[1]
|
T. Acar, O. Alagöz, A. Aral, D. Costarelli, M. Turgay and G. Vinti, Approximation by sampling Kantorovich series in weighted spaces of functions, Turkish J. Math., 46 (2022), 2663-2676.
doi: 10.55730/1300-0098.3293.
|
[2]
|
T. Acar, O. Alagöz, A. Aral, D. Costarelli, M. Turgay and G. Vinti, Convergence of generalized sampling series in weighted spaces, Demonstratio Math., 55 (2022), 153-162.
doi: 10.1515/dema-2022-0014.
|
[3]
|
T. Acar, A. Aral and I. Raşa, Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (2019), 98-102.
doi: 10.1155/2012/217464.
|
[4]
|
T. Acar and B. R. Draganov, A strong converse inequality for generalized sampling operators, An. Funct. Anal., 13 (2022), Paper No. 36, 16 pp.
doi: 10.1007/s43034-022-00185-6.
|
[5]
|
T. Acar, S. Kursun and M. Turgay, Multidimensional Kantorovich modifications of exponential sampling series, Quaest. Math., (2022), 1-16.
doi: 10.2989/16073606.2021.1992033.
|
[6]
|
A. M. Acu, A. Aral and I. Raşa, Generalized Bernstein Kantorovich operators, Carpathian J. Math., 38 (2022), 1-12.
doi: 10.37193/cjm.2022.01.01.
|
[7]
|
A. M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math., 74 (2019), Paper No. 90, 24 pp.
doi: 10.1007/s00025-019-1019-6.
|
[8]
|
P. N. Agrawal and A. R. Gairola, On iterative combination of Bernstein-Durrmeyer polynomials, Appl. Anal. Discrete Math., 1 (2007), 199-210.
doi: 10.2298/AADM0701199A.
|
[9]
|
P. N. Agrawal, A. Kajla and D. Kumar, Modified ρ-Bernstein operators for functions of two variables, Numer. Funct. Anal. Optim., 42 (2021), 1073-1095.
doi: 10.1080/01630563.2021.1931311.
|
[10]
|
P. N. Agrawal and J. K. Singh, Better approximation by a Durrmeyer variant of α−Baskakov operators, Math. Found. Comput., (2022).
doi: 10.3934/mfc.2021040.
|
[11]
|
O. Alagoz, M. Turgay, T. Acar and M. Parlak, Approximation by sampling Durrmeyer operators in weighted space of functions, Numer. Funct. Anal. Optim., 43 (2022), 1223-1239.
doi: 10.1080/01630563.2022.2096630.
|
[12]
|
A. Aral and T. Acar, Weighted approximation by new Bernstein-Chlodowsky-Gadjiev operators, Filomat, 27 (2013), 371-380.
doi: 10.2298/FIL1302371A.
|
[13]
|
A. Aral, T. Acar and S. Kursun, Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys., 12 (2022), Paper No. 50, 19 pp.
doi: 10.1007/s13324-022-00667-9.
|
[14]
|
G. Başcanbaz-Tunca, A. Erençin and F. Taşdelen, On a sequence of Kantorovich type operators via Riemann type q−integral, Bull. Korean Math. Soc., 51 (2014), 303-315.
doi: 10.4134/BKMS.2014.51.2.303.
|
[15]
|
V. A. Baskakov, An instance of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk SSSR (N.S.), 113 (1957), 249-251.
|
[16]
|
M. Bodur, Ö. G. Yilmaz and A. Aral, Approximation by Baskakov-Szász-Stancu operators preserving exponential functions, Constr. Math. Anal., 1 (2018), 1-8.
doi: 10.33205/cma.450708.
|
[17]
|
N. L. Braha, T. Mansour, M. Mursaleen and T. Acar, Convergence of λ-Bernstein operators via power series summability method, J. Appl. Math. Comput., 65 (2021), 125-146.
doi: 10.1007/s12190-020-01384-x.
|
[18]
|
T. Coşkun, Some properties of linear positive operators in the weighted spaces of unbounded functions, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 47 (1998), 175-181.
|
[19]
|
Z. Ditzian and V. Totik, Moduli of Smoothness Springer-Verlag, Springer Series in Computational Mathematics, 9. Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4612-4778-4.
|
[20]
|
G. Feng, Direct and inverse approximation theorems for Baskakov operators with the Jacobi-type weight, Abstr. Appl. Anal., (2011), Art. ID 101852, 13 pp.
doi: 10.1155/2011/101852.
|
[21]
|
A. R. Gairola, K. K. Singh and L. N. Mishra, Degree of approximation by certain Durrmeyer type operator, Discontinuity Nonlinearity Complex., 11 (2022), 253-273.
doi: 10.5890/DNC.2022.06.006.
|
[22]
|
P. Gupta, A. M. Acu and P. N. Agrawal, Jakimovski–leviatan operators of Kantorovich type involving multiple appell polynomials, Georgian Math. J., 28 (2021), 73-82.
doi: 10.1515/gmj-2019-2013.
|
[23]
|
V. Gupta, A note on modified Baskakov type operators, Approx. Theory and Its Appl., 10 (1994), 74-78.
|
[24]
|
V. Gupta, Higher order Lupaş-Kantorovich operators and finite differences, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115 (2021), 16 pp.
doi: 10.1007/s13398-021-01034-2.
|
[25]
|
V. Gupta, P. N. Agrawal and A. R. Gairola, On the integrated Baskakov type operators, Appl. Math. Comput., 213 (2009), 419-425.
doi: 10.1016/j.amc.2009.03.032.
|
[26]
|
V. Gupta and R. P. Agarwal, Convergence Estimates in Approximation Theory, Springer, Cham, 2014.
doi: 10.1007/978-3-319-02765-4.
|
[27]
|
V. Gupta and C. Radu, Statistical approximation properties of q−Baskakov-Kantorovich operators, Open Math., 7 (2009), 809-818.
doi: 10.2478/s11533-009-0055-y.
|
[28]
|
V. Gupta and T. M. Rassias, Direct estimates for certain Szász type operators, Appl. Math. Comput., 251 (2015), 469-474.
doi: 10.1016/j.amc.2014.11.078.
|
[29]
|
V. Gupta, G. Tachev and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (2019), 125-149.
doi: 10.1007/s11075-018-0538-7.
|
[30]
|
M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5 (1989), 105-127.
|
[31]
|
M. Heilmann and M. W. Müller, Direct and converse results on weighted simultaneous approximation by the method of operators of Baskakov-Durrmeyer type, Results Math., 16 (1989), 228-242.
doi: 10.1007/BF03322474.
|
[32]
|
M. Heilmann and M. W. Müller, On simultaneous approximation by the method of Baskakov-Durrmeyer operators, Numer. Funct. Anal. Optim., 10 (1989), 127-138.
doi: 10.1080/01630568908816295.
|
[33]
|
E. İbikli, Approximation by Bernstein-Chlodowsky polynomials, Hacet. J. Math. Stat., 32 (2003), 1-5.
|
[34]
|
E. Ibikli and E. A. Gadjieva, The order of approximation of some unbounded function by the sequences of positive linear operators, Turkish J. Math., 19 (1995), 331-337.
|
[35]
|
A. Kajla and T. Acar, Bézier–Bernstein–Durrmeyer type operators, RACSAM Rev. R. Acad. Cienc. Exactas F. Nat. Ser. A Mat., 114 (2020), 11 pp.
doi: 10.1007/s13398-019-00759-5.
|
[36]
|
A. Kajla, S. A. Mohiuddine and A. Alotaibi, Blending-type approximation by Lupaş–Durrmeyer-type operators involving Pólya distribution, Math. Methods Appl. Sci., 44 (2021), 9407-9418.
doi: 10.1002/mma.7368.
|
[37]
|
A. Kajla, M. Mursaleen and T. Acar, Durrmeyer-type generalization of parametric Bernstein operators, Symmetry, 12 (2020), 1141.
doi: 10.3390/sym12071141.
|
[38]
|
P. P. Korovkin, Linear Operators and Approximation Theory, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi, 1960.
|
[39]
|
S. Kurşun, M. Turgay, O. Alagöz and T. Acar, Approximation properties of multivariate exponential sampling series, Carpathian Math. Publ., 13 (2021), 666-675.
doi: 10.15330/cmp.13.3.666-675.
|
[40]
|
B. Lenze, On Lipschitz-type maximal functions and their smoothness spaces, Nederl. Akad. Wetensch. Indag. Math., 50 (1988), 53–63.
|
[41]
|
B. Z. Li, Direct and converse results for linear combinations of Baskakov-Durrmryer operators, Approx. Theory Appl., 9 (1993), 61-72.
|
[42]
|
V. Mihesan, Uniform approximation with positive linear operators generated by generalized Baskakov method, Automat. Comput. Appl. Math., 7 (1998), 34-37.
|
[43]
|
S. A. Mohiuddine, A. Kajla and A. Alotaibi, Bézier-summation-integral-type operators that include p{ó}lya–eggenberger distribution, Math., 10 (2022), 2222.
|
[44]
|
Neha and N. Deo, Integral modification of beta-Apostol-Genocchi operators, Math. Found. Comput., (2022).
|
[45]
|
S. Pethe, On the Baskakov operator, Indian J. Math., 26 (1984), 43-48.
|
[46]
|
A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators, J. Approx. Theory, 45 (1985), 122-128.
doi: 10.1016/0021-9045(85)90039-5.
|
[47]
|
D. Sharma, Some Problems in Approximation by Linear Positive Operators, PhD Thesis, Banasthali University Rajasthan, India, 2014.
|
[48]
|
J. K. Singh, P. N. Agrawal and A. Kajla, Approximation by modified q−gamma type operators in a polynomial weighted space, Math. Methods Appl. Sci., (2022).
doi: 10.1002/mma.8687.
|
[49]
|
R. P. Sinha, P. N. Agrawal and V. Gupta, On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Ser. B, 43 (1991), 217-231.
|
[50]
|
G. Tachev, V. Gupta and A. Aral, Voronovskaja theorem for functions with exponential growth, Georgian Math. J., 27 (2020), 459-468.
doi: 10.1515/gmj-2018-0041.
|
[51]
|
F. Usta, On approximation properties of a new construction of Baskakov operators, Adv. Difference Equ., 2021 (2021), Paper No. 269, 13 pp.
doi: 10.1186/s13662-021-03425-6.
|
[52]
|
E. Voronovskaja, Détermination de la forme asymptotique dpproximation des fonctions par les polynômes de m. Bernstein, CR Acad. Sci. URSS, 79 (1932), 79-85.
|
[53]
|
W. Yuankwei and G. Shunsheng, Rate of approximation of functions of bounded variation by modified Lupas operators, Bull. Aust. Math. Soc., 44 (1991), 177-188.
doi: 10.1017/S0004972700029609.
|
[54]
|
C. Zhang and Z. Zhu, Preservation properties of the Baskakov–Kantorovich operators, Comput. Math. Appl., 57 (2009), 1450-1455.
doi: 10.1016/j.camwa.2009.01.027.
|