This article deals with shape preserving and local approximation properties of post-quantum Bernstein bases and operators over arbitrary interval [a,b] defined by Khan and Sharma (Iran J Sci Technol Trans Sci (2021)). The properties for (p,q)-Bernstein bases and Bézier curves over [a,b] have been given. A de Casteljau algorithm has been discussed. Further we obtain the rate of convergence for (p,q)-Bernstein operators over [a,b] in terms of Lipschitz type space having two parameters and Lipschitz maximal functions.
Citation: |
[1] |
T. Acar and A. Aral, Approximation properties of two dimensional Bernstein-Stancu-Chlodowsky operators, Matematiche (Catania), 68 (2013), 15-31.
![]() ![]() |
[2] |
T. Acar, A. Aral and S. A. Mohiuddine, Approximation by bivariate (p,q)-Bernstein-Kantorovich operators, Iran. J. Sci. Technol. Trans. A Sci., 42 (2018), 655-662.
doi: 10.1007/s40995-016-0045-4.![]() ![]() ![]() |
[3] |
R. Aslan and M. Mursaleen, Some approximation results on a class of new type λ-Bernstein polynomials, J. Math. Inequal., 16 (2022), 445-462.
doi: 10.7153/jmi-2022-16-32.![]() ![]() ![]() |
[4] |
M. Ayman-Mursaleen, A. Kilicman and M. Nasiruzzaman, Approximation by q-Bernstein-Stancu-Kantorovich operators with shifted knots of real parameters, Filomat, 36 (2022), 1179-1194.
![]() ![]() |
[5] |
M. Ayman-Mursaleen and S. Serra-Capizzano, Statistical convergence via q-calculus and a korovkin's type approximation theorem, Axioms, 11 (2022), 70.
![]() |
[6] |
S. N. Bernstein, Constructive proof of Weierstrass approximation theorem, Comm. Kharkov Math. Soc, 1912.
![]() |
[7] |
P. E. Bèzier, Numerical Control-Mathematics and applications, John Wiley and Sons, London, 1972.
![]() |
[8] |
P. Blaga, T. Cătinaş and G. Coman, Bernstein-type operators on a triangle with one curved side, Mediterr. J. Math., 9 (2011), 1-13.
doi: 10.1007/s00009-011-0156-2.![]() ![]() ![]() |
[9] |
N. Braha, T. Mansour, M. Mursaleen and T. Acar, Convergence of λ-Bernstein operators via power series summability method, J. Appl. Math. Comput., 65 (2021), 125-146.
doi: 10.1007/s12190-020-01384-x.![]() ![]() ![]() |
[10] |
Q.-B. Cai and R. Aslan, On a new construction of generalized q-bernstein polynomials based on shape parameterλ, Symmetry, 13 (2021), 1919.
![]() |
[11] |
Q.-B. Cai and W.-T. Cheng, Convergence of λ-Bernstein operators based on (p,q)-integers, J. Ineq. App., 2002 (2020), 35.
doi: 10.1186/s13660-020-2309-y.![]() ![]() ![]() |
[12] |
Q.-B. Cai, A. Kilicman and M. Ayman-Mursaleen, Approximation properties and q-statistical convergence of stancu-type generalized baskakov-szász operators, J. Funct. Spaces, 2022 (2022), 2286500.
doi: 10.1155/2022/2286500.![]() ![]() ![]() |
[13] |
Q.-B. Cai, B.-Y. Lian and G. Zhou, Approximation properties of λ-Bernstein operators, J. Ineq. App., 2018 (2018), Paper No. 61, 11 pp.
doi: 10.1186/s13660-018-1653-7.![]() ![]() ![]() |
[14] |
Feng, et. al., CNN models for readability of Chinese texts, Mathematical Foundations of Computing, 5 (2022), 351-362.
![]() |
[15] |
L.-W. Han, Y. Chu and Z.-Y. Qiu, Generalized Bèzier curves and surfaces based on Lupaşq-analogue of Bernstein operator, J. Comput. Appl. Math., 261 (2014), 352-363.
doi: 10.1016/j.cam.2013.11.016.![]() ![]() ![]() |
[16] |
M. N. Hounkonnou and J. D. B. Kyemba, R(p,q)-calculus:differentiation and integration, SUT J. Math., 49 (2013), 145-167.
![]() ![]() |
[17] |
S. Huang, et. al., Learning theory of minimum errorentropy under weak moment conditions, Anal. Appl., 20 (2022), 121-139.
doi: 10.1142/S0219530521500044.![]() ![]() ![]() |
[18] |
V. Kac and P. Cheung, Quantum Calculus, Universitext. Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4613-0071-7.![]() ![]() ![]() |
[19] |
A. Khan, M. S. Mansoori, K. Khan and M. Mursaleen, Phillips-type q-bernstein on triangles, J. Funct. Spaces, 2021 (2021), Article ID 6637893, 13 pp.
doi: 10.1155/2021/6637893.![]() ![]() ![]() |
[20] |
A. Khan, M. S. Mansoori, K. Khan and M. Mursaleen, Lupaş type Bernstein operators on triangles based on quantum analogue, Alexandria Engineering Journal, 60 (2021), 5909-5919.
![]() |
[21] |
A. Khan, V. Sharma and K. Khan, (p,q)-Bernstein bases and operators over arbitrary intervals, Iran. J. Sci. Technol. Trans. A Sci., 45 (2021), 1447-1456.
doi: 10.1007/s40995-021-01118-z.![]() ![]() ![]() |
[22] |
K. Khan, D. K. Lobiyal and A. Kilicman, A de casteljau algorithm for bernstein type polynomials based on (p,q)-integers, Appl. Appl. Math., 13 (2018), 997-1017.
![]() ![]() |
[23] |
K. Khan, D. K. Lobiyal and A. Kilicman, Bèzier curves and surfaces based on modified Bernstein polynomials, Azerb. J. Math., 9 (2019), 3-21.
![]() ![]() |
[24] |
P. P. Korovkin, Linear operators and approximation theory, Hindustan Publishing Corporation, Delhi, 1960.
![]() ![]() |
[25] |
B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 91 (1988), 53-63.
![]() ![]() |
[26] |
B. Lenze, Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions, Approximation Theory, Kecskemet, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam, 58 (1991), 469-496.
![]() ![]() |
[27] |
A. Lupaş, A q-analogue of the bernstein operator, seminar on numerical and statistical calculus, University of Cluj-Napoca, 9 (1987), 85-92.
![]() ![]() |
[28] |
M. Mursaleen, A. A. H. Al-Abied and M. A. Salman, Chlodowsky type (λ,q)-Bernstein-Stancu operators, Azerb. J. Math., 10 (2020), 75-101.
![]() ![]() |
[29] |
M. Mursaleen, K. J. Ansari and A. Khan, On (p,q)-analogue of bernstein operators, Appl. Math. Comput., 266 (2015), 874-882.
doi: 10.1016/j.amc.2015.04.090.![]() ![]() ![]() |
[30] |
M. Mursaleen, M. Nasiruzzaman, A. Khan and K. J. Ansari, Some approximation results on Bleimann-Butzer-Hahn operators defined by (p,mathfrakq)-integers, Filomat, 30 (2016), 639-648.
doi: 10.2298/FIL1603639M.![]() ![]() ![]() |
[31] |
H. Oruç and G. M. Phillips, q-Bernstein polynomials and Bèzier curves, J. Comput. Appl. Math., 151 (2003), 1-12.
doi: 10.1016/S0377-0427(02)00733-1.![]() ![]() ![]() |
[32] |
S. Ostrovska, On the lupaş, q-analogue of the bernstein operator, Rocky Mountain J. Math., 36 (2006), 1615-1629.
doi: 10.1216/rmjm/1181069386.![]() ![]() ![]() |
[33] |
M. A. Özarslan and H. Aktuğlu, Local approximation properties for certain king type operators, Filomat, 27 (2013), 173-181.
doi: 10.2298/FIL1301173O.![]() ![]() ![]() |
[34] |
G. M. Phillips, A de Casteljau algorithm for generalized Bernstein polynomials, BIT, 36 (1996), 232-236.
doi: 10.1007/BF02510184.![]() ![]() ![]() |
[35] |
G. M. Phillips, Bernstein polynomials based on the q-integers, The heritage of P. L. Chebyshev, Ann. Numer. Math., 4 (1997), 511-518.
![]() ![]() |
[36] |
G. M. Phillips, A generalization of the Bernstein polynomials based on the q-integers, ANZIAM J., 42 (2000), 79-86.
doi: 10.1017/S1446181100011615.![]() ![]() ![]() |
[37] |
G. M. Phillips, Interpolation and Approximation by Polynomials, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 14. Springer-Verlag, New York, 2003.
doi: 10.1007/b97417.![]() ![]() ![]() |
[38] |
A. Rababah and S. Manna, Iterative process for G2-multi degree reduction of Beˊzier curves, Appl. Math. Comput., 217 (2011), 8126-8133.
doi: 10.1016/j.amc.2011.03.016.![]() ![]() ![]() |
[39] |
S. Rahman, M. Mursaleen and A. M. Acu, Approximation properties of -Bernstein-Kantorovich operators with shifted knots, Math. Meth. Appl. Sci., 42 (2019), 4042-4053.
doi: 10.1002/mma.5632.![]() ![]() ![]() |
[40] |
T. W. Sederberg, Computer aided geometric design course notes, Department of Computer Science Brigham Young University, 9 (2014).
![]() |
[41] |
P. Simeonova, V. Zafirisa and R. Goldman, -Blossoming: A new approach to algorithms and identities for -Bernstein bases and -Bzier curves, J. Approx. Theory, 164 (2012), 77-104.
doi: 10.1016/j.jat.2011.09.006.![]() ![]() ![]() |
[42] |
F. Wang, et. al., On approximation of Bernstein-Durrmeyer-type operators in movable interval, Filomat, 5 (2022), 331-342.
doi: 10.2298/fil2104191w.![]() ![]() ![]() |