Processing math: 100%
\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Integral Baskakov type operator with quadratic order of approximation

  • *Corresponding author: Asha Ram Gairola

    *Corresponding author: Asha Ram Gairola 
Abstract / Introduction Full Text(HTML) Figure(4) / Table(2) Related Papers Cited by
  • In order to approximate Lebesgue integrable functions on the positive real axis, we propose an integral variant of Baskakov operators. We show that the linear operators so obtained exhibit the quadratic approximation order O(n2) for sufficiently large values of n.

    Mathematics Subject Classification: Primary: 41A36, 41A25; Secondary: 41A81.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  f(x) versus ˆSn(f;x), n=5,10

    Figure 2.  Absolute error function En(x)=|f(x)ˆSn(f;x)|, n=5,10

    Figure 3.  x(x+1)2 versus ˆSn(f;x), n=5,15,25

    Figure 4.  Absolute error function En(x),n=5,15,25

    Table 1.  f(x) versus ˆSn(f;x), n=5,10

    ˆSn(f;x) |f(x)ˆSn(f;x)|
    x f(x) n=5 n=10 n=5 n=10
    0 0.04 0 0 0.04 0.04
    5 0.0246154 0.0299839 0.00975022 0.00536847 0.0148652
    10 0.0080798 0.0107168 -0.0051111 0.00263701 0.0131909
    15 0.00386969 -0.00449091 -0.00126303 0.0083606 0.00513272
    20 0.0022559 -0.00872948 -0.000310729 0.0109854 0.00256663
    25 0.00147447 -0.00877652 -8.91634E-05 0.010251 0.00156363
    30 0.00103824 -0.00765977 -2.96435E-05 0.00869801 0.00106788
    35 0.000770333 -0.0063892 -1.11478E-05 0.00715953 0.000781481
    40 0.000594135 -0.00525737 -4.63868*106 0.00585151 0.000598774
     | Show Table
    DownLoad: CSV

    Table 2.  f(x) with respect to ˆSn(f;x), n=5,15,25

    ˆSn(f;x) |f(x)ˆSn(f;x)|
    x f(x) n=5 n=15 n=25 n=5 n=15 n=25
    0 0 0 0 0 0 0 0
    10 0.0826446 0.0799523 0.0785445 0.00410016 0.00269229 0.00410016 0.00073308
    20 0.0453515 0.0242172 0.0402563 0.00509522 0.0211342 0.00509522 0.000690846
    30 0.0312175 0.00791587 0.026823 0.00439447 0.0233016 0.00439447 0.000555392
    40 0.0237954 0.00147329 0.0200633 0.00373209 0.0223221 0.00373209 0.000456052
    50 0.0192234 -0.00148503 0.01601 0.00321334 0.0207084 0.00321334 0.000384908
    60 0.0161247 -0.00295178 0.0133136 0.00281113 0.0190765 0.00281113 0.000332307
    70 0.0138861 -0.00369866 0.0113919 0.00249423 0.0175848 0.00249423 0.00029208
    80 0.0121933 -0.00406924 0.00995373 0.00223953 0.0162625 0.00223953 0.00026041
    90 0.0108683 -0.00423216 0.00883727 0.00203098 0.0151004 0.00203098 0.000234868
    100 0.00980296 -0.00427638 0.0079456 0.00185736 0.0140793 0.00185736 0.00021385
     | Show Table
    DownLoad: CSV
  • [1] T. AcarO. AlagözA. AralD. CostarelliM. Turgay and G. Vinti, Approximation by sampling Kantorovich series in weighted spaces of functions, Turkish J. Math., 46 (2022), 2663-2676.  doi: 10.55730/1300-0098.3293.
    [2] T. AcarO. AlagözA. AralD. CostarelliM. Turgay and G. Vinti, Convergence of generalized sampling series in weighted spaces, Demonstratio Math., 55 (2022), 153-162.  doi: 10.1515/dema-2022-0014.
    [3] T. AcarA. Aral and I. Raşa, Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (2019), 98-102.  doi: 10.1155/2012/217464.
    [4] T. Acar and B. R. Draganov, A strong converse inequality for generalized sampling operators, An. Funct. Anal., 13 (2022), Paper No. 36, 16 pp. doi: 10.1007/s43034-022-00185-6.
    [5] T. Acar, S. Kursun and M. Turgay, Multidimensional Kantorovich modifications of exponential sampling series, Quaest. Math., (2022), 1-16. doi: 10.2989/16073606.2021.1992033.
    [6] A. M. AcuA. Aral and I. Raşa, Generalized Bernstein Kantorovich operators, Carpathian J. Math., 38 (2022), 1-12.  doi: 10.37193/cjm.2022.01.01.
    [7] A. M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math., 74 (2019), Paper No. 90, 24 pp. doi: 10.1007/s00025-019-1019-6.
    [8] P. N. Agrawal and A. R. Gairola, On iterative combination of Bernstein-Durrmeyer polynomials, Appl. Anal. Discrete Math., 1 (2007), 199-210.  doi: 10.2298/AADM0701199A.
    [9] P. N. AgrawalA. Kajla and D. Kumar, Modified ρ-Bernstein operators for functions of two variables, Numer. Funct. Anal. Optim., 42 (2021), 1073-1095.  doi: 10.1080/01630563.2021.1931311.
    [10] P. N. Agrawal and J. K. Singh, Better approximation by a Durrmeyer variant of αBaskakov operators, Math. Found. Comput., (2022). doi: 10.3934/mfc.2021040.
    [11] O. AlagozM. TurgayT. Acar and M. Parlak, Approximation by sampling Durrmeyer operators in weighted space of functions, Numer. Funct. Anal. Optim., 43 (2022), 1223-1239.  doi: 10.1080/01630563.2022.2096630.
    [12] A. Aral and T. Acar, Weighted approximation by new Bernstein-Chlodowsky-Gadjiev operators, Filomat, 27 (2013), 371-380.  doi: 10.2298/FIL1302371A.
    [13] A. Aral, T. Acar and S. Kursun, Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys., 12 (2022), Paper No. 50, 19 pp. doi: 10.1007/s13324-022-00667-9.
    [14] G. Başcanbaz-TuncaA. Erençin and F. Taşdelen, On a sequence of Kantorovich type operators via Riemann type qintegral, Bull. Korean Math. Soc., 51 (2014), 303-315.  doi: 10.4134/BKMS.2014.51.2.303.
    [15] V. A. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR (N.S.), 113 (1957), 249-251. 
    [16] M. BodurÖ. G. Yilmaz and A. Aral, Approximation by Baskakov-Szász-Stancu operators preserving exponential functions, Constr. Math. Anal., 1 (2018), 1-8.  doi: 10.33205/cma.450708.
    [17] N. L. BrahaT. MansourM. Mursaleen and T. Acar, Convergence of λ-Bernstein operators via power series summability method, J. Appl. Math. Comput., 65 (2021), 125-146.  doi: 10.1007/s12190-020-01384-x.
    [18] T. Coşkun, Some properties of linear positive operators in the weighted spaces of unbounded functions, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 47 (1998), 175-181. 
    [19] Z. Ditzian and V. Totik, Moduli of Smoothness Springer-Verlag, Springer Series in Computational Mathematics, 9. Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4778-4.
    [20] G. Feng, Direct and inverse approximation theorems for Baskakov operators with the Jacobi-type weight, Abstr. Appl. Anal., (2011), Art. ID 101852, 13 pp. doi: 10.1155/2011/101852.
    [21] A. R. GairolaK. K. Singh and L. N. Mishra, Degree of approximation by certain Durrmeyer type operator, Discontinuity Nonlinearity Complex., 11 (2022), 253-273.  doi: 10.5890/DNC.2022.06.006.
    [22] P. GuptaA. M. Acu and P. N. Agrawal, Jakimovski–leviatan operators of Kantorovich type involving multiple appell polynomials, Georgian Math. J., 28 (2021), 73-82.  doi: 10.1515/gmj-2019-2013.
    [23] V. Gupta, A note on modified Baskakov type operators, Approx. Theory and Its Appl., 10 (1994), 74-78. 
    [24] V. Gupta, Higher order Lupaş-Kantorovich operators and finite differences, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115 (2021), 16 pp. doi: 10.1007/s13398-021-01034-2.
    [25] V. GuptaP. N. Agrawal and A. R. Gairola, On the integrated Baskakov type operators, Appl. Math. Comput., 213 (2009), 419-425.  doi: 10.1016/j.amc.2009.03.032.
    [26] V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014. doi: 10.1007/978-3-319-02765-4.
    [27] V. Gupta and C. Radu, Statistical approximation properties of qBaskakov-Kantorovich operators, Open Math., 7 (2009), 809-818.  doi: 10.2478/s11533-009-0055-y.
    [28] V. Gupta and T. M. Rassias, Direct estimates for certain Szász type operators, Appl. Math. Comput., 251 (2015), 469-474.  doi: 10.1016/j.amc.2014.11.078.
    [29] V. GuptaG. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.  doi: 10.1007/s11075-018-0538-7.
    [30] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5 (1989), 105-127. 
    [31] M. Heilmann and M. W. Müller, Direct and converse results on weighted simultaneous approximation by the method of operators of Baskakov-Durrmeyer type, Results Math., 16 (1989), 228-242.  doi: 10.1007/BF03322474.
    [32] M. Heilmann and M. W. Müller, On simultaneous approximation by the method of Baskakov-Durrmeyer operators, Numer. Funct. Anal. Optim., 10 (1989), 127-138.  doi: 10.1080/01630568908816295.
    [33] E. İbikli, Approximation by Bernstein-Chlodowsky polynomials, Hacet. J. Math. Stat., 32 (2003), 1-5. 
    [34] E. Ibikli and E. A. Gadjieva, The order of approximation of some unbounded function by the sequences of positive linear operators, Turkish J. Math., 19 (1995), 331-337. 
    [35] A. Kajla and T. Acar, Bézier–Bernstein–Durrmeyer type operators, RACSAM Rev. R. Acad. Cienc. Exactas F. Nat. Ser. A Mat., 114 (2020), 11 pp. doi: 10.1007/s13398-019-00759-5.
    [36] A. KajlaS. A. Mohiuddine and A. Alotaibi, Blending-type approximation by Lupaş–Durrmeyer-type operators involving Pólya distribution, Math. Methods Appl. Sci., 44 (2021), 9407-9418.  doi: 10.1002/mma.7368.
    [37] A. KajlaM. Mursaleen and T. Acar, Durrmeyer-type generalization of parametric Bernstein operators, Symmetry, 12 (2020), 1141.  doi: 10.3390/sym12071141.
    [38] P. P. Korovkin, Linear Operators and Approximation Theory, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi, 1960.
    [39] S. KurşunM. TurgayO. Alagöz and T. Acar, Approximation properties of multivariate exponential sampling series, Carpathian Math. Publ., 13 (2021), 666-675.  doi: 10.15330/cmp.13.3.666-675.
    [40] B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53–63.
    [41] B. Z. Li, Direct and converse results for linear combinations of Baskakov-Durrmryer operators, Approx. Theory Appl., 9 (1993), 61-72. 
    [42] V. Mihesan, Uniform approximation with positive linear operators generated by generalized Baskakov method, Automat. Comput. Appl. Math., 7 (1998), 34-37. 
    [43] S. A. MohiuddineA. Kajla and A. Alotaibi, Bézier-summation-integral-type operators that include p{ó}lya–eggenberger distribution, Math., 10 (2022), 2222. 
    [44] Neha and N. Deo, Integral modification of beta-Apostol-Genocchi operators, Math. Found. Comput., (2022).
    [45] S. Pethe, On the Baskakov operator, Indian J. Math., 26 (1984), 43-48. 
    [46] A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators, J. Approx. Theory, 45 (1985), 122-128.  doi: 10.1016/0021-9045(85)90039-5.
    [47] D. Sharma, Some Problems in Approximation by Linear Positive Operators, PhD Thesis, Banasthali University Rajasthan, India, 2014.
    [48] J. K. Singh, P. N. Agrawal and A. Kajla, Approximation by modified qgamma type operators in a polynomial weighted space, Math. Methods Appl. Sci., (2022). doi: 10.1002/mma.8687.
    [49] R. P. SinhaP. N. Agrawal and V. Gupta, On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Ser. B, 43 (1991), 217-231. 
    [50] G. TachevV. Gupta and A. Aral, Voronovskaja theorem for functions with exponential growth, Georgian Math. J., 27 (2020), 459-468.  doi: 10.1515/gmj-2018-0041.
    [51] F. Usta, On approximation properties of a new construction of Baskakov operators, Adv. Difference Equ., 2021 (2021), Paper No. 269, 13 pp. doi: 10.1186/s13662-021-03425-6.
    [52] E. Voronovskaja, Détermination de la forme asymptotique dpproximation des fonctions par les polynômes de m. Bernstein, CR Acad. Sci. URSS, 79 (1932), 79-85. 
    [53] W. Yuankwei and G. Shunsheng, Rate of approximation of functions of bounded variation by modified Lupas operators, Bull. Aust. Math. Soc., 44 (1991), 177-188.  doi: 10.1017/S0004972700029609.
    [54] C. Zhang and Z. Zhu, Preservation properties of the Baskakov–Kantorovich operators, Comput. Math. Appl., 57 (2009), 1450-1455.  doi: 10.1016/j.camwa.2009.01.027.
  • 加载中

Figures(4)

Tables(2)

SHARE

Article Metrics

HTML views(2859) PDF downloads(333) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return