The coefficients in the three-term recurrence relation for monic orthogonal polynomials with respect to the Szegő-Bernstein weight functions wν(x)=W(x)/(c−x)ν, ν≥1, on (−1,1) are obtained in the explicit form for all Chebyshev cases, i.e., when W(x) is (1−x2)∓1/2, √(1+x)/(1−x) and √(1−x)/(1+x). Chebyshev's method of modified moments is used, as well as the MATHEMATICA package OrthogonalPolinomials developed in [Facta Univ. Ser. Math. Inform. 19 (2004), 17-36] and [Math. Balkanica 26 (2012), 169-184].
Citation: |
[1] |
G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 1999.
doi: 10.1017/CBO9781107325937.![]() ![]() ![]() |
[2] |
P. L. Chebyshev, Sur l'interpolation par la méthode des moindres carrés, Mém. Acad. Impér. Sci. St. Petersbourg (7), 1 (1859), 1-24.
![]() |
[3] |
A. S. Cvetković and G. V. Milovanović, The mathematica package "OrthogonalPolynomials", Facta Univ. Ser. Math. Inform., 19 (2004), 17-36.
![]() ![]() |
[4] |
B. Fischer and G. Golub, How to generate unknown orthogonal polynomials out of known orthogonal polynomials, J. Comput. Appl. Math., 43 (1992), 99-115.
doi: 10.1016/0377-0427(92)90261-U.![]() ![]() ![]() |
[5] |
W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput., 3 (1982), 289-317.
doi: 10.1137/0903018.![]() ![]() ![]() |
[6] |
W. Gautschi, Orthogonal polynomials: Applications and computation, Acta Numerica, 5 (1996), 45-119.
doi: 10.1017/S0962492900002622.![]() ![]() ![]() |
[7] |
W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford Science Publications. Oxford University Press, New York, 2004.
![]() ![]() |
[8] |
W. Gautschi and G. V. Milovanović, Orthogonal polynomials relative to a generalized Marchenko-Pastur probability measure, Numer. Algorithms, 88 (2021), 1233-1249.
doi: 10.1007/s11075-021-01073-1.![]() ![]() ![]() |
[9] |
W. Gautschi and S. E. Notaris, Gauss–Kronrod quadrature formulae for weight functions of Bernstein–Szegö type, J. Comput. Appl. Math., 25 (1989), 199-224.
doi: 10.1016/0377-0427(89)90047-2.![]() ![]() ![]() |
[10] |
G. Mastroianni and G. V. Milovanović, Weighted integration of periodic functions on the real line, Appl. Math. Comput., 128 (2002), 365-378.
doi: 10.1016/S0096-3003(01)00080-7.![]() ![]() ![]() |
[11] |
G. Mastroianni and G. V. Milovanović, Interpolation Processes – Basic Theory and Applications, Springer Monographs in Mathematics, Springer – Verlag, Berlin – Heidelberg, 2008.
doi: 10.1007/978-3-540-68349-0.![]() ![]() ![]() |
[12] |
G. V. Milovanović and A. S. Cvetković, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica, 26 (2012), 169-184.
![]() ![]() |
[13] |
S. E. Notaris, Gauss–Kronrod quadrature formulae for weight functions of Bernstein–Szegö type, II, J. Comput. Appl. Math., 29 (1990), 161-169.
doi: 10.1016/0377-0427(90)90355-4.![]() ![]() ![]() |
[14] |
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012.
doi: 10.1016/B978-0-12-385218-2.00001-3.![]() ![]() ![]() |
[15] |
G. Szegő, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23 American Mathematical Society, Providence, R.I. 1959
![]() ![]() |
[16] |
R. Wong and Y.-Q. Zhao, Recent advances in asymptotic analysis, Anal. Appl. (Singap.), 2022.
doi: 10.1142/S0219530522400012.![]() ![]() |
Three-term recurrence coefficients
Three-term recurrence coefficients
Three-term recurrence coefficients
Three-term recurrence coefficients
Three-term recurrence coefficients
Three-term recurrence coefficients
Three-term recurrence coefficients