This paper deals with construction and studying wavelet type generalized Bézier operators by using the compactly supported Daubechies wavelets of the given function f. The basis used in this construction are the wavelet expansion of the function f instead of its rational sampling values f(kn). By using the Chanturiya modulus of variation we estimate the rate of pointwise convergence of (WBn,αf)(x) at those x>0 at which the one-sided limits f(x+), f(x−) exist.
Clearly our wavelet type operators contain at least classical version, Durrmeyer and the Kantorovich form of the generalized Bézier operators and hence our results extend some of the previous results on generalized B ézier operators, such as [
Citation: |
[1] |
U. Abel and V. Gupta, An estimate on the rate of convergence of Bezier variant of Baskakov Kantorovitch operators, Demonstratio Math., 36 (2003), 123-136.
![]() ![]() |
[2] |
A.-M. Acu, I. C. Buscu and I. Rasa, Generalized Kantorovich modifications of positive linear operators, Mathematical Foundations of Computing, 4 (2022), 1-9.
doi: 10.3934/mfc.2021042.![]() ![]() |
[3] |
O. Agratini, Construction of Baskakov-type operators by wavelets, Rev. Anal. Numér. Théor. Approx., 26 (1997), 3-11.
![]() ![]() |
[4] |
O. Agratini, An approximation process of Kantorovich type, Math. Notes (Miskolc), 2 (2001), 3-10.
doi: 10.18514/MMN.2001.31.![]() ![]() ![]() |
[5] |
P. Bézier, Numerical Control Mathematics and Applications, Wiley, London, 1972.
![]() |
[6] |
Z. A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66.
![]() ![]() |
[7] |
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988), 909-996.
doi: 10.1002/cpa.3160410705.![]() ![]() ![]() |
[8] |
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Appl. Math. 61, SIAM Publ. Philadelphia, 1992.
doi: 10.1137/1.9781611970104.![]() ![]() ![]() |
[9] |
H. Feng, S. Hou, L. Y. Wei and D. X. Zhou, CNN models for readability of Chinese texts, Mathematical Foundations of Computing, 5 (2022), 351-362.
doi: 10.3934/mfc.2022021.![]() ![]() |
[10] |
H. H. Gonska and D. X. Zhou, Using wavelets for Szá sz-type operators, Rev. Anal. Numér. Théor. Approx., 24 (1995), 131-145.
![]() ![]() |
[11] |
V. Gupta, The bezier variant of Kantorovitch operators, Comput. Math. Appl., 47 (2004), 227-232.
doi: 10.1016/S0898-1221(04)90019-3.![]() ![]() ![]() |
[12] |
V. Gupta, An estimate on the convergence of Baskakov-Bèzier operators, J. Math. Anal. Appl., 312 (2005), 280-288.
doi: 10.1016/j.jmaa.2005.03.041.![]() ![]() ![]() |
[13] |
S. Y. Huang, Y. L. Feng and Q. Wu, Learning theory of minimum error entropy under weak moment conditions, Anal. Appl., 20 (2022), 121-139.
doi: 10.1142/S0219530521500044.![]() ![]() ![]() |
[14] |
L. Kantorovich, Sur certains développements suivant les polynomes de la forme de S. Bernstein. Ⅰ. Ⅱ, C. R. Acad. Sci. URSS, (1930), 563-568, 595-600.
![]() |
[15] |
S. E. Kelly, M. A. Kon and L. A. Raphael, Pointwise convergence of wavelet expansions, Bull. Amer. Math. Soc., 30 (1994), 87-94.
doi: 10.1090/S0273-0979-1994-00490-2.![]() ![]() ![]() |
[16] |
W. Łenski and B. Szal, Approximation of integrable functions by wavelet expansions, Results Math., 72 (2017), 1203-1211.
doi: 10.1007/s00025-016-0614-z.![]() ![]() ![]() |
[17] |
F. S. Lv and J. Fan, Optimal learning with Gaussians and correntropy loss, Anal. Appl., 19 (2021), 107-124.
doi: 10.1142/S0219530519410124.![]() ![]() ![]() |
[18] |
P. Pych-Taberska, On the rate of pointwise convergence of Bernstein and Kantorovich polynomials, Funct. Approx. Comment. Math., 16 (1988), 63-76.
![]() ![]() |
[19] |
P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory, 123 (2003), 256-269.
doi: 10.1016/S0021-9045(03)00106-0.![]() ![]() ![]() |
[20] |
P. Pych-Taberska and H. Karsli, On the rates of convergence of Chlodovsky-Kantorovich operators and their Bézier variant, Comment. Math., 49 (2009), 189-208.
![]() ![]() |
[21] |
G. G. Walter, Pointwise convergence of wavelet expansions, J. Approx. Theory, 80 (1995), 108-118.
doi: 10.1006/jath.1995.1006.![]() ![]() ![]() |
[22] |
F. Wang, D. Yu and B. Zhang, On approximation of Bernstein-Durrmeyer operators in movable interval, Mathematical Foundations of Computing, 5 (2022), 331-342.
![]() |
[23] |
X.-M. Zeng, On the rate of convergence of two Bernstein–Bezier type operators for bounded variation function. Ⅱ, J. Approx. Theory, 104 (2000), 330-344.
doi: 10.1006/jath.2000.3451.![]() ![]() ![]() |
[24] |
X. M. Zeng and A. Piriou, On the rate of convergence of two Bernstein–Bezier type operators for bounded variation functions, J. Approx. Theory, 95 (1998), 369-387.
doi: 10.1006/jath.1997.3227.![]() ![]() ![]() |