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Abstract

This paper concerns periodic multiscale homogenization for fully nonlinear
equations of the form uε + Hε

(
x, xε , . . . ,

x
εk
, Duε, D2uε

)
= 0. The operators

Hε are a regular perturbations of some uniformly elliptic, convex operator H.
As ε → 0, the solutions uε converge locally uniformly to the solution u of a
suitably defined effective problem. The purpose of this paper is to obtain an
estimate of the corresponding rate of convergence. Finally, some examples are
discussed.
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1 Introduction

We consider the multiscale homogenization problem for equations of the form

uε +Hε
(
x,
x

ε
, . . . ,

x

εk
, Duε, D2uε

)
= 0. (1.1)

The operators Hε are periodic, uniformly elliptic, regular perturbations of some
convex operator H (namely, Hε → H locally uniformly as ε → 0; for the precise
assumptions, see Section 2 below). It is well known that, as ε→ 0, the solution uε

of (1.1) converges locally uniformly to the solution of the effective problem (see [4])

u+H
(
x,Du,D2u

)
= 0 (1.2)

where the effective Hamiltonian H is defined via iterative homogenization. The
purpose of this paper is to investigate the corresponding rate of convergence.
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In the framework of viscosity solution theory (see the monographs [8, 9, 19]
for homogenization in the variational setting), the study of homogenization started
with the seminal paper by P.L. Lions, Papanicolaou and Varadhan [22] concerning
first order periodic Hamilton-Jacobi equations. A crucial advance was made by
Evans [14, 15] with the introduction of the perturbed test function method. By means
of this very adaptable technique he proved that the solutions uε of problem (1.1)
with two scales, i.e. k = 1, converge locally uniformly to the solution u of (1.2)
where the effective Hamiltonian H is defined by the following cell problem: for every
(x, p,X) ∈ Rn × Rn × Sn find the unique value H(x, p,X) such that there exists a
periodic solution w = w(y) (the so-called corrector) of

H(x, y, p,X +D2
yyw) = H(x, p,X).

The effective Hamiltonian H can be also defined via the ergodic approximation:
H(x, p,X) is the uniform limit of −λwλ as λ → 0, where the function wλ =
wλ(y;x, p,X) solves the approximated cell problem

λwλ +H(x, y, p,X +D2
yywλ) = 0. (1.3)

The latter definition is more general than the former (see: [3, 6, 10] and references
therein). The homogenization theory for fully nonlinear equation has been extended
in several directions (see [2] for a general review) and also beyond the periodic setting
(see [23, 24, 10]).

The multiscale homogenization problem for fully nonlinear equations was re-
cently studied in [4, 5], respectively for second and first order equations. For prob-
lem (1.1), it was ascertained that uε converges locally uniformly to the solution u
of the equation (1.2) with an effective operator H defined by an iterative homoge-
nization process (see Section 2 for the detailed calculations).

An interesting problem connected with the homogenization theory is the esti-
mation in terms of the scale parameter ε of the rate of convergence of the solutions
of the perturbed problem to the solution of the homogenized one. This question has
been tackled up for the first time by Capuzzo Dolcetta and Ishii [12] for first order
equations. For k = 1, they proved that uε converges uniformly to u with a rate of
order 1/3, namely ‖uε − u‖∞ ≤ Cε1/3. In [25], the same rate of convergence has
been obtained for the corresponding multiscale homogenization problem.

Concerning rates of convergence for second order problems, the two authors [11]
considered the case of convex uniformly elliptic equations. For k = 1, Hε ≡ H and
H of the form

H(x, y, p,X) := max
θ∈Θ
{−tr (aε(x, y, θ)X)− f ε(x, y, θ) · p− lε(x, y, θ)}

they proved that the solution uε to (1.1) converges uniformly to u and that there
exists a positive α such that ‖uε − u‖∞ ≤ Cεα, with α depending on the regularity
of uε and u.

The purpose of this paper is to obtain an estimate of the rate of convergence
for the multiscale homogenization of fully nonlinear uniformly elliptic equations. In
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other words, we want to estimate ‖uε − u‖∞ where uε and u are respectively the
solution to problems (1.1) and (1.2). As an important byproduct, we shall obtain
that, in several cases, uε converges to u uniformly on the whole Rn.

In this respect this paper extends the results of our previous one [11] in two
directions: for k = 1 we consider Hamiltonian Hε which in general are nonconvex
(but they converge locally uniformly to a convex operatorH) and, mainly, we address
the multiscale homogenization problem.

Let us stress some features of our arguments. Following the approach in [12] we
shall use the doubling of variables technique between the starting functions uε and
the effective one u perturbed with an approximated corrector λwλ. This latter term
has the crucial role of linking the Hamiltonians Hε with the effective Hamiltonian H
(note that in general there is no estimate of the term Hε−H). In order to deal with
the dependance of wλ on the slow variables, we shall invoke the regularity theory
for convex uniformly elliptic equations (see the book by Gilbarg and Trudinger [18]
and also [26]). The exponent α in the rate of convergence εα we obtain depends on
the regularity of uε and u and also, since the operators Hε are regular perturbations
of H, on the distance ‖Hε −H‖∞,loc.

This paper is organized as follows: Section 2 is devoted to the homogenization
framework (in particular, the definition of H) and to state our main result. Since it
is used in the proof of the main result, the case with discount a and k = 1 is studied
in Section 3. Section 4 is devoted to the proof of the main result. In Section 5 we
illustrate the problem with some examples.

2 Mathematical framework and main result

We shall denote by Sn the space of symmetric n×n real matrices endowed with the
usual norm. For any continuous function f , J+

x f and J−x f stand respectively for the
super and the subdifferential of f at the point x (we refer the reader to [13] for the
precise definition and main properties).

We shall assume that the Hamiltonians Hε and H fulfill the following hypothe-
ses:

(A1) H is convex in X.

(A2) Hε is periodic in y1, . . . , yk and

|Hε(x, y1, . . . , yk, 0, 0)| ≤ C,

|Hε(x, y1, . . . , yk, p,X)−Hε(x, y1, . . . , yk, q,X)| ≤ C|p− q|,
|Hε(x1, y1, . . . , yk, p,X)−Hε(x2, z1, . . . , zk, p,X)| ≤

≤ C(1 + |p|+ ‖X‖)(|x1 − x2|+
k∑
i=1

|yi − zi|).

Moreover Hε is uniformly elliptic: there exists a positive constant ν such that,
for X ≥ Y , it verifies

ν−1‖X − Y ‖ ≤ Hε(x, y1, . . . , yk, p,X)−Hε(x, y1, . . . , yk, p, Y ) ≤ ν‖X − Y ‖.
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(A3) There exists a continuous function ω = ω(ε, x) such that, for every x, yi, p ∈ Rn

and X ∈ Sn, there holds

|Hε (x, y1, . . . , yk, p,X)−H (x, y1, . . . , yk, p,X)| ≤ ω(ε, x) (1 + |p|+ ‖X‖) .

For the sake of simplicity, we shall consider in (A3) only functions ω having the form

ω(ε, x) = ω1(ε) + ω2(ε)|x|2 (2.1)

where ωi are modulus of continuity. Actually, one can easily adapt our arguments to
the case of ω with different behavior as |x| → +∞ just modifying the penalization
term in the proof of Theorem 2.1.

The effective Hamiltonian H (see [4]) is defined via iterative homogenization
as follows:

Set H0 = H and, for i = 0, . . . , k − 1, fix x, y1, . . . , yk−i−1, p ∈ Rn and X̄ ∈ Sn; the
problem

λv +Hi(x, y1, . . . , yk−i−1, z, p,X +D2
zzv) = 0 in Rn, v periodic

admits exactly one solution v = v(z). As λ → 0, it turns out that λv(z) converges
uniformly to a constant that we denote by −Hi+1(x, y1, . . . , yk−i−1, p,X). Finally,
we define H := Hk.

Let us state our main result

Theorem 2.1 Under Assumptions (A1)-(A3), there exist a positive constant M and
α ∈ (0, 1) such that

|uε(x)− u(x)| ≤M
[
εα + ω1(ε) + ω2(ε)

(
1 + |x|2

)]
∀ε ∈ (0, 1), x ∈ Rn. (2.2)

The proof is deferred to Section 4.

Corollary 2.2 Under Assumptions (A1)-(A3) with ω2 ≡ 0 in (2.1), the function uε

converges to u uniformly on the whole Rn with the rate

‖uε − u‖∞ ≤M [εα + ω1(ε)].

3 Two scale case with discount a

This Section is devoted to the case of two scales with a discount a ∈ (0, 1), namely
to equations of the form

auε +Hε
(
x,
x

ε
,Duε, D2uε

)
= 0. (3.1)

A similar problem has been studied in [11] in the case a = 1. We will follow
the argument used there, but we will pay a particular attention to the constants
involved in the equation, especially to the influence of the parameter a on the rate
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of convergence. In the following section this estimate will be an essential step in the
proof of Theorem 2.1.

It is well-known (see: [4] and also [2, 1, 14, 15] for the case Hε ≡ H) that,
as ε → 0, the solution uε converges locally uniformly to u, solution to the effective
equation

au+H
(
x,Du,D2u

)
= 0. (3.2)

The effective H is defined as follows: for every positive λ, the cell problem

λwλ +H(x, y, p,X +D2
yyw

λ) = 0 (3.3)

admits exactly one solution wλ = wλ(y;x, p,X). As λ → 0, the function λwλ

converges to a constant that we denote by −H(x, p,X). Let us now state the main
result of this section.

Theorem 3.1 Assume hypotheses (A1)-(A3). Assume further

(A4) Hε = Hε(x, y, p,X) is periodic in x and ω2 ≡ 0 in (2.1).

Then there exist two positive constants M and α ∈ (0, 1) (both independent of a)
such that

sup
x∈Rn
|uε(x)− u(x)| ≤ M

a
[εα + ω(ε)] ∀ε ∈ (0, 1).

The proof is postponed at the end of this section. In the next two lemmata, we
recall some properties of the approximated corrector and respectively of the effective
Hamiltonian. We refer the reader to the papers [1, 2, 6, 14, 15] for the detailed proof.

Lemma 3.2 Let wλ = wλ(y;x, p,X) be the solution of (3.3). There exists C1 > 0
such that

a) ‖λwλ(·;x, p,X)‖∞ ≤ C1(1 + |p|+ ‖X‖), ∀x, p,X;

b) λ|DXw
λ|, λ|Dpw

λ| ≤ C1, λ|Dxw
λ(y;x, p,X)| ≤ C1(1+ |p|+‖X‖) (in viscosity

sense);

c) for some α ∈ (0, 1), ‖wλ(·;x, p,X)−wλ(0;x, p,X)‖C2,α(RN ) ≤ C1(1+|p|+‖X‖),
∀x, p,X, λ;

d)
∣∣λwλ(y;x, p,X) +H(x, p,X)

∣∣ ≤ λC1(1 + |p|+ ‖X‖), ∀y, x, p,X.

Lemma 3.3 There exists C̃1 > 0 such that

a) |H(x, p1, X1)−H(x, p2, X2)| ≤ C̃1 (|p1 − p2|+ ‖X1 −X2‖);

b) |H(x1, p,X)−H(x2, p,X)| ≤ C̃1(1 + |p|+ ‖X‖)|x1 − x2|;

c) H is uniformly elliptic and convex with respect to X.
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Remark 3.4 The effective problem (3.2) satisfies the hypotheses required for the
regularity result in Gilbarg and Trudinger [18]. It follows that there exist N > 0 ed
ᾱ ∈ (0, 1) (both independent of a) such that:

‖u‖∞, ‖Du‖∞, ‖D2u‖∞ ≤ N

‖u‖C2,ᾱ(B(x,1)) ≤ N ∀x ∈ Rn.
(3.4)

Indeed the first inequality (i.e. ‖u‖∞ ≤ N) is obtained following the arguments
in [1, 6] (here, the periodicity assumption in (A4) plays a crucial role) while the
other inequalities are consequence of the first one and of the result by Gilbarg and
Trudinger [18].

It is expedient for our purpose to study the approximated cell problem

λwλε,r +Hε
r (y,Dyw

λ
ε,r, D

2
yyw

λ
ε,r;x, p,X) = 0 (3.5)

where

Hε
r (y, q, Y ;x, p,X) := min

|ξ1|,|ξ2|≤r
Hε(x+ ξ1, y + ξ2, p+ εq,X + Y ).

This definition of Hε
r is in the same spirit of the approximated Hamiltonians intro-

duced in [3] and in the shaking of coefficients method by Krylov (see [20] and [7]); we
shall use these approximations in order to overcome the lack of uniform continuity
of Hε.

Let us observe that, owing to Assumptions (A1)-(A4), the operator Hε
r is peri-

odic in y and x and it is convex and uniformly elliptic in Y . Furthermore, for some
positive constant C2, independent of ε and r, there holds∣∣Hε

r (y, q, Y ;x, p,X)−Hε
r (y
′, q′, Y ′;x, p,X)

∣∣ ≤ C2 (‖Y − Y ′‖+ ε|q − q′|)
+ C2|y − y′|

(
1 + |p|+ ε|q′|+ ‖X‖+ ‖Y ′‖

)
, (3.6)

C2ε|q|+ ω(ε)
(
1 + |p|+ ‖X‖+ ‖Y ‖

)
≥ Hε

r (y, q, Y ;x, p,X)−H(x, y, p,X + Y ) ≥
− C2ε|q| − (C2r + ω(ε))

(
1 + |p|+ ‖X‖+ ‖Y ‖

)
(3.7)

for every x, y, y′, q, q′, p ∈ Rn and X,Y, Y ′ ∈ Sn. In the following Lemma, we collect
some properties of wλε,r.

Lemma 3.5 There exists a unique bounded solution wλε,r(·;x, p,X) to (3.5). More-
over there exists a positive constant C3, depending only on the parameters entering
in Assumption (A1)-(A4) (i.e., independent of λ, ε, r, x, p, X) such that

a) ‖λwλε,r(·;x, p,X)‖∞ ≤ C3(1 + |p|+ ‖X‖), ∀x, p,X;

b)
∣∣λwλε,r(y;x, p,X) +H(x, p,X)

∣∣ ≤ C3[ω(ε)+ε+r+λ](1+|p|+‖X‖) ∀y, x, p,X.
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Proof We first establish that there exists a unique bounded solution wλε,r to (3.5).
To this end, we observe that a Comparison Principle holds for problem (3.5). For
τ := C̃3[ω(ε) + ε+ r](1 + |p|+ ‖X‖), the functions

w±(y) := wλ(y;x, p,X)± λ−1τ (3.8)

are respectively a super- a subsolution to problem (3.5). Actually, for C̃3 := 2(1 +
C2)(1 + C1), we have

λw+ +Hε
r (y,Dyw

+, D2
yyw

+;x, p,X) = λwλ +Hε
r (y,Dyw

λ, D2
yyw

λ;x, p,X) + τ

≥ −[C2C1ε+ (C2r + ω(ε))(1 + C1)]
(
1 + |p|+ ‖X‖

)
+ τ ≥ 0

(here, the rightmost inequality of (3.7) and Lemma 3.2-(c) have been used) so our
claim (3.9) for w+ is completely proved. Being similar, the proof for w− is omitted.
Applying the Perron method, one can establish that problem (3.5) admits exactly
one solution.

Let us now pass to the proof of estimates (a) and (b). The proof of point (a)
relies on the same arguments of those of Lemma 3.2-(a) and we refer to [2, 6] for
the proof.

(b). Let us first notice that, since w± in (3.8) are a super and a subsolution to
problem (3.5), there holds

λ sup
y

∣∣wλε,r(y;x, p,X)− wλ(y;x, p,X)
∣∣ ≤ C̃3[ω(ε) + ε+ r](1 + |p|+ ‖X‖) ∀λ, ε, r

(3.9)
for every (x, p,X). Hence Lemma 3.2-(d) and estimate (3.9) yield∣∣λwλε,r(y;x, p,X) +H(x, p,X)

∣∣ ≤ λ
∣∣wλε,r(y;x, p,X)− wλ(y;x, p,X)

∣∣+∣∣λwλ(y;x, p,X) +H(x, p,X)
∣∣ ≤ C3[ω(ε) + ε+ r + λ](1 + |p|+ ‖X‖)

for C3 = max{C̃3, C1}. 2

Proof of Theorem 3.1 Fix ε ∈ (0, 1). For every λ, γ, r ∈ (0, 1), λ ≥ ε2, let us
introduce the function

ϕ(x) := uε(x)− u(x)− ε2wλε,r

(x
ε

; [u](x)
)
− γ

2
|x|2 (3.10)

where
wλε,r (y; [u](x)) := wλε,r

(
y;x,Du(x), D2u(x)

)
.

The Comparison Principle for problems (3.1) and (3.2) ensures that uε and u
are bounded; furthermore, by bounds in (3.4) and Lemma 3.5-(a), the function
wλε,r(·/ε; [u](·)) is bounded. Hence, there exists a point x̂ where the function ϕ
attains its strict maximum.

For each τ ∈ (0, 1), set c := 3C3(1 +N) ε2

λτ2 and introduce the function

ϕ̃(x) := uε(x)− u(x)− ε2w
(x
ε

)
− γ

2
|x|2 − c|x− x̂|2 (3.11)
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with w := wλε,r (·; [u](x̂)). We notice that there holds: ϕ̃(x̂) = ϕ(x̂) and, for x ∈
∂B(x̂, τ),

ϕ̃(x̂)− ϕ̃(x) = [ϕ(x̂)− ϕ(x)]− ε2
[
wλε,r(x/ε; [u](x))− wλε,r(x/ε; [u](x̂))

]
+ cτ 2

≥ −ε2
[
wλε,r(x/ε; [u](x))− wλε,r(x/ε; [u](x̂))

]
+ cτ 2

≥ −2C3(1 + ‖Du‖∞ + ‖D2u‖∞)
ε2

λ
+ 3C3(1 +N)

ε2

λ
> 0

(here, Lemma 3.5-(a) and relations (3.4) have been used). Whence, the function ϕ̃
has a strict maximum at some point x̃ ∈ B(x̂, τ). Hence, by standard arguments,
we infer that, for every positive parameter σ, the function

Φ(x, ξ) := uε(x)− u(x)− ε2w

(
ξ

ε

)
− γ

2
|x|2 − c|x− x̂|2 − σ

2
|x− ξ|2 (3.12)

attains a strict maximum value in some point (xσ, ξσ), with

xσ, ξσ → x̃ as σ → +∞. (3.13)

Let us now claim that there exists a positive constant C4 such that, for every
η > 0, there exists two matrices X1, X2 ∈ Sn such that there holds

(Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1) ∈ J+
xσu

ε, (3.14)

(
σ

ε
(xσ − ξσ), X2) ∈ J−ξσ/εw, (3.15)

X1 −X2 ≤ D2u(xσ) + (γ + 2c+ ηC4)I. (3.16)

In fact, applying [13, Thm 3.2] to uε and W (ξ) := ε2w(ξ/ε) with the penalization
term ψ(x, ξ) := u(x) + γ

2
|x|2 + c|x− x̂|2 + σ

2
|x− ξ|2, we deduce that, for each η > 0,

there exist two matrices X1 and X2 such that

(Dxψ(xσ, ξσ), X1) ∈ J+
xσu

ε, (−Dξψ(xσ, ξσ), X2) ∈ J−ξσW(
X1 0
0 −X2

)
≤ D2ψ(xσ, ξσ) + η

(
D2ψ(xσ, ξσ)

)2
.

By the first two relations, properties (3.14) and (3.15) follow; indeed, (p,X) belongs
to J−ξσW if, and only if, (ε−1p,X) belongs to J−ξσ/εw. Furthermore, applying the last

inequality to the vector (v, v), we infer

X1 −X2 ≤ D2u(xσ) + (γ + 2c)I + η‖(D2ψ(xσ, ξσ))2‖I;

in particular, for C4 := ‖(D2ψ(xσ, ξσ))2‖, inequality (3.16) is established.
Taking into account that uε is a subsolution to (3.1) and relation (3.14), we

can write

0 ≥ auε(xσ) +Hε (xσ, xσ/ε,Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1)

≥ auε(xσ) +Hε (xσ, xσ/ε,Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ),

X2 +D2u(xσ) + (γ + 2c+ ηC4)I
)

≥ auε(xσ) +Hε
(
xσ, xσ/ε,Du(xσ) + σ(xσ − ξσ), X2 +D2u(xσ)

)
−C [γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC4]
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where the last two inequalities are due to relation (3.16) and Assumption (A2).
Moreover, by relations (3.4), for σ sufficiently large, we deduce

0 ≥ auε(xσ) +Hε
(
xσ, xσ/ε,Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
− C [N |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC4]

On the other hand, being a solution to the (λ, ε, r)-cell problem (3.5) centered in
(x̂, Du(x̂), D2u(x̂)), by relation (3.15), the function w verifies

0 ≤ λw

(
ξσ
ε

)
+Hε

r

(
ξσ
ε
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
.

We choose r = 2τ and we notice that, by (3.13) for σ sufficiently large, there holds

Hε
r

(
ξσ
ε
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
≤

Hε
(
xσ,

xσ
ε
,Du(x̂) + σ(xσ − ξσ), D2u(x̂) +X2

)
.

The last three inequalities guarantee the following one:

0 ≥ auε(xσ)− λw(ξσ/ε)− C [N |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC4]

≥ auε(xσ) +H(x̂, Du(x̂), D2u(x̂))− C3(1 + 2N)[ω(ε) + ε+ 2τ + λ]

−C [N |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC4]

(in the last relation Lemma 3.5-(b) and estimates (3.4) have been applied). Since u
is a classical solution to the effective problem (3.2), we infer

a[uε(xσ)− u(x̂)] ≤ C3(1 + 2N)[ω(ε) + ε+ 2τ + λ]

+ C [N |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC4] .

Letting η → 0 and σ → +∞, by the limits (3.13), we obtain

a[uε(x̃)− u(x̂)] ≤ C5[ω(ε) + ε+ τ ᾱ + λ+ γ|x̃|+ γ + c] (3.17)

where the constant C5 is independent of a, λ, ε, τ , and γ.
Let us now claim that there exists a constant C6 enjoying the same properties

of C5 (namely, independent of a, λ, ε, τ , γ and σ) such that

a1/2γ1/2|x̃| ≤ C6. (3.18)

In order to prove this inequality, we observe that inequality ϕ(x̂) ≥ ϕ(0) yields

γ|x̂|2/2 ≤ [uε(x̂)− uε(0)] + [u(0)− u(x̂)] + ε2
[
wλε,r(0; [u](0))− wλε,r(x̂/ε; [u](x̂))

]
.

Moreover, the Comparison Principle for problem (3.1) and for the effective one (3.2)
ensures: a‖uε‖∞ ≤ C and a‖u‖∞ ≤ C. Whence, Lemma 3.5-(a) with estimates (3.4)
entails

γ|x̂|2 ≤ 8C/a+ 4C3(1 +N)ε2λ−1
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and, in particular,

γ|x̃| ≤ γ|x̂|+ γ|x̂− x̃| ≤ γ1/2[8C/a+ 4C3(1 +N)ε2λ−1]1/2 + γτ.

For C6 := [8C + 4C3(1 +N)]1/2 + 1, the proof of bound (3.18) is accomplished.
We choose λ = εθ1 , τ = εθ2 . Substituting the estimate (3.18) in (3.17), we

infer

a[uε(x̃)− u(x̂)] ≤ C5[ω(ε) + ε+ εθ2ᾱ +C6γ
1/2a−1/2 + γ + εθ1 + 3C3(1 +N)ε2−θ1−2θ2 ].

Finally, relation aϕ̃(x̃) ≥ aϕ̃(x̂) = aϕ(x̂) ≥ aϕ(x) entails

a[uε(x)− u(x)] ≤ a[uε(x̃)− u(x̂)] + a[u(x̂)− u(x̃)]+

ε2a

[
wλε,r

(x
ε

; [u](x)
)
− wλε,r

(
x̃

ε
; [u](x̂)

)]
+
γ

2
a|x|2.

Combining the previous two inequalities, estimates (3.4), Lemma 3.5-(a), for some
constant C7 with the same properties of C5 (namely, it is independent of a, ε, θ1, θ2, γ)
there holds

a[uε(x)− u(x)] ≤ C7[ω(ε) + ε+ εθ2ᾱ + γ1/2a−1/2 + γ + εθ1 + ε2−θ1−2θ2 ] +
γ

2
a|x|2.

As γ → 0, we conclude

a[uε(x)− u(x)] ≤ C7[ω(ε) + ε+ εθ2ᾱ + εθ1 + ε2−θ1−2θ2 ];

by the arbitrariness of x, taking θ1 = ᾱ
ᾱ+1

and θ2 = 1
ᾱ+1

, we get the bound

a[uε(x)− u(x)] ≤ C7[ω(ε) + ε
ᾱ
ᾱ+1 ].

The proof of the bound for u− uε is similar and we shall omit it. 2

4 Proof of Theorem 2.1

This section is devoted to the proof of our main result stated in Theorem 2.1. For
simplicity, we shall consider only the case k = 2 since the general case can be dealt
in a similar manner. In this case the construction of the effective Hamiltonian H
requires two steps:
i) Fix (x, y, p,X) and, for every positive λ, consider the microscopic cell problem

λwλ +H(x, y, z, p,X +D2
zzw

λ) = 0. (4.1)

This problem admits exactly one solution wλ = wλ(z;x, y, p,X). As λ → 0+, the
function λwλ converges (uniformly in z) to some constant −H1(x, y, p,X).
ii) Fixed (x, p,X), for each positive λ, let W λ = W λ(y;x, p,X) be the solution of
the mesoscopic cell problem

λW λ +H1(x, y, p,X +D2
yyW

λ) = 0 (4.2)

10



As before (since the operator H1 enjoys the same properties of H, see [6] and
also Lemma 3.3), as λ → 0+, the function λW λ converges (uniformly in y) to
−H(x, p,X).

The function W λ satisfies the following regularity result.

Lemma 4.1 There exist a positive constant C1, depending only on the Assumptions
(A1)-(A4), and a parameter α1 ∈ (0, 1), depending continuously on (p,X), such that

‖W λ(·;x, p,X)−W λ(0;x, p,X)‖C2,α1 ≤ C1

(
1 + |p|+ ‖X‖

)
∀λ, (x, p,X).

For our purpose, it is expedient to introduce the operators

Hε
r (y, z, q, Y ;x, p,X) := min

|ξ1|,|ξ2|,|ξ3|≤r
Hε(x+ ξ1, y + ξ2, z + ξ3, p+ εq,X + Y )

and the approximated multiscale cell problem

λwλε,r +Hε
r

(
y,
y

ε
,Dyw

λ
ε,r, D

2
yyw

λ
ε,r;x, p,X

)
= 0. (4.3)

We shall denote a solution of (4.3) by wλε,r(y;x, p,X) in order to display its depen-

dence on the (fixed) parameters (x, p,X). Some properties of wλε,r are collected in
the following statements

Lemma 4.2 Assume (A1)-(A3). There exists a unique solution of (4.3). Moreover,
there exists a positive constant C2, independent of λ, ε, r, x, p and X, such that

‖λwλε,r(·;x, p,X)‖∞ ≤ C2(1 + |p|+ ‖X‖), ∀λ, ε, r, x, p,X.

Since the proof of the previous lemma follows the same arguments of those of
Lemma 3.5, we shall omit it.

Proposition 4.3 Under assumptions (A1)-(A3), there exist two positive constants
M1 and α1 ∈ (0, 1), depending continuously and only on |p|, ‖X‖ and on the pa-
rameters entering in Assumption (A1)-(A4) (in particular, independent of λ, ε, r,
x) such that

|λwλε,r(y;x, p,X) +H(x, p,X)| ≤M1[εα1 + r + ω(ε, x) + λ], ∀y ∈ Rn.

Proof We claim that there exist a positive constant M̃ and α1 ∈ (0, 1), depending
continuously and only on |p|, ‖X‖ and on Assumption (A1)-(A3) (in particular,
independent of λ, ε, r, x) such that

λ|wλε,r(y;x, p,X)−W λ(y;x, p,X)| ≤ M̃ [εα1 + r + ω(ε, x)], ∀y ∈ Rn, λ ∈ (0, 1)
(4.4)

where W λ is the solution to the mesoscopic cell problem (4.2) centered in (x, p,X).
Actually, one can easily check that there exists a positive constant C̃, independent
of ε, r and (x, p,X), such that∣∣Hε

r (y, z, q, Y ;x, p,X)−H(x, y, z, p,X + Y )
∣∣ ≤ C̃(ε+ r + ω(ε, x))[C0 + |q|+ ‖Y ‖]
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with C0 := 1 + |p| + ‖X‖. Applying Theorem 3.1 with ω(ε), a, uε and u replaced
respectively by w̃ := C0[ε+ r + ω(ε, x̄)], λ, wλε,r and W λ, we infer our claim (4.4).

On the other hand, following the same arguments as in the proof of Lemma 3.5-
(b) and using Lemma 4.1, we notice that there exists a positive constant M1, inde-
pendent of λ and (x, p,X), such that∣∣λW λ(y;x, p,X) +H(x, p,X)

∣∣ ≤M1λ(1 + |p|+ ‖X‖) ∀λ, y, (x, p,X). (4.5)

Finally, let us observe that there holds

|λwλε,r(y;x, p,X) +H(x, p,X)| ≤ λ|wλε,r(y;x, p,X)−W λ(y;x, p,X)|+
|λW λ(y;x, p,X) +H(x, p,X)|;

substituting inequalities (4.4) and (4.5) in the previous one, we accomplish the proof
of our statement. 2

Proof of Theorem 2.1 We shall argue as in the proof of Theorem 3.1. Fix
ε ∈ (0, 1). For every λ, γ, r ∈ (0, 1), λ ≥ ε2, let us introduce the function

ϕ(x) := uε(x)− u(x)− ε2wλε,r

(x
ε

; [u](x)
)
− γ

2
|x|2 (4.6)

where
wλε,r (y; [u](x)) := wλε,r

(
y;x,Du(x), D2u(x)

)
.

The Comparison Principle ensures that uε and u are bounded. In fact, invoking the
result by Safonov [26], one can prove that there exist N > 0 ed ᾱ ∈ (0, 1) such that:

‖u‖∞, ‖Du‖∞, ‖D2u‖∞ ≤ N, ‖u‖C2,ᾱ(B(x,1)) ≤ N ∀x ∈ Rn. (4.7)

By these estimates and Lemma 4.2, the function wλε,r(·/ε; [u](·)) is bounded. Hence,
there exists a point x̂ where the function ϕ attains its strict maximum.

Set τ := r/2 and c := 3C2(1 +N) ε2

λτ2 , and introduce the function

ϕ̃(x) := uε(x)− u(x)− ε2w
(x
ε

)
− γ

2
|x|2 − c|x− x̂|2 (4.8)

with w := wλε,r (·; [u](x̂)). Arguing as before, by Lemma 4.2, one can easily check
that the function ϕ̃ has a strict maximum in some point x̃ ∈ B(x̂, τ). By standard
arguments in viscosity solution theory, we infer that, for every positive parameter
σ, the function

Φ(x, ξ) := uε(x)− u(x)− ε2w

(
ξ

ε

)
− γ

2
|x|2 − c|x− x̂|2 − σ

2
|x− ξ|2 (4.9)

attains a strict maximum value in some point (xσ, ξσ), with

xσ, ξσ → x̃ as σ → +∞. (4.10)
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Applying again [13, Thm 3.2], we infer that there exists a positive constant C̃ such
that, for every η > 0, there exists two matrices X1, X2 ∈ Sn such that there holds

(Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1) ∈ J+
xσu

ε, (4.11)

(
σ

ε
(xσ − ξσ), X2) ∈ J−ξσ/εw, (4.12)

X1 −X2 ≤ D2u(xσ) + (γ + 2c+ ηC̃)I. (4.13)

From now on the letter M̄ stands for a positive constant, dependent only on the
parameters entering in Assumptions (A1)-(A3) (i.e., independent on λ, ε, r, σ and
τ) which may change from line to line.

Being a solution to the starting problem (1.1) with k = 2, by relation (4.11),
the function uε verifies

0 ≥ uε(xσ) +Hε
(
xσ,

xσ
ε
,
xσ
ε2
, Du(xσ) + γxσ + 2c(xσ − x̂) + σ(xσ − ξσ), X1

)
≥ uε(xσ) +Hε

(
xσ,

xσ
ε
,
xσ
ε2
, Du(xσ) + σ(xσ − ξσ), X2 +D2u(xσ)

)
−M̄

[
γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
where the last inequality is a consequence of relations (4.13) and the uniform ellip-
ticity of Hε. Moreover, for σ sufficiently large, relations (4.7) entail

0 ≥ uε(xσ) +Hε
(
xσ,

xσ
ε
,
xσ
ε2
, Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
− M̄

[
|x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
On the other hand, problem (4.3) centered in (x̂, Du(x̂), D2u(x̂)) and rela-

tion (4.12), imply that the function w verifies for σ sufficiently large

0 ≤ λw(ξσ/ε) +Hε
r

(
ξσ
ε
,
ξσ
ε2
,
σ

ε
(xσ − ξσ), X2; x̂, Du(x̂), D2u(x̂)

)
≤ λw(ξσ/ε) +Hε

(
xσ,

xσ
ε
,
xσ
ε2
, Du(x̂) + σ(xσ − ξσ), X2 +D2u(x̂)

)
,

where the latter inequality is due to our choice of r (and τ) and to the limits (4.10).
The last two inequalities ensure the following one:

0 ≥ uε(xσ)− λw(ξσ/ε)− M̄
[
|x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + c+ ηC̃

]
.

Moreover, owing to Proposition 4.3 and to estimates (4.7), we have

−λw(ξσ/ε) ≥ H(x̂, D(x̂), D2(x̂))− M̄ [εα1 + r + ω(ε, x̂) + λ]

≥ −u(x̂)− M̄ [εα1 + r + ω(ε, x̂) + λ]

(in the last inequality, equation (1.2) has been used) where α1 ∈ (0, 1) is a constant
depending only on the parameters entering in the starting Assumptions (A1)-(A3)
(i.e., independent on λ, ε, r, σ and τ).

13



Substituting the last inequality in the previous one, we obtain

uε(xσ)−u(x̂) ≤ M̄
[
εα1 + r + ω(ε, x̂) + λ+ |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ + ηC̃

]
.

Letting η → 0, we deduce

uε(xσ)− u(x̂) ≤ M̄ [εα1 + r + ω(ε, x̂) + λ+ |x̂− xσ|ᾱ + γ|xσ|+ c|xσ − x̂|+ γ] ;

as σ → +∞, taking into account the definition of τ , by (4.10) we obtain

uε(x̃)− u(x̂) ≤ M̄ [εα1 + ω(ε, x̂) + λ+ τ ᾱ + γ|x̃|+ cτ + γ] .

Choose λ = εθ1 , τ = εθ2 for some positive parameters θ1 and θ2. By the definition
of c, we have

uε(x̃)− u(x̂) ≤ M̄
[
εα1 + ω(ε, x̂) + εθ1 + εθ2ᾱ + γ|x̃|+ γ + ε2−θ1−2θ2

]
.

In conclusion, relation ϕ̃(x̃) ≥ ϕ̃(x̂) = ϕ(x̂) ≥ ϕ(x) yields

uε(x)− u(x) ≤ [uε(x̃)− u(x̂)] + [u(x̂)− u(x̃)]+

ε2

[
wλε,r

(x
ε

; [u](x)
)
− wλε,r

(
x̃

ε
; [u](x̂)

)]
+
γ

2

(
|x|2 − |x̃|2

)
.

Taking into account the previous two inequalities, estimates (4.7) and Lemma 4.2,
we obtain

uε(x)−u(x) ≤ M̄
[
εα1 + ω(ε, x̂) + εθ1 + εθ2ᾱ + γ|x̃|+ γ + ε2−θ1−2θ2

]
+
γ

2

(
|x|2 − |x̃|2

)
.

Recall that the function ω has the form given in (2.1) and choose γ = 8M̄ω2(ε).
Hence, our choice of τ and a simple calculation give

M̄ [ω(ε, x̂) + γ|x̃|]− γ

2
|x̃|2 = M̄ω1(ε) + M̄ω2(ε)

[
|x̂|2 + 8M̄ |x̃| − 4|x̃|2

]
≤ M̄ [ω1(ε) + 2|x̂− x̃|2] + M̄ω2(ε)

[
−2|x̃|2 + 8M̄ |x̃|

]
≤ M̄ [ω1(ε) + 2ε2θ2 ] + 8M̄3ω2(ε).

Substituting this inequality in the previous one, we obtain

uε(x)− u(x) ≤ M̄
[
εα1 + ω1(ε) + ω2(ε) + εθ1 + εθ2ᾱ + ω2(ε)|x|2 + ε2−θ1−2θ2

]
∀x.

In conclusion, for θ1 and θ2 sufficiently small, the proof of the first part of our
statement is accomplished. The other part is similar and we shall omit it. 2

Remark 4.4 Choosing θ1 = ᾱ/(1 + ᾱ) and θ2 = 1/(1 + ᾱ), in equation (2.2) we
obtain α = min

{
α1,

ᾱ
ᾱ+1

}
, where ᾱ and α1 are the Hölder regularity exponent for

the effective problem (1.2) (see Remark 3.4) and respectively for the mesoscopic cell
problem (4.2) (see Lemma 4.1).
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5 Examples

This Section is devoted to illustrate two examples; in the first one, an explicit
estimate for the exponent α in (2.2) is exhibited. In the second we apply our results
to an unfair stochastic differential game and in particular to stochastic optimal
control problems.

Example 1 Let us consider the following problems with three scales

uε − tr
[
a(x)D2uε

]
+ F1

(
x,
x

ε
,Duε

)
+ F2

(
x,
x

ε2
, Duε

)
= 0

where a ∈ C1,1, a ≥ νI and Fi = Fi(x, y, p) fulfill assumptions (A1) and (A2) (for
i = 1, 2). In this case, the microscopic cell problem (4.1) centered in (x̄, ȳ, p̄, X̄)
reads

λwλ − tr
[
a(x̄)D2wλ

]
+ F2(x̄, z, p̄) + F1(x̄, ȳ, p̄)− tr

[
a(x̄)X̄

]
= 0.

Then the mesoscopic Hamiltonian (see [3]) H1 has the form

H1(x, y, p,X) = −tr [a(x)X] + F1 (x, y, p) +

∫
[0,1)n

F2 (x, z, p) dz;

furthermore, the mesoscopic cell problem (4.2) centered in (x̄, p̄, X̄) reads

λW λ − tr
[
a(x̄)D2W λ

]
+ F1(x̄, y, p̄)− tr

[
a(x̄)X̄

]
+

∫
[0,1)n

F2 (x, z, p) dz = 0.

The regularity theory for elliptic equations (see [21, Chap. IV, Thm 6.3] ensures
that the solution W λ belongs to C2,1 (namely, α1 = 1 in Lemma 4.1); moreover, the
effective problem is

u− tr
[
a(x)D2u

]
+

∫
[0,1)n

[F1(x, z,Du) + F2 (x, z,Du)] dz = 0.

Invoking again the regularity theory for elliptic equations, we infer that the effective
solution u belongs to C2,1 (i.e., ᾱ = 1). Hence, Theorem 2.1 and Remark 4.4
guarantee that, for some positive M , there holds

sup
x∈Rn
|uε(x)− u(x)| ≤Mε1/2.

Example 2 Let us consider a stochastic differential game whose state variable
evolves in a medium displaying heterogeneities of different scales and where a player
may only “disturb” the other one. The dynamics are given by the stochastic differ-
ential equation

dxs = f ε
(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
ds+ σε

(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
dWs, x0 = x
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where (Ω,F ,P) is a probability space, endowed with a continuous right filtration
(Ft)0≤t<+∞ and a p-adapted Brownian motion Wt. The control law θ (respec-
tively, β) belongs to the set T (resp., B) of progressively measurable processes
which take values in the compact set Θ (resp., B). The two controls θ and β are
chosen respectively by the first and the second player whose purpose are opposite.
The former wants to minimize the following cost function

P (x, θ, τ) := Ex
∫ +∞

0

`ε
(
xs,

xs
ε
, . . . ,

xs
εk
, θs, βs

)
e−s ds

while the latter’s aim is to maximize it. For ϕ = f, σ, `, we shall assume

ϕε(x, y1, . . . , yk, θ, β) = ϕ1(x, y1, . . . , yk, θ) + ω(ε)ϕ2(x, y1, . . . , yk, θ, β)

(note that ϕ1 is independent of the control β) where ω is a modulus of continuity.
It is well known (see: [16, 17]) that the value function

uε(x) := inf
θ∈Γ

sup
β∈B

P (x, θ[β], β)

is a viscosity solution to problem (1.1) with

Hε(x, y1, . . . , yk, p,X) := min
β∈B

max
θ∈Θ
{−tr (aε(x, y1, . . . , yk, θ, β)X)

−f ε(x, y1, . . . , yk, θ, β) · p− `ε(x, y1, . . . , yk, θ, β)} ,

here aε = σε(σε)T/2 while Γ stands for the set of admissible strategies of the first
player (namely, nonanticipating maps θ : B → T ; for the precise definition and main
properties, see [17]). We observe that, as ε→ 0, Hε converges locally uniformly to
the operator

H(x, y1, . . . , yk, p,X) = max
θ
{−tr (a1X)− f1 · p− `1} with a1 = σ1(σ1)T/2.

Invoking Corollary 2.2, we deduce that the value function uε converges uniformly in
Rn to the solution u to the effective problem (1.2) with the rate

sup
x∈Rn
|uε(x)− u(x)| ≤M [εα + ω(ε)] .

Remark 5.1 Let us emphasize that the latter example encompasses stochastic op-
timal control problems. Indeed, in these cases, the second player is missing (that is,
the set B reduces to a singleton). Moreover, in this context, the regular perturba-
tion of the Hamiltonians (namely the fact that Hε → H locally uniformly) can be
interpreted as a lack of information on the features of the problem.
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