attention in this last decade. This problem, which is at the base of the security of public-key cryptosystems based on rank metric codes, is traditionally studied over finite fields. But the recent generalizations of certain classes of rank-metric codes from finite fields to finite rings have naturally created the interest to tackle the rank decoding problem in the case of finite rings.

    In this paper, we show that solving the rank decoding problem over finite principal ideal rings is at least as hard as the rank decoding problem over finite fields. We also show that computing the minimum rank distance for linear codes over finite principal ideal rings is equivalent to the same problem for linear codes over finite fields. Finally, we provide combinatorial type algorithms for solving the rank decoding problem over finite chain rings together with their average complexities.

    Mathematics Subject Classification: Primary: 11T71; Secondary: 13M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, volume 13, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4612-4418-9.
    [2] N. AragonP. GaboritA. HautevilleO. Ruatta and G. Zémor, Low rank parity check codes: New decoding algorithms and applications to cryptography, IEEE Transactions on Information Theory, 65 (2019), 7697-7717.  doi: 10.1109/TIT.2019.2933535.
    [3] N. Aragon, P. Gaborit, A. Hauteville and J.-P. Tillich, A new algorithm for solving the rank syndrome decoding problem, Proceedings of the 2018 IEEE International Symposium on Information Theory, ISIT, 2018, 2421-2425. doi: 10.1109/ISIT.2018.8437464.
    [4] M. Bardet, P. Briaud, M. Bros, P. Gaborit, V. Neiger, O. Ruatta and J.-P. Tillich, An algebraic attack on rank metric code-based cryptosystems, In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT, volume 12107 of Lecture Notes in Computer Science, Springer, 2020, 64-93. doi: 10.1007/978-3-030-45727-3_3.
    [5] M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich and J. A. Verbel, Improvements of algebraic attacks for solving the rank decoding and minrank problems, In Advances in Cryptology - ASIACRYPT, volume 12491 of Lecture Notes in Computer Science, Springer, 2020,507-536. doi: 10.1007/978-3-030-64837-4_17.
    [6] H. BartzL. HolzbaurH. LiuS. PuchingerJ. RennerA. Wachter-Zeh and et al., Rank-metric codes and their applications, Foundations and Trends in Communications and Information Theory, 19 (2022), 390-546.  doi: 10.1561/9781638280019.
    [7] E. BerlekampR. McEliece and H. van Tilborg, On the inherent intractability of certain coding problems, IEEE Transactions on Information Theory, 24 (1978), 384-386.  doi: 10.1109/tit.1978.1055873.
    [8] R. A. Brualdi, Introductory Combinatorics, Pearson Education India, 1977.
    [9] D. Bucerzan, V. Dragoi and H. T. Kalachi, Evolution of the McEliece public key encryption scheme, In International Conference for Information Technology and Communications, Springer, 2017,129-149. doi: 10.1007/978-3-319-69284-5_10.
    [10] B. Bulyovszky and G. Horváth, Polynomial functions over finite commutative rings, Theoretical Computer Science, 703 (2017), 76-86.  doi: 10.1016/j.tcs.2017.09.002.
    [11] F. Chabaud and J. Stern, The cryptographic security of the syndrome decoding problem for rank distance codes, In Advances in Cryptology - ASIACRYPT 1996, volume 1163 of Lecture Notes in Computer Science, Springer, 1996,368-381. doi: 10.1007/BFb0034862.
    [12] N. T. Courtois, M. Finiasz and N. Sendrier, How to achieve a McEliece-based digital signature scheme, In Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, Springer, 2001,157-174. doi: 10.1007/3-540-45682-1_10.
    [13] Ph. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory, Ser. A, 25 (1978), 226-241. doi: 10.1016/0097-3165(78)90015-8.
    [14] S. T. DoughertyJ.-L. Kim and H. Kulosman, MDS codes over finite principal ideal rings, Designs, Codes and Cryptography, 50 (2009), 77-92.  doi: 10.1007/s10623-008-9215-5.
    [15] Y. FanS. Ling and H. Liu, Matrix product codes over finite commutative Frobenius rings, Designs, Codes and Cryptography, 71 (2014), 201-227.  doi: 10.1007/s10623-012-9726-y.
    [16] È. M. Gabidulin, Theory of codes with maximum rank distance, Problemy Peredachi Informatsii, 21 (1985), 3-16. 
    [17] E. M. Gabidulin, Attacks and counter-attacks on the GPT public key cryptosystem, Designs, Codes and Cryptography, 48 (2008), 171-177.  doi: 10.1007/s10623-007-9160-8.
    [18] E. M. Gabidulin and A. V. Ourivski, Modified GPT PKC with right scrambler, Electronic Notes in Discrete Mathematics, 6 (2001), 168-177. 
    [19] E. M. Gabidulin, A. V. Paramonov and O. V. Tretjakov, Ideals over a non-commutative ring and their applications to cryptography, In Advances in Cryptology - EUROCRYPT'91, volume 547 in Lecture Notes in Comput. Sci., 1991,482-489. doi: 10.1007/3-540-46416-6_41.
    [20] P. Gaborit, G. Murat, O. Ruatta and G. Zémor, Low rank parity check codes and their application to cryptography, Proceedings of the Workshop on Coding and Cryptography WCC'2013, Bergen, Norway, 2013. Available on http://www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf.
    [21] P. Gaborit, O. Ruatta and J. Schrek, On the complexity of the rank syndrome decoding problem, IEEE Transactions on Information Theory, 62 (2016), 1006-1019. doi: 10.1109/TIT.2015.2511786.
    [22] P. Gaborit and G. Zémor, On the hardness of the decoding and the minimum distance problems for rank codes, IEEE Transactions on Information Theory, 62 (2016), 7245-7252. doi: 10.1109/TIT.2016.2616127.
    [23] J. K. Gibson, Severely denting the Gabidulin version of the McEliece public key cryptosystem, Designs, Codes and Cryptography, 6 (1995), 37-45.  doi: 10.1007/BF01390769.
    [24] K. Gibson, The security of the Gabidulin public key cryptosystem, In Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT '96, volume 1070 of Lecture Notes in Computer Science, Springer, 1996, 212-223. doi: 10.1007/3-540-68339-9_19.
    [25] M. GreferathA. Nechaev and R. Wisbauer, Finite quasi-Frobenius modules and linear codes, Journal of Algebra and its Applications, 3 (2004), 247-272.  doi: 10.1142/S0219498804000873.
    [26] T. Honold and I. Landjev, Linear codes over finite chain rings, the Electronic Journal of Combinatorics, 7 (2000), Research Paper 11, 22 pp. doi: 10.37236/1489.
    [27] A.-L. Horlemann-TrautmannK. Marshall and J. Rosenthal, Extension of overbeck's attack for Gabidulin-based cryptosystems, Designs, Codes and Cryptography, 86 (2018), 319-340.  doi: 10.1007/s10623-017-0343-7.
    [28] R. A. Horn and  C. R. JohnsonTopics in Matrix Analysis, Cambridge University Press, 1991.  doi: 10.1017/CBO9780511840371.
    [29] H. T. Kalachi, On the failure of the smart approach of the GPT cryptosystem, Cryptologia, 46 (2022), 167-182.  doi: 10.1080/01611194.2020.1829181.
    [30] H. T. Kamche, H. T. Kalachi, F. R. K. Djomou and E. Fouotsa, Low-rank parity-check codes over finite commutative rings, preprint, 2021, arXiv: 2106.08712.
    [31] H. T. Kamche and C. Mouaha, Rank-metric codes over finite principal ideal rings and applications, IEEE Transactions on Information Theory, 65 (2019), 7718-7735.  doi: 10.1109/TIT.2019.2933520.
    [32] F. R. Kamwa DjomouH. Talé Kalachi and E. Fouotsa, Generalization of low rank parity-check (LRPC) codes over the ring of integers modulo a positive integer, Arabian Journal of Mathematics, 10 (2021), 357-366.  doi: 10.1007/s40065-021-00327-z.
    [33] R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Transactions on Information Theory, 54 (2008), 3579-3591.  doi: 10.1109/TIT.2008.926449.
    [34] F. Lévy-dit Vehel and L. Perret, Algebraic decoding of codes in rank metric, Proceedings of YACC06, Porquerolles, France, June 2006. available on http://grim.univ-tln.fr/YACC06/abstracts-yacc06.pdf.
    [35] P. LusinaE. Gabidulin and M. Bossert, Maximum rank distance codes as space-time codes, IEEE Transactions on Information Theory, 49 (2003), 2757-2760.  doi: 10.1109/TIT.2003.818023.
    [36] P. Loidreau, Designing a rank metric based McEliece cryptosystem, Proceeding of the Third International Workshop on Post-Quantum Cryptography, Darmstadt, Germany, 2010,142-152. doi: 10.1007/978-3-642-12929-2_11.
    [37] B. R. McDonald, Finite Rings with Identity, volume 28., Marcel Dekker Incorporated, 1974.
    [38] R. J. McEliece, A Public-Key System Based on Algebraic Coding Theory, Jet Propulsion Lab, 1978. DSN Progress Report 44,114-116.
    [39] A. OtmaniH. T. Kalachi and S. Ndjeya, Improved cryptanalysis of rank metric schemes based on Gabidulin codes, Designs, Codes and Cryptography, 86 (2018), 1983-1996.  doi: 10.1007/s10623-017-0434-5.
    [40] R. Overbeck, Extending Gibson's attacks on the GPT cryptosystem, In Oyvind Ytrehus, editor, WCC 2005, volume 3969 of Lecture Notes in Computer Science, Springer, 2005,178-188. doi: 10.1007/11779360_15.
    [41] R. Overbeck, A new structural attack for GPT and variants, In Mycrypt, volume 3715 of Lecture Notes in Computer Science, 2005, 50-63. doi: 10.1007/11554868_5.
    [42] R. Overbeck, Structural attacks for public key cryptosystems based on Gabidulin codes, J. Cryptology, 21 (2008), 280-301.  doi: 10.1007/s00145-007-9003-9.
    [43] A. V. Ourivski and T. Johansson, New technique for decoding codes in the rank metric and its cryptography applications, Problems of Information Transmission, 38 (2002), 237-246.  doi: 10.1023/A:1020369320078.
    [44] E. Prange, The use of information sets in decoding cyclic codes, IRE Transactions on Information Theory, 8 (1962), 5-9. doi: 10.1109/tit.1962.1057777.
    [45] S. Puchinger, J. Renner, A. Wachter-Zeh and J. Zumbräge, Efficient decoding of Gabidulin codes over Galois rings, In 2021 IEEE International Symposium on Information Theory (ISIT), IEEE, 2021, 25-30. doi: 10.1109/ISIT45174.2021.9517904.
    [46] H. Rashwan, E. M. Gabidulin and B. Honary, A smart approach for GPT cryptosystem based on rank codes, In 2010 IEEE International Symposium on Information Theory, IEEE, 2010, 2463-2467. doi: 10.1109/ISIT.2010.5513549.
    [47] H. RashwanE. M. Gabidulin and B. Honary, Security of the GPT cryptosystem and its applications to cryptography, Security and Communication Networks, 4 (2011), 937-946.  doi: 10.1002/sec.228.
    [48] J. RennerA. Neri and S. Puchinger, Low-rank parity-check codes over Galois rings, Designs, Codes and Cryptography, 89 (2021), 351-386.  doi: 10.1007/s10623-020-00825-9.
    [49] J. Renner, S. Puchinger, A. Wachter-Zeh, C. Hollanti and R. Freij-Hollanti, Low-rank parity-check codes over the ring of integers modulo a prime power, In IEEE International Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, June 21-26, 2020, IEEE, 2020, 19-24. doi: 10.1109/ISIT44484.2020.9174384.
    [50] D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Transactions on Information Theory, 54 (2008), 3951-3967.  doi: 10.1109/TIT.2008.928291.
    [51] The SageMath Developers, SageMath Mathematics Software, 2022., http://www.sagemath.org/.
    [52] J. L. Walker, Algebraic geometric codes over rings, Journal of Pure and Applied Algebra, 144 (1999), 91-110.  doi: 10.1016/S0022-4049(98)00047-4.
    [53] V. Weger, K. Khathuria, A.-L. Horlemann, M. Battaglioni, P. Santini and E. Persichetti, On the hardness of the Lee syndrome decoding problem, Advances in Mathematics of Communications, (2022). doi: 10.3934/amc.2022029.
  • 加载中
SHARE

Article Metrics

HTML views(3200) PDF downloads(733) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return