In the present work a Jain type modification of the generalized Szász-Mirakyan operators that preserve constant and exponential mappings is presented. The introduction of this operator helps to extend the class of operators that preserve exponential functions. A particular expansion involving the Lambert W-function is established which is used to obtain properties of the operator. Moments, and central moments, are presented with some limiting properties. A Voronovskaya type theorem, as well as other theorems, are discussed with results. Other select properties are also presented.
Moments, recurrence formulas, and other identities are established for these operators. Approximation properties are also obtained with use of the Bohman-Korovkin theorem.
Citation: |
[1] |
T. Acar, A. Aral and H. Gonska, On Szász-Mirakyan operators preserving e2ax, a>0, Mediterr. J. Math., 14 (2017), Paper No. 6, 14 pp.
doi: 10.1007/s00009-016-0804-7.![]() ![]() ![]() |
[2] |
T. Acar, A. Aral and I. Raşa, Positive linear operators preserving τ and τ2, Constructive Mathematical Analysis, 2 (2019), 98-102.
doi: 10.1155/2012/217464.![]() ![]() ![]() |
[3] |
A. Acu, I. Rasa and A. Seserman, Positive linear operators and exponential functions, Mathematical Foundations of Computing, 6 (2022), 1-7.
![]() |
[4] |
F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, De Gruyter Studies in Mathematics, 17. Walter de Gruyter & Co., Berlin, 1994.
doi: 10.1515/9783110884586.![]() ![]() ![]() |
[5] |
M. Bodur, Ö. G. Yilmaz and A. Aral, Approximation by Baskakov-Szász-Stancu Operators preserving exponential functions, Constructive Mathematical Analysis, 1 (2018), 1-8.
doi: 10.33205/cma.450708.![]() ![]() ![]() |
[6] |
B. D. Boyanov and V. M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators, Bull. Math. Soc. Sci. Math. Roum., 14 (19700, 9-13.
![]() ![]() |
[7] |
L. Coroianu, D. Costarelli, S. G. Gal and G. Vinti, Approximation by max-product sampling Kantorovich operatos with generalized kernels, Anal. Appl., 19 (20210,219-244.
doi: 10.1142/S0219530519500155.![]() ![]() ![]() |
[8] |
G. C. Greubel, A note on Jain basis functions, preprint, (2016), arXiv: 1612.09385 [math.CA].
![]() |
[9] |
V. Gupta and G. C. Greubel, Moment Estimations of new Szász-Mirakyan-Durrmeyer operators, Appl. Math. Comp., 271 (2015), 540-547.
doi: 10.1016/j.amc.2015.09.037.![]() ![]() ![]() |
[10] |
V. Gupta and G. C. Greubel, A note on modified Phillips operators, preprint, (2016), arXiv: 1604.08847 [math.CA].
![]() |
[11] |
V. Gupta and G. Tachev, On approximation properties of Phillips operators preserving exponential functions, Mediterr. J. Math., 14 (2017), Paper No. 177, 12 pp.
doi: 10.1007/s00009-017-0981-z.![]() ![]() ![]() |
[12] |
A. Holhoş, The rate of approximation of functions in an infinite interval by positive linear operators, Studia Univ. "Babeş-Bolyai", Mathematica, 55 (2010), 133-142.
![]() |
[13] |
G. C. Jain, Approximation of functions by a new class of linear operators, J. Aust. Math. Soc., 13 (1972), 271-276.
doi: 10.1017/S1446788700013689.![]() ![]() ![]() |
[14] |
G. M. Mirakyan, Approximation of continuous functions with the aid of polynomials (Russian), Dokl. Akad. Nauk. SSSR, 31 (1941), 201-205.
![]() |
[15] |
Online Encyclopedia of Integer Sequences, Sequence A042977, Available from: http://oeis.org/A042977.
![]() |
[16] |
O. Szász, Generalization of S. Bernsteins polynomials to the infinite interval, J. Res. Nat. Bur. Stand., 45 (1950), 239-245.
doi: 10.6028/jres.045.024.![]() ![]() ![]() |
[17] |
E. W. Weisstein, Lambert W-Function, From MathWorld–A Wolfram Web Resource, Available from: http://mathworld.wolfram.com/LambertW-Function.html.
![]() |
[18] |
Ö. G. Yilmaz, M. Bodur and A. Aral, On approximation properties of Baskakov-Schurer-Szász operators preserving exponential function, Filomat, 32 (2018), 5433-5440.
doi: 10.2298/FIL1815433Y.![]() ![]() ![]() |