In this paper, we are dealing with Cheney-Sharma Chlodovsky Durrmeyer operators and studying their approximation properties. The Bohman-Korovkin theorem is verified and estimated the convergence properties using of modulus of continuity, Lipschitz- type space, and Ditzian-Totik modulus of continuity. After that, the weighted approximation result is also given. Finally, some results related to the A-statistical convergence of the operators are obtained.
Citation: |
[1] |
N. H. Abel, Dˊemonstration une expression de laquelle la formule biome est un cas particulier, Journ. ur Reine und Angewendte Mathematik, 1 (1826), 159-160, Oeuvres Compltes, Christiania, Groendahls, 1839.
![]() |
[2] |
U. Abel, V. Gupta and M. Ivan, Asymptotic approximation of functions and their derivatives by generalized Baskakov-Szsz-Durrmeyer operators, Anal. Theory Appl., 21 (2005), 15-26.
doi: 10.1007/BF02835246.![]() ![]() ![]() |
[3] |
U. Abel, V. Gupta and R. N. Mohapatra, Local approximation by a varient of Bernstein-Durrmeyer operators, Nonlinear Anal. Theory Methods Appl. Ser. A: Theory Methods, 68 (2008), 3372-3381.
doi: 10.1016/j.na.2007.03.026.![]() ![]() ![]() |
[4] |
U. Abel and M. Heilmann, The complete asympotic expansion for Bernstein-Durrmeyer operators with Jacobi weights, Mediterr. J. Math., 1 (2004), 487-499.
doi: 10.1007/s00009-004-0026-2.![]() ![]() ![]() |
[5] |
U. Abel, M. Ivan and Z. Li, Local approximation by generalized Baskakov-Durrmeyer operators, Numer. Funct. Anal. Optimiz., 28 (2007), 245-264.
doi: 10.1080/01630560701277823.![]() ![]() ![]() |
[6] |
U. Abel, M. Ivan and R. Pǎltǎnea, The Durrmeyer variant of an operator defined by D. D. Stancu, Appl. Math. Comput., 259 (2015), 116-123.
doi: 10.1016/j.amc.2015.02.026.![]() ![]() ![]() |
[7] |
T. Acar, M. C. Montano, P. Garrancho and V. Leonessa, On Bernstein-Chlodovsky operators preserving , Bull. Belg. Math. Soc. Simon Stevin, 26 (2019), 681-698.
doi: 10.36045/bbms/1579402817.![]() ![]() ![]() |
[8] |
T. Acar, M. C. Montano, P. Garrancho and V. Leonessa, Voronovskaya type results for Bernstein-Chlodovsky operators preserving , J. Math. Anal. Appl., 491 (2020), 124307.
doi: 10.1016/j.jmaa.2020.124307.![]() ![]() ![]() |
[9] |
P. N. Agrawal and J. K. Singh, Better approximation by a Durrmeyer variant of Baskakov operators, Mathematical Foundations of Computing, 2021
doi: 10.3934/mfc.2021040.![]() ![]() |
[10] |
A. Aral and T. Acar, Weighted approximation by new Bernstein-Chlodowsky-Gadjiev operators, Filomat, 27 (2013), 373-380.
doi: 10.2298/FIL1302371A.![]() ![]() ![]() |
[11] |
J. Boos, Clasical and Modern Methods in Summability, Oxford University Press, Oxford, (2000).
![]() ![]() |
[12] |
R. C. Buck, The measure theoretic approach to density, Amer. J. Math., 68 (1946), 560-580.
doi: 10.2307/2371785.![]() ![]() ![]() |
[13] |
R. C. Buck, Generalized asymptotic density, Amer. J. Math., 75 (1953), 335-346.
doi: 10.2307/2372456.![]() ![]() ![]() |
[14] |
E. W. Cheney and A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 2 (1964), 77-84.
![]() ![]() |
[15] |
I. Chlodovsky, Sur le dévelopment des fonctions définies dans un intervalle infini en séries de polynomes de M. S. Bernstein, Compositio Math., 4 (1937), 380-393.
![]() ![]() |
[16] |
N. Deo and R. Pratap, -Bernstein Kantorovich operators, Afr. Mat., 31 (2020), 609-618.
doi: 10.1007/s13370-019-00746-4.![]() ![]() ![]() |
[17] |
Z. Ditzian and V. Totik, Moduli of Smoothness, , Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4778-4.![]() ![]() ![]() |
[18] |
O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161 (2004), 187-197.
doi: 10.4064/sm161-2-6.![]() ![]() ![]() |
[19] |
J. L. Durrmeyer, Une Formule d'inversion de la Transformee Laplace. Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Science de I' Universite de Paris, 1967.
![]() |
[20] |
H. Fast, Sur la convergence statistique, Coloq. Math., 2 (1951), 241-244.
![]() ![]() |
[21] |
J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
doi: 10.1524/anly.1985.5.4.301.![]() ![]() ![]() |
[22] |
J. A. Fridy and H. I. Miller, A matrix characterization of statistical convergence, Analysis, 11 (1991), 59-66.
doi: 10.1524/anly.1991.11.1.59.![]() ![]() ![]() |
[23] |
V. Gupta, A note on the rate of convergence of Durrmeyer type operators for function of bounded variation, Soochow J. Math., 23 (1997), 115-118.
![]() ![]() |
[24] |
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014.
doi: 10.1007/978-3-319-02765-4.![]() ![]() ![]() |
[25] |
V. Gupta and W. Heping, The rate of convergence of Durrmeyer operators for , Math. Methods Appl. Sci., 31 (2008), 1946-1955.
doi: 10.1002/mma.1012.![]() ![]() ![]() |
[26] |
P. P. Korovkin, On convergence of linear positive operators in the space of continuous functions (Russian), Doklady Akad. Nauk. SSSR(NS), 90 (1953), 961-964.
![]() ![]() |
[27] |
M. A. Özarslan and O. Duman, Local approximation behavior of modified SMK operators, Miskolc Math. Notes, 11 (2010), 87-99.
doi: 10.18514/mmn.2010.228.![]() ![]() ![]() |
[28] |
R. Pǎltǎnea, Durrmeyer type operators on a simplex, Constr. Math. Anal., 4 (2021), 215-228.
doi: 10.33205/cma.862942.![]() ![]() ![]() |
[29] |
C. Prakash, N. Deo and D. K. Verma, Bézier variant of Bernstein–Durrmeyer blending-type operators, Asian-Eur. J. Math., 15 (2022), Paper No. 2250103, 17 pp.
doi: 10.1142/S1793557122501030.![]() ![]() ![]() |
[30] |
C. Prakash, D. K. Verma and N. Deo, Approximation by a new sequence of operators involving Apostol-Genocchi polynomials, Math. Slovaca, 71 (2021), 1179-1188.
doi: 10.1515/ms-2021-0047.![]() ![]() ![]() |
[31] |
R. Pratap and N. Deo, Approximation by genuine Gupta-Srivastava operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 2495-2505.
doi: 10.1007/s13398-019-00633-4.![]() ![]() ![]() |
[32] |
K. K. Singh and P. N. Agrawal, On Szsz-Durrmeyer type modification using Gould Hopper polynomials, Mathematical Foundations of Computing, 2022.
doi: 10.3934/mfc.2022011.![]() ![]() |
[33] |
D. Söylemez and F. Taşdelen, Approximation by Cheney-Sharma Chlodovsky operators, Hact. J. Math. Stat., 49 (2020), 510-522.
doi: 10.15672/hujms.458188.![]() ![]() ![]() |
[34] |
D. Sylemez and M. nver, Korovkin type theorems for Cheney-Sharma operators via summability methods, Results Math., 72 (2017), 1601-1612.
doi: 10.1007/s00025-017-0733-1.![]() ![]() ![]() |
[35] |
D. D. Stancu, The remainder in the approximation by a generalized Bernstein operator: A representation by a convex combination of second-order divided differences, Calcolo, 35 (1998), 53-62.
doi: 10.1007/s100920050008.![]() ![]() ![]() |
[36] |
D. K. Verma, V. Gupta and P. N. Agrawal, Some approximation properties of Baskakov–Durrmeyer–Stancu operators, Appl. Math. Comput., 218 (2012), 6549-6556.
doi: 10.1016/j.amc.2011.12.031.![]() ![]() ![]() |
[37] |
K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 2 (1885), 633-639.
![]() |