In this paper, we consider the following Schrödinger-Poisson equation
{−△u+u+ϕu=u5+λg(u),in Ω, −△ϕ=u2,in Ω, u,ϕ=0,on ∂Ω.
where Ω is a bounded smooth domain in R3, λ>0 and the nonlinear growth of u5 reaches the Sobolev critical exponent in three spatial dimensions. With the aid of variational methods and the concentration compactness principle, we prove the problem admits at least two positive solutions and one positive ground state solution.
Citation: |
[1] |
C. O. Alves and M. A. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys, 65 (2014), 1153-1166.
doi: 10.1007/s00033-013-0376-3.![]() ![]() ![]() |
[2] |
C. O. Alves, M. A. Souto and S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl, 377 (2011), 584-592.
doi: 10.1016/j.jmaa.2010.11.031.![]() ![]() ![]() |
[3] |
A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.
doi: 10.1007/s00032-008-0094-z.![]() ![]() ![]() |
[4] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.
doi: 10.1016/j.jmaa.2008.03.057.![]() ![]() ![]() |
[5] |
V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
doi: 10.1142/S0129055X02001168.![]() ![]() ![]() |
[6] |
I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system, Comm. Partial Differential Equations, 17 (1992), 1051-1110.
![]() ![]() |
[7] |
G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 248 (2010), 521-543.
doi: 10.1016/j.jde.2009.06.017.![]() ![]() ![]() |
[8] |
S. Chen and C. Tang, High energy solutions for the superlinear Schrödinger-Maxwell equations, Nonlinear Anal., 71 (2009), 4927-4934.
doi: 10.1016/j.na.2009.03.050.![]() ![]() ![]() |
[9] |
H. Guo, Nonexistence of least energy nodal solutions for Schrödinger-Poisson equation, Appl. Math. Lett., 68 (2017), 135-142.
doi: 10.1016/j.aml.2016.12.016.![]() ![]() ![]() |
[10] |
L. Huang, E. M. Rocha and J. Chen, On the Schrödinger-Poisson system with a general indefinite nonlinear, Nonlinear Anal., 28 (2016), 1-19.
doi: 10.1016/j.nonrwa.2015.09.001.![]() ![]() ![]() |
[11] |
C. Y. Lei, G. S. Liu and L. T. Guo, Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity, Nonlinear Anal. Real World Appl., 31 (2016), 343-355.
doi: 10.1016/j.nonrwa.2016.01.018.![]() ![]() ![]() |
[12] |
H. Liu, Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent, Nonlinear Anal., 32 (2016), 198-212.
doi: 10.1016/j.nonrwa.2016.04.007.![]() ![]() ![]() |
[13] |
Z. Liu and S. Guo, On ground state solutions for the Schrödinger-Poisson equations with critical growth, J. Math. Anal. Appl., 412 (2014), 435-448.
doi: 10.1016/j.jmaa.2013.10.066.![]() ![]() ![]() |
[14] |
A. Mao, L. Yang, A. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Appl. Math. Lett, 68 (2017), 8-12.
doi: 10.1016/j.aml.2016.12.014.![]() ![]() ![]() |
[15] |
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005.![]() ![]() ![]() |
[16] |
J. Sun, Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 390 (2012), 514-522.
doi: 10.1016/j.jmaa.2012.01.057.![]() ![]() ![]() |
[17] |
J. Sun and T. Wu, Multiplicity and concentration of homoclinic solutions for some second order Hamiltonian systems, Nonlinear Anal., 114 (2015), 105-115.
doi: 10.1016/j.na.2014.11.009.![]() ![]() ![]() |
[18] |
M. Willem, Minimax Theorems, Birthäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |