Processing math: 11%
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximation by Durrmeyer variant of Cheney-Sharma Chlodovsky operators

  • *Corresponding author: Chandra Prakash

    *Corresponding author: Chandra Prakash 

This article is dedicated to Professor Vijay Gupta on the Occasion of his 60th Birthday

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we are dealing with Cheney-Sharma Chlodovsky Durrmeyer operators and studying their approximation properties. The Bohman-Korovkin theorem is verified and estimated the convergence properties using of modulus of continuity, Lipschitz- type space, and Ditzian-Totik modulus of continuity. After that, the weighted approximation result is also given. Finally, some results related to the A-statistical convergence of the operators are obtained.

    Mathematics Subject Classification: Primary: 26A15, 41A25; Secondary: 40A35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. H. Abel, Dˊemonstration une expression de laquelle la formule biome est un cas particulier, Journ. ur Reine und Angewendte Mathematik, 1 (1826), 159-160, Oeuvres Compltes, Christiania, Groendahls, 1839.
    [2] U. AbelV. Gupta and M. Ivan, Asymptotic approximation of functions and their derivatives by generalized Baskakov-Szsz-Durrmeyer operators, Anal. Theory Appl., 21 (2005), 15-26.  doi: 10.1007/BF02835246.
    [3] U. AbelV. Gupta and R. N. Mohapatra, Local approximation by a varient of Bernstein-Durrmeyer operators, Nonlinear Anal. Theory Methods Appl. Ser. A: Theory Methods, 68 (2008), 3372-3381.  doi: 10.1016/j.na.2007.03.026.
    [4] U. Abel and M. Heilmann, The complete asympotic expansion for Bernstein-Durrmeyer operators with Jacobi weights, Mediterr. J. Math., 1 (2004), 487-499.  doi: 10.1007/s00009-004-0026-2.
    [5] U. AbelM. Ivan and Z. Li, Local approximation by generalized Baskakov-Durrmeyer operators, Numer. Funct. Anal. Optimiz., 28 (2007), 245-264.  doi: 10.1080/01630560701277823.
    [6] U. AbelM. Ivan and R. Pǎltǎnea, The Durrmeyer variant of an operator defined by D. D. Stancu, Appl. Math. Comput., 259 (2015), 116-123.  doi: 10.1016/j.amc.2015.02.026.
    [7] T. AcarM. C. MontanoP. Garrancho and V. Leonessa, On Bernstein-Chlodovsky operators preserving , Bull. Belg. Math. Soc. Simon Stevin, 26 (2019), 681-698.  doi: 10.36045/bbms/1579402817.
    [8] T. AcarM. C. MontanoP. Garrancho and V. Leonessa, Voronovskaya type results for Bernstein-Chlodovsky operators preserving , J. Math. Anal. Appl., 491 (2020), 124307.  doi: 10.1016/j.jmaa.2020.124307.
    [9] P. N. Agrawal and J. K. Singh, Better approximation by a Durrmeyer variant of Baskakov operators, Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021040.
    [10] A. Aral and T. Acar, Weighted approximation by new Bernstein-Chlodowsky-Gadjiev operators, Filomat, 27 (2013), 373-380.  doi: 10.2298/FIL1302371A.
    [11] J. Boos, Clasical and Modern Methods in Summability, Oxford University Press, Oxford, (2000).
    [12] R. C. Buck, The measure theoretic approach to density, Amer. J. Math., 68 (1946), 560-580.  doi: 10.2307/2371785.
    [13] R. C. Buck, Generalized asymptotic density, Amer. J. Math., 75 (1953), 335-346.  doi: 10.2307/2372456.
    [14] E. W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (1964), 77-84. 
    [15] I. Chlodovsky, Sur le dévelopment des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein, Compositio Math., 4 (1937), 380-393. 
    [16] N. Deo and R. Pratap-Bernstein Kantorovich operators, Afr. Mat., 31 (2020), 609-618.  doi: 10.1007/s13370-019-00746-4.
    [17] Z. Ditzian and V. Totik, Moduli of Smoothness, , Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-4.
    [18] O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.  doi: 10.4064/sm161-2-6.
    [19] J. L. Durrmeyer, Une Formule d'inversion de la Transformee Laplace. Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Science de I' Universite de Paris, 1967.
    [20] H. Fast, Sur la convergence statistique, Coloq. Math., 2 (1951), 241-244. 
    [21] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.  doi: 10.1524/anly.1985.5.4.301.
    [22] J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis, 11 (1991), 59-66.  doi: 10.1524/anly.1991.11.1.59.
    [23] V. Gupta, A note on the rate of convergence of Durrmeyer type operators for function of bounded variation, Soochow J. Math., 23 (1997), 115-118. 
    [24] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014. doi: 10.1007/978-3-319-02765-4.
    [25] V. Gupta and W. Heping, The rate of convergence of Durrmeyer operators for , Math. Methods Appl. Sci., 31 (2008), 1946-1955.  doi: 10.1002/mma.1012.
    [26] P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions (Russian), Doklady Akad. Nauk. SSSR(NS), 90 (1953), 961-964. 
    [27] M. A. Özarslan and O. Duman, Local approximation behavior of modified SMK operators, Miskolc Math. Notes, 11 (2010), 87-99.  doi: 10.18514/mmn.2010.228.
    [28] R. Pǎltǎnea, Durrmeyer type operators on a simplex, Constr. Math. Anal., 4 (2021), 215-228.  doi: 10.33205/cma.862942.
    [29] C. Prakash, N. Deo and D. K. Verma, Bézier variant of Bernstein–Durrmeyer blending-type operators, Asian-Eur. J. Math., 15 (2022), Paper No. 2250103, 17 pp. doi: 10.1142/S1793557122501030.
    [30] C. PrakashD. K. Verma and N. Deo, Approximation by a new sequence of operators involving Apostol-Genocchi polynomials, Math. Slovaca, 71 (2021), 1179-1188.  doi: 10.1515/ms-2021-0047.
    [31] R. Pratap and N. Deo, Approximation by genuine Gupta-Srivastava operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 2495-2505.  doi: 10.1007/s13398-019-00633-4.
    [32] K. K. Singh and P. N. Agrawal, On Szsz-Durrmeyer type modification using Gould Hopper polynomials, Mathematical Foundations of Computing, 2022. doi: 10.3934/mfc.2022011.
    [33] D. Söylemez and F. Taşdelen, Approximation by Cheney-Sharma Chlodovsky operators, Hact. J. Math. Stat., 49 (2020), 510-522.  doi: 10.15672/hujms.458188.
    [34] D. Sylemez and M. nver, Korovkin type theorems for Cheney-Sharma operators via summability methods, Results Math., 72 (2017), 1601-1612.  doi: 10.1007/s00025-017-0733-1.
    [35] D. D. Stancu, The remainder in the approximation by a generalized Bernstein operator: A representation by a convex combination of second-order divided differences, Calcolo, 35 (1998), 53-62.  doi: 10.1007/s100920050008.
    [36] D. K. VermaV. Gupta and P. N. Agrawal, Some approximation properties of Baskakov–Durrmeyer–Stancu operators, Appl. Math. Comput., 218 (2012), 6549-6556.  doi: 10.1016/j.amc.2011.12.031.
    [37] K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2 (1885), 633-639.
  • 加载中
SHARE

Article Metrics

HTML views(2103) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return