[1]
|
M. Abo-Elhamayel and Y. Yang, Generalization of rough set via topology, Afrika Matematika, 32 (2020), 41-50.
doi: 10.1007/s13370-020-00808-y.
|
[2]
|
G. A. Anastassiou, Fuzzy fractional more sigmoid function activated neural network approximations revisited, Mathematical Foundations of Computing, (2022), 1-34.
doi: 10.3934/mfc.2022031.
|
[3]
|
C. L. Chang, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24 (1968), 182-190.
doi: 10.1016/0022-247X(68)90057-7.
|
[4]
|
D. Dubois and H. Parade, Rough fuzzy sets and fuzzy rough sets, International Journal of General System, 17 (1990), 191-209.
doi: 10.1080/03081079008935107.
|
[5]
|
K. C. Gupta and R. K. Gupta, Fuzzy equivalence relation redefined, Fuzzy Sets and Systems, 79 (1996), 227-233.
|
[6]
|
E. F. Lashin, A. M. Kozae, A. A. Abo Khadra and T. Medhat, Rough set theory for topological spaces, International Journal of Approximate Reasoning, 40 (2005), 35-43.
doi: 10.1016/j.ijar.2004.11.007.
|
[7]
|
Z. Li, T. Xie and Q. Li, Topological structure of generalized rough sets, Computers and Mathematics with Applications, 63 (2012), 1066-1071.
doi: 10.1016/j.camwa.2011.12.011.
|
[8]
|
R. Lowen, Fuzzy topological spaces and fuzzy compactness, Journal of Mathematical Analysis and Applications, 56 (1976), 621-633.
doi: 10.1016/0022-247X(76)90029-9.
|
[9]
|
S. Mishra and R. Srivastava, Fuzzy topologies generated by fuzzy relations, Soft Computing, 22 (2020), 373-385.
doi: 10.1007/s00500-016-2458-6.
|
[10]
|
Z. Pawlak, Rough Set: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht/Boston/London, 1991.
|
[11]
|
Z. Pawlak, Rough set, International Journal of Computer and Information Sciences, 11 (1982), 341-356.
doi: 10.1007/BF01001956.
|
[12]
|
Z. Pei, D. Pei and L. Zheng, Topology vs generalized rough sets, International Journal of Approximate Reasoning, 52 (2011), 231-239.
doi: 10.1016/j.ijar.2010.07.010.
|
[13]
|
B. Qin, Fuzzy approximating spaces, Journal of Applied Mathematics, 2014 (2014), 1-7.
doi: 10.1155/2014/405802.
|
[14]
|
K. Qin and Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems, 151 (2005), 601-613.
doi: 10.1016/j.fss.2004.08.017.
|
[15]
|
K. Qin, J. Yang and Z. Pei, Generalized rough sets based on reflexive and transitive relations, Information Sciences, 178 (2008), 4138-4141.
doi: 10.1016/j.ins.2008.07.002.
|
[16]
|
A. S. Salama, Generalized topological approximation spaces and their medical applications, Journal of the Egyptian Mathematical Society, 26 (2018), 412-416.
doi: 10.21608/joems.2018.2891.1045.
|
[17]
|
R. E. Smithson, Topologies generated by relations, Australian Mathematical Society, 1 (1969), 297-306.
doi: 10.1017/S0004972700042167.
|
[18]
|
B. Sun and W. Ma, Soft fuzzy rough sets and its application in decision making, Artificial Intelligence Review, 41 (2014), 67-80.
doi: 10.1007/s10462-011-9298-7.
|
[19]
|
M. L. Thivagar, C. Richart and N. R. Paul, Mathematical innovations of a modern topology in medical events, Information Science, 2 (2012), 33-36.
doi: 10.5923/j.ijis.20120204.01.
|
[20]
|
R. H. Warren, Neighborhoods, bases and continuity in fuzzy topological spaces, Rocky Mountain Journal of Mathematics, 8 (1978), 459-470.
doi: 10.1216/rmj-1978-8-3-459.
|
[21]
|
C. K. Wong, Fuzzy Topology: Product and quotient theorems, Journal of Mathematical Analysis and Applications, 45 (1974), 512-521.
doi: 10.1016/0022-247X(74)90090-0.
|
[22]
|
W.-Z. Wu, Y. Leung and W.-X. Zhang, On generalized rough fuzzy approximation operators, Transactions on Rough Sets V. Lecture Notes in Computer Science, 4100 (2006), 263-284.
doi: 10.1007/11847465_13.
|
[23]
|
W.-Z. Wu, J.-S. Mi and W.-X. Zhang, Generalized fuzzy rough sets, Information Sciences, 151 (1974), 263-282.
doi: 10.1016/S0020-0255(02)00379-1.
|
[24]
|
W.-Z. Wu, Y.-F. Yang and Y.-H. Xu, Some fuzzy topologies induced by rough fuzzy sets, Rough Sets and Knowledge Technology, Springer, Berlin, Heidelberg, (2011), 156-165.
doi: 10.1007/978-3-642-24425-4_22.
|
[25]
|
W.-Z. Wu and W.-X. Zhang, Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences, 159 (1974), 233-254.
doi: 10.1016/j.ins.2003.08.005.
|
[26]
|
Y. Y. Yao, Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning, 15 (1996), 291-317.
doi: 10.1016/S0888-613X(96)00071-0.
|
[27]
|
Y. Y. Yao, Constructive and algebraic methods of the theory of rough sets, Information Sciences, 109 (1998), 21-47.
doi: 10.1016/S0020-0255(98)00012-7.
|
[28]
|
Y. Y. Yao and T. Y. Lin, Generalization of rough sets using modal logics, Intelligent Automation and Soft Computing, 2 (1996), 103-119.
doi: 10.1080/10798587.1996.10750660.
|
[29]
|
H. Yu and W.-R. Zhan, On the topological properties of generalized rough sets, Information Sciences, 263 (2014), 141-152.
doi: 10.1016/j.ins.2013.09.040.
|
[30]
|
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|
[31]
|
L. A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177-200.
doi: 10.1016/S0020-0255(71)80005-1.
|
[32]
|
H.-P. Zhang, Y. Ouyang and Z. Wang, Note on generalized rough sets based on reflexive and transitive relations, Information Sciences, 179 (2009), 471-473.
doi: 10.1016/j.ins.2008.10.009.
|
[33]
|
W. Zhu, Generalized rough sets based on relations, Information Sciences, 177 (2007), 4997-5011.
doi: 10.1016/j.ins.2007.05.037.
|