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Abstract. Over the past several years, a number of measures have been in-
troduced to characterize the topology of complex networks. We perform a
statistical analysis of real data sets, representing the topology of different real-
world networks. First, we show that some measures are either fully related to
other topological measures or that they are significantly limited in the range of
their possible values. Second, we observe that subsets of measures are highly
correlated, indicating redundancy among them. Our study thus suggests that
the set of commonly used measures is too extensive to concisely characterize
the topology of complex networks. It also provides an important basis for
classification and unification of a definite set of measures that would serve in
future topological studies of complex networks.

1. Introduction. Complex network structures are common for a wide range of
systems in nature and society [3, 16, 35]. Although complex systems are extremely
different in their function, a proper knowledge of their topology is required to thor-
oughly understand and predict the overall system performance. For example, in
computer networks, performance and scalability of protocols and applications, ro-
bustness to different types of perturbations (such as failures and attacks), all de-
pend on the network topology. Consequently, network topology analysis, primarily
aimed at non-trivial topological properties, has resulted in the definition of a variety
of practically important measures, capable of quantitatively characterizing certain
topological aspects of the studied systems [1, 4, 33]. The outcome, however, has
a serious drawback that it does not ensure the mutual independence among the
proposed measures. In this context, having an increasing number of measures com-
plicates attempts to determine a definite measure set that would form the basis for
analyzing any network topology [23].

In this paper we study the relationships between topological measures, with the
aim of classifying a subset that would effectively characterize most real-world net-
works. The classification of measures in our study is based on statistical analysis
methods. The presented methods reveal a clear relation between topological mea-
sures: a measure accounting for a certain network property seems to be strongly
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associated with other measures that to our knowledge has not been previously re-
ported as being trivial. It should be noted that the studied real-world networks
stem from as various as possible domains so as to avoid correlations that are due
to structural constraints of the systems under study. This paper thus establishes a
path towards the identification of a definite set of topological measures that would
serve in future network topology analysis.

The paper is organized as follows. Section 2 gives an overview of the current state
of the related work. Section 3 describes topological measures and the considered
data sets, representing the topology of various complex systems. Section 4 analyses
the relationship between topological measures through three different statistical
methods. Section 5 summarizes our main results on classification and unification of
the set of topological measures.

2. Related work. We already mentioned several important works in the field of
complex networks, focusing on the statistical mechanics of network topology and
dynamics [1, 4, 33]. They all present and discuss the main complex network models
and corresponding analytical tools, covering almost every known aspect of random
graphs, small-world and scale-free networks as well as variations of those models.
More relevant for our work are those papers that present the measures capable
of characterizing topological properties of real-world networks. In several papers,
among which [1, 4, 15, 33], the authors present an extensive survey of such mea-
sures. Furthermore, a vast majority of papers attempt to address the question of
finding the most relevant topological properties by calculating a set of topological
measures. Much of those research efforts, however, are posed within a particular re-
search interest, resulting in a characterization of real-world networks from a specific
domain. For example, in [24] and [26] the authors have calculated a set of measures
for Internet AS- and router-level topologies. Besides the quantitative character-
ization, recently presented studies, e.g. [26, 27], have addressed the question of
selecting a subset of measures that would effectively characterize most real-world
networks: they find that joint degree distributions appear to fundamentally charac-
terize Internet AS- and router-level topologies. Although there is a large literature
on characterization of real-world networks, we are not aware of much work that
attempted to study the correlation between topological measures in real-world net-
works. The work from [15] is also notable for using statistical analysis methods that
give insight into the relationships between measures in the main complex network
models. However, there is little understanding of the relationships among individual
measures in real-world networks, in which we make a first fundamental step.

3. Background. In Subsection 3.1 we provide a set of topological measures, which
is considered relevant in the networking literature [26]. In Subsection 3.2 we give
data sets representing the topology of complex networks from a wide range of sys-
tems in nature and society.

3.1. Topological measures of networks. A graph theoretic approach is used to
model the topology of a complex system as a network with a collection of nodes
and a collection of links that connect pairs of nodes. A network is represented as
an undirected graph G = (N ,L) with n = |N | nodes and m = |L| links.



TOPOLOGICAL MEASURES IN REAL-WORLD NETWORKS 347

Basics

A network is connected if there exists a path between each pair of nodes. When
there is no path between at least one pair of nodes, a network is said to be discon-
nected. A disconnected network consists of several independent components. We
use the number of zero eigenvalues of the Laplacian matrix1 to check the number of
components2 a network has. In the remainder of this paper, we only consider the
networks formed by the largest connected component of our real-world networks.
The computation of the topological measures is thus restricted to those largest
connected components.

Degree

The node degree describes the number of neighbors a node has. The node degree
distribution is the probability Pr(k) that a randomly selected node has a given
degree k. The number of links that on average connect to a node is called the
average node degree. The average node degree can be easily obtained from the

degree distribution through E[D] =
∑Dmax

k=1 k Pr(k), where Dmax is the maximum
degree in a given graph.

The joint degree distribution Pr(k, k′) is the probability that a randomly selected
pair of nodes has degrees k and k′. A summary measure of the joint degree dis-
tribution is the average neighbor degree of nodes with a given degree k. Another
summary statistics that quantifies the correlation between pairs of nodes is the as-
sortativity coefficient r: assortative networks have r > 0 (disassortative, i.e. r < 0
resp.) and tend to have nodes that are connected to nodes with similar (dissimilar
resp.) degree [32].

Distance

The distance distribution Pr(h) is the probability that the length of the shortest
path between a random pair of nodes is h. From the distance distribution, the

average node distance is derived as E[H ] =
∑hmax

h=1 h Pr(h), where hmax is the longest
among the shortest paths between any pair of nodes. hmax is also referred to
as the diameter of a graph. On the other hand, the eccentricity measures the
largest distance between a node and any other node of a graph. The average node
eccentricity is the average of eccentricities of all nodes. Obviously, the maximum
eccentricity equals the diameter of a graph.

Clustering

The clustering coefficient cG(i) of a node i is the proportion of links between
nodes within the neighborhood of a node i, divided by the maximum number of
links that could possibly exist between those neighbors. For an undirected graph,

a node i with degree di has at most di(di−1)
2 links among the nodes within its

neighborhood. In other words, the clustering coefficient is the ratio between the
number of triangles that contain node i and the number of triangles that could
possibly exist if all neighbors of i were interconnected [34, 35]. The clustering
coefficient for the entire graph is the average of clustering coefficients of all nodes.

The rich-club coefficient [11] is a recently introduced measure that quantifies how
close subgraphs, spawned by the k largest-degree nodes, are to forming a clique. The

1The Laplacian matrix of a graph G with n nodes is an n × n matrix Q = ∆ − A where
∆ = diag(Di), Di is the nodal degree of node i ∈ N and A is the adjacency matrix of G [29].

2The multiplicity of 0 as an eigenvalue of the Laplacian matrix is equal to the number of
components a network has.
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rich-club coefficient φ is the ratio of the number of links in the subgraph induced by
the k largest-degree nodes to the maximum possible links between them (k(k−1)/2).

Centrality

Betweenness is a centrality measure of a node (link) within a graph: nodes (links)
that occur on many shortest paths between other node pairs have higher node (link)
betweenness than those that do not [18]. Average node (link) betweenness is the
average value of the node (link) betweenness over all nodes (links).

Coreness

The k-core of a graph is a subgraph obtained from the original graph by the
recursive removal of all nodes of degree less then or equal to k [7]. The node
coreness of a given node is the maximum k such that this node is still present in the
k-core but removed from the (k +1)-core. The average node coreness is the average
value of the node coreness over all nodes.

Connectivity

The second smallest eigenvalue of the Laplacian matrix [17] is called the alge-
braic connectivity. The algebraic connectivity plays a special role in many graph
theory related problems (for surveys see e.g. [10, 13, 14, 30]). The most important
is its application to the overall connectivity of a graph: the larger the algebraic
connectivity is, the more difficult it is to cut a graph into independent components.
Two other connectivity measures are directly related to the algebraic connectivity:
1) the link connectivity is the minimal number of links whose removal would discon-
nect a graph, 2) the node connectivity is defined analogously (nodes together with
adjacent links are removed). The latter two connectivity measures provide worst
case bound on the robustness to node and link failures [17].

3.2. Data sources of real-world networks. We have mostly used publicly avail-
able data sets, representing the topology of complex networks from a wide range
of systems in nature and society, i.e. technological, social, biological and linguistic.
Technological systems we consider here include the following real-world networks:

• the Dutch road infrastructure [19];
• a European national railway infrastructure;
• a European Internet Service Provider (ISP);
• a European city area power grid;
• the western states power grid of the United States [34];
• the air transportation network representing the world wide airport connec-

tions, documented at the Bureau of Transportation Statistics database3, and
the connection between United States airports [12];

• the Internet network at the autonomous system [8] and the router level [9].

Social systems include the following real-world networks:

• the network representing soccer players association from the Dutch soccer
team [20];

• the network representing actor appearance in movies [2];
• the network representing collaboration among scientists [31].

Biological systems include the following real-world networks:

• the network representing frequent associations between dolphins [25];

3http://www.bts.gov

http://www.bts.gov
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• the network representing protein interaction of the yeast Saccharomyces cere-
visae [11, 21].

Linguistic systems include the following real-world networks:

• the network representing common adjacencies among words in English, French
and Spanish [28].

We provide in the Appendix a summary statistics of the topological measures for
the considered real-world networks.

4. Statistical analysis of topological measures. In this section, we rely on
statistical analysis methods to give insight into the relationships between measures
in real-world networks. In Subsection 4.1, we relate pairs of topological measures
by displaying their values as a collection of points, each having one coordinate on
a horizontal and one on a vertical axis. In Subsection 4.2, we perform correlation
analysis to find out which of the measures are redundant. Finally, in Subsection 4.3,
we apply principal components analysis (PCA) to support the classification of cor-
related measures from Subsection 4.2.

4.1. Visual comparison. Many complex networks are characterized by a power-
law node degree distribution and a relatively short path between any two nodes.
However, some complex networks may lack both, the power-law as well as the
small-world character. Among the considered data sets, networks representing the
topology of various transportation systems and power-grids are those where the two
characteristics were not entirely encountered. In Figure 1, we show the node degree
distribution of networks that do not obey a power-law behavior.
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Figure 1. Real-world networks that do not obey a power-law de-
gree distribution.

The average node degree is the coarsest characteristic of node interconnections.
In complex networks the average node degree is typically small and independent
of the network size n. In Figure 2 we show respectively the relationship between
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the link density and the number of nodes (and links) for various complex networks.
As expected, for increasing n, the link density tends to zero and closely follows a
power-law with exponent 1 (bottom of Figure 2). The link density is thus inversely
proportional to the number of nodes while being inversely proportional to the square
root of the number of links (top of Figure 2). From this it follows that the number of
links is proportional to the number of nodes (not shown). Hence, in most complex
networks, the classical assumption that m = O(n) holds.
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Figure 2. The link density as a function of the number of nodes
and the number of links in real-world networks.

Node correlations play an important role in the characterization of the topology
of complex networks. The most general approach to measure correlation among
nodes is by means of the assortativity coefficient. On the top left scatter dia-
gram in Figure 3 we show that disassortative networks, where high-degree nodes
preferentially attach to other low-degree nodes, tend to be more clustered as their
disassortativity increases. One should also notice from the ellipse on the top left
scatter diagram in Figure 3 that networks are typically assortative while having al-
most no clustering. The latter group of networks is made of various transportation
and power-grid infrastructures. In addition, we observe that assortative networks,
on average, have larger distances between pairs of nodes. The relationship between
the assortativity coefficient and the average node distance is shown in the upper
right scatter diagram of Figure 3.

Another interesting result that confirms these conclusions is found in [15]. Here,
for the scale-free graph of Barabasi-Albert [2], a negative correlation is observed
between the assortativity coefficient and the clustering coefficient and a possitive
between the assortativity coefficient and the average node distance. Consequently,
a strong negative correlation is observed between the clustering coefficient and the
average node distance. A posible explanation is that growth and preferential at-
tachment, i.e. the two basis rules upon which the model is based, are responsible
for additional links that tend to be established with the hubs, creating a more
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connected core and therefore contributing to higher clustering and smaller shortest
paths.

Recently, it has been shown that complex networks are also characterized by the
so called rich-club phenomenon [11]. The average distance between pairs of nodes as
a function of the rich-club coefficient (lower left scatter diagram of Figure 3) yields
that networks with smaller distance are much more likely to have high-degree nodes
that form tight and well-interconnected subgraphs. As a result, one might expect
that for disassortative networks, having on average smaller distance between pairs
of nodes, the rich-club phenomenon would be evident as well. Nevertheless, on the
lower right scatter diagram of Figure 3, we observe that the rich-club phenomenon
is not trivially related to the mixing properties of networks. In other words, the
rich-club phenomenon and the mixing properties express different features that are
not trivially related or derived from each other.

On the other hand, topological measures associated with a certain feature, such
as the shortest path length, are clearly related to each other. For example, aver-
age node betweenness increases as a function of average distance between pairs of
nodes, verifying that networks that have high average distance will also have nodes
that occur on many shortest paths between other node pairs, and consequently, on
average, have higher node betweenness. The Internet Service Provider network is a
good example of a network for which high average distance between pairs of nodes
results in high average node betweenness (see summary statistics presented in the
Appendix).
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Figure 3. The relationship among topological measures for vari-
ous real-world networks: clustering coefficient, assortativity coeffi-
cient, rich-club coefficient and average distance.

An important topological property, often ignored in the analysis of complex net-
works, is coreness. Node coreness refers to the degree of closeness of each node to
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Figure 4. The relationship among topological measures for vari-
ous real-world networks: clustering coefficient, assortativity coeffi-
cient, rich-club coefficient, average coreness and average degree.

a core of densely connected nodes, observable in the network [7]. In Figure 4 we
report the relationship between average node coreness and the previously identified
measures. The average node coreness as a function of the assortativity coefficient
yields that social networks do not follow the generally observed trend of networks
being disassortative but having, on average, higher node coreness. All three social
networks are shown within an ellipse on the top left scatter diagram of Figure 4. At
the same time, networks with higher average node coreness are more likely to have
higher rich-club and clustering. Finally, we observe that the average node coreness
is directly related to the average node degree. The former relationships are not
surprising since on average, higher average node degree means higher rich-club and
clustering, both for which we already perceived higher coreness.

Robustness to node and link failures is well captured by the algebraic connectiv-
ity. In essence, the algebraic connectivity quantifies the extent to which a network
can accommodate an increasing number of node- and link-disjoint paths. Figure 5
shows the relationships between the algebraic connectivity and the previously iden-
tified measures. The algebraic connectivity increases with the average node degree,
as networks with higher average degree are better connected and consequently, are
likely to be more robust. Note that in the literature [32] it is shown that assortative
networks are less vulnerable to both random failures and targeted attacks. Here,
we observe that disassortative networks have larger algebraic connectivity. This is
not in contradiction with the observed tendency because it is most likely to be re-
lated to the hardness to cut the graph into independent components. Moreover, the
larger the algebraic connectivity, the more networks seem to have a large rich-club
and hierarchical nature. This implies that they have more well-interconnected and
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centrally-oriented nodes that occur on many shortest paths. Still, the average node
betweenness does not seem to be related to the overall connectivity of a graph.

10
0

10
1

10
2

10
−4

10
−2

10
0

average node degree

al
ge

br
ai

c 
co

nn
.

−0.3 −0.1 0.1 0.3
0

0.1

0.2

0.3

assortativity coefficient

al
ge

br
ai

c 
co

nn
.

10
−4

10
−2

10
0

10
−4

10
−2

10
0

rich−club coefficient

al
ge

br
ai

c 
co

nn
.

10
−4

10
−2

10
0

10
−4

10
−2

10
0

average node betweenness

al
ge

br
ai

c 
co

nn
.

Figure 5. The relationship among topological measures for vari-
ous real-world networks: assortativity coefficient, rich-club coeffi-
cient, algebraic connectivity, average node betweenness and average
node degree.

4.2. Correlation analysis. Correlation analysis aims at finding out linear rela-
tionships between variables. Variables are in our case the topological measures.
From the tables presented in the Appendix we derive a matrix whose columns are
the different measures and the rows are the different real-world networks, denoted
by X. We then compute the correlation matrix of X, denoted by C. Matrix C is
symmetric and has 1’s elements on the diagonal. Each element (i, j) of C gives the
correlation coefficient between measures i and j (rows i and j of X). The correla-
tion coefficient c varies between -1 and 1, and indicates whether the two variables
a linearly correlated: positively if c ∼ 1, negatively if c ∼ −1, and uncorrelated if
c ∼ 0.

We are not interested in whether the correlation between two measures is positive
or negative, but only how strongly two given measures are numerically related to
each other. To ease the visualization, we show on Table 1 a symbolic encoding ver-
sion of the correlation matrix. Table 1 displays the lower diagonal of the correlation
matrix, using the following range of values and coding characters:

• 0 ≤ |c| ≤ 0.3: “ ” (no correlation);
• 0.3 ≤ |c| ≤ 0.6: “.” (mild correlation);
• 0.6 ≤ |c| ≤ 0.9: “+” (significant correlation);
• 0.9 ≤ |c| ≤ 1: “#” (strong correlation).

The measures on Table 1 are identified by their number at the top of each column,
and by the name and number on the left of each row. As the correlation matrix
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is symmetric, we show only the lower diagonal. First to be noticed is that 58
among the 91 lower diagonal elements (not counting the diagonal) have a correlation
coefficient less than 0.3 in absolute value. Most measures are thus weakly correlated,
indicating that most of them indeed reveal different topological aspects of real-world
networks. 21 among the 91 lower diagonal elements correspond to mild correlations,
i.e. 0.3 ≤ |c| ≤ 0.6. Only 12 among the 91 lower diagonal elements correspond
to strong correlations. Based on existing correlations between measures, we can
identify the following clusters (see also Figure 6):

• Distance cluster: average node distance, average node eccentricity, average
node and link betweenness.

• Degree cluster: average degree, average node coreness and clustering coef-
ficient.

• Intra-connectedness cluster: link density, rich-club coefficient and alge-
braic connectivity.

• Inter-connectedness cluster: average neighbor degree and assortativity
coefficient.

Topological measures 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of nodes (1) 1
Number of links (2) . 1

Link density (3) . 1
Average degree (4) . 1

Average neighbour degree (5) 1
Assortativity coefficient (6) + 1

Rich-club coefficient (7) . + . 1
Clustering coefficient (8) . . + . 1
Average node distance (9) . 1

Average node eccentricity (10) . # 1
Average node coreness (11) . # . + 1

Average node betweenness (12) . # # 1
Average link betweenness (13) . # # # 1

Algebraic connectivity (14) . . . . . + . . 1

Table 1. Correlation between topological measures for 20 various
real-world networks.

We labeled different measure clusters according to the type of topological in-
formation the group of measures provides. Intra- and inter- connectedness refer
to the measures characterizing the observed connectivity, respectively, within and
between a (sub)set of nodes in the network. All measures within each cluster are
highly or partly topologically redundant. The 14 initial measures can thus be re-
duced to 6 (including the number of nodes and the number of links) since 8 of
them are redundant with those of the same cluster. Besides the strength of the
correlations within the groups, the correlation analysis shows to what extent some
measures capture several topological properties of a network at once. For example,
the number of nodes and the algebraic connectivity, both exhibit mild correlation
to 8 other measures. The number of nodes is related to the number of links and all
measures within the distance and the intra-connectedness clusters, while not related
to measures within the degree or the inter-connectedness clusters. The algebraic
connectivity, on the other hand, is related to all measures within the degree, intra-
connectedness, and the inter-connectedness clusters, but not to any measure in the
distance cluster.
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Figure 6. A graph in which nodes are topological measures and
links the correlations that emerged from the correlation analysis.
The corresponding values display the strength of the correlation
between pairs of measures.

4.3. Principal component analysis. Correlation analysis measures the strength
of correlation between variables. Understanding correlations, however, does not
give insight about the number of independent variables, possibly derived from the
set of correlated variables. In this context, correlated variables are the topological
measures. Principal component analysis (PCA) [22] has proven to be useful for
reducing the number of variables (dimensionality) while retaining most of the orig-
inal variability in the data. The number of transformed, uncorrelated variables are
called principal components, which in decreasing order account for as much of the
variability in the data as possible.

We denote a given data set as a matrix X whose p columns are the variables to
be analyzed Xi, i = 1, . . . , p. Each column (variable) has n elements, hence X is a
n × p matrix. PCA performs a rotation of this matrix X such that

Y = A′X′ (1)

where A′ is an orthogonal matrix4. Y is the matrix of the rotated data, it is a
square matrix of order n. A is found by constraining the covariance matrix of Y,
CY = 1

n−1YY′, to be diagonalized. A symmetric matrix can be diagonalized by
the orthogonal matrix of its eigenvectors so that

CY =
1

n − 1
AΛA′ (2)

where Λ = XX′. A is selected so that its columns are the eigenvectors of Λ and
the principal components of X. The diagonal elements of CY give the variance of
X along each principal component.

4A matrix is orthogonal if A
′
A = I, where I is the identity matrix.
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The objective of PCA is to provide information about the minimal dimensional-
ity, necessary to describe the data variability. The percentage of the total data set
variance that is captured by a given number of principal components, is presented
in Figure 7. The first principal component alone captures 76%, the first two com-
ponents 94% and the first three components more than 99% of the total data set
variance. PCA analysis shows that only 3 dimensions are enough to retain most of
the original variability in the data. This, however, does not imply that the mea-
sures that are not important for the main principal components are unnecessary,
but rather that they provide very specific topological information.

The reason why PCA was able to drastically reduce the dimensionality of the data
set is because the principal components are a linear combination of all the measures.
The first principal component is composed of two measures, i.e. the number of links
and the number of nodes. All other measures have a very small weight in the linear
combination of this principal component. In fact, the first principal component’s
measures are those missing from the four clusters we identified in the correlation
analysis, presented in Subsection 4.2. The second principal component, besides the
average node distance and the average node eccentricity, is also mostly made of the
number of links and number of nodes. The third principal component is similar
to the second in terms of which measures have the largest weights, but the sign
of the weights differs as the principal components form an orthogonal basis. The
fourth principal component, that captures a very small fraction of the total variance,
is made almost exclusively from the average neighbor degree. PCA reveals that
important measures that characterize the variations in the topological measures
are the number of nodes and links and the measures within the distance and inter-
connectedness clusters. measures within the degree and intra-connectedness clusters
are redundant with the number of nodes and the number of links, since both the
average degree and the link density can be recovered from the former measures.
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Figure 7. Fraction of the variance captured by the principal components.

5. Discussions and conclusion. In this paper, we have studied the relationships
between topological measures of real-world networks. The visual analysis, presented
in Subsection 4.1, revealed the following relationships among topological measures:

• The clustering coefficient increases with the increasing disassortativity. For
assortative networks this relation is not trivial.
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• The average node distance increases with the increasing assortativity coeffi-
cient and decreases with the increasing rich-club coefficient. Consequently,
the assortativity coefficient decreases with the increasing rich-club coefficient.

• The average node coreness increases with the increasing rich-club and cluster-
ing coefficient while it decreases with the increasing assortativity coefficient.
Furthermore, it is directly related to the average node degree.

• The algebraic connectivity increases with the increasing average node degree
and the rich-club coefficient while it decreases with the increasing assortativity
coefficient. The algebraic connectivity is not related to the average node
betweenness.

The correlation analysis, presented in Subsection 4.2, resulted in several highly-
correlated clusters with the following topological measures:

• Distance cluster: 1) the average node distance is strongly related to the aver-
age node eccentricity, 2) the average node (link) betweenness to the average
node distance and hence 3) the average node (link) betweenness to the average
node eccentricity;

• Degree cluster: 1) the average node degree is strongly related to the average
node coreness and 2) the average node coreness to the clustering coefficient;

• Intra-connectedness cluster: 1) the rich-club coefficient is strongly related to
the link density and 2) the algebraic connectivity to the rich-club coefficient;

• Inter-connectedness cluster: 1) the assortativity coefficient is strongly related
to the average neighbor degree.

Our work showed that some topological measures tend to be more correlated
than others. This observation implies redundancy between topological measures.
Consequently, we have identified a significantly smaller set of topological measures
that is able to characterize real-world network’s structures.
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Appendix: Summary statistics of topological measures for various real-world
networks

Topological measures Road Rail1 Rail2 Air1 Air2
Number of nodes 14098 8710 689 500 2179
Number of links 18687 11332 778 2980 31326

Link density 0,0002 0,0003 0,0033 0,0239 0,0132
Average degree 2,7 2,6 2,3 11,9 28,8

Average neighbor degree 2,9 2,8 2,5 53,8 140,5
Assortativity coefficient 0,093 -0,022 0,098 -0,268 -0,046

Rich-club coefficient 0,0005 0,0008 0,0172 0,0621 0,3395
Clustering coefficient 0,0912 0,0212 0,0731 0,6175 0,4849
Average node distance 80,6 79,0 34,1 2,9 3,0

Average node eccentricity 177,4 158,6 65,0 5,2 5,9
Average node coreness 2,4 2,4 2,0 8,2 19,1

Average node betweenness 0,0560 0,0090 0,0481 0,0040 0,0090
Average link betweenness 0,00220 0,00350 0,02190 0,00050 0,00005

Algebraic connectivity 0,0001 0,0695 0,0008 0,1186 0,2082

Topological measures Power1 Power2 Power3 Power4 ISP
Number of nodes 4940 3419 1713 1205 29902
Number of links 6594 3953 2043 1385 32707

Link density 0,0005 0,0007 0,0014 0,0019 0,0001
Average degree 2,7 2,3 2,4 2,3 2,2

Average neighbor degree 3,9 3,8 2,9 3,1 45,7
Assortativity coefficient 0,004 -0,128 0,022 0,108 -0,036

Rich-club coefficient 0,0026 0,0042 0,0056 0,0204 0,0085
Clustering coefficient 0,0801 0,0120 0,0145 0,0171 0,0306
Average node distance 18,5 21,1 38,0 12,3 7109,9

Average node eccentricity 34,1 38,9 71,8 22,6 14250,0
Average node coreness 2,2 2,0 2,1 2,1 2,1

Average node betweenness 0,0036 0,0059 0,0216 0,0094 0,2377
Average link betweenness 0,00140 0,00270 0,00930 0,00450 0,10870

Algebraic connectivity 0,0009 0,0003 0,0001 0,0022 0,0440

Topological measures AS-level Router Protein Soccer Dolphins
Number of nodes 20906 29064 4626 685 62
Number of links 42994 62260 14801 10310 159

Link density 0,0002 0,0001 0,0014 0,0440 0,0841
Average degree 4,1 4,3 6,4 30,1 5,1

Average neighbor degree 230,9 21,0 24,2 45,0 6,8
Assortativity coefficient -0,201 -0,039 -0,137 -0,063 -0,044

Rich-club coefficient 0,0101 0,0037 0,0196 0,2605 0,4127
Clustering coefficient 0,2114 0,0232 0,0912 0,7507 0,2589
Average node distance 3,9 7,1 4,2 4,5 3,4

Average node eccentricity 8,0 14,7 8,1 8,6 6,5
Average node coreness 2,9 3,0 4,4 20,2 4,5

Average node betweenness 0,0001 0,0002 0,0007 0,0050 0,0380
Average link betweenness 0,00005 0,00006 0,00014 0,00022 0,01060

Algebraic connectivity 0,0152 0,0059 0,1173 0,1612 0,1730

Topological measures Actor Scientific English French Spanish
Number of nodes 10143 13861 7377 8308 11558
Number of links 147907 44619 44205 23832 43050

Link density 0,0029 0,0005 0,0016 0,0007 0,0006
Average degree 29,2 6,4 11,9 5,7 7,4

Average neighbor degree 83,6 13,5 320,7 218,0 457,6
Assortativity coefficient 0,026 0,157 -0,237 -0,233 -0,282

Rich-club coefficient 0,0399 0,0042 0,0588 0,0240 0,0340
Clustering coefficient 0,7551 0,6514 0,4085 0,2138 0,3764
Average node distance 3,7 6,6 2,8 3,2 2,9

Average node eccentricity 9,6 12,4 5,6 6,7 7,6
Average node coreness 21,4 4,9 7,5 3,9 4,9

Average node betweenness 0,0003 0,0004 0,0002 0,0003 0,0002
Average link betweenness 0,00040 0,00007 0,00003 0,00007 0,00003

Algebraic connectivity 0,0004 0,0292 0,1875 0,1197 0,0782
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