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Abstract. We prove that for any H : R
2
→ R which is Z

2-periodic, there
exists Hε, which is smooth, ε-close to H in L1, with L∞-norm controlled by
the one of H, and with the same average of H, for which there exists a smooth
closed curve γε whose curvature is Hε. A pinning phenomenon for curvature
driven flow with a periodic forcing term then follows. Namely, curves in fine
periodic media may be moved only by small amounts, of the order of the period.

1. Introduction. In this paper, curves in the plane with prescribed curvature are
dealt with.

We show that, for a “generic” H , periodic, possibly with small L∞-size, and
with prescribed (possibly zero) average, there exists a closed, convex curve whose
curvature at any points agrees with H . The genericity is in the L1-sense.

We then apply this result to show a pinning phenomenon in an evolutionary
problem driven by the curvature. More precisely, our result is the following:

Theorem 1.1. For any H ∈ L∞(T2), with H 6≡ 0, and for any ε > 0 there exists
Hε ∈ C∞(T2), with

‖Hε‖L∞(T2) ≤ ‖H‖L∞(T2), (1.1)

‖Hε −H‖L1(T2) ≤ ε ‖H‖L∞(T2), (1.2)

and ∫

T2

Hε(x) dx =

∫

T2

H(x) dx, (1.3)

such that there exists a set Eε, with smooth compact boundary, whose curvature
agrees with Hε at any point of ∂Eε. Moreover, we can choose Eε such that either
Eε or R

2 \ Eε is a convex set (with the convention that the curvature of a convex
set is positive).
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We observe that Theorem 1.1 does not hold, in general, if we choose Hε := H ,
and H changes sign. However, it would be interesting to know:

• whether a result analogous to Theorem 1.1 holds if we replace the L1 norm
in (1.2) with a stronger one (e.g., the L∞ norm);

• whether a result analogous to Theorem 1.1 holds in higher dimension;
• under which conditions on H we can choose Hε := H in Theorem 1.1 (for
instance, H strictly positive or chessboard-like);

• whether the random setting, instead of the periodic one, exhibits similar phe-
nomena;

• whether a PDE analogue holds (for instance, whether there exists a mesoscopic
phase transition [9] in the plane whose interface is a closed curve).

As a consequence of Theorem 1.1, we have a pinning phenomenon for the curva-
ture flow.

Namely, given δ > 0, for an open interval I ⊆ R and a function H : T2 → R,
we say that a family of closed, smoothly embedded curves {Γt}t∈I , with Γt = ∂Et,
moves by δ-periodic H-curvature if

v(x, t) =

(
1

δ
H
(x
δ

)
− κ(x)

)
ν(x) (1.4)

for any x ∈ Γt and any t ∈ I. Here v, κ and ν denote, respectively, the normal
velocity, the curvature and the exterior unit normal of Et at x ∈ Γt. Notice that
when H = 0, (1.4) reduces to the usual curvature flow [7]. Equation (1.4) has been
studied for instance in [6], where a general existence result has been established.

We denote by dH(A,B) the Hausdorff distance between two sets A, B ⊆ R
2.

With this notation, we have that solutions of (1.4) are, for a “typical” H , confined
in a δ-neighborhood of their initial data, according to the following result:

Theorem 1.2. Let H ∈ L∞(T2) be such that both H+ 6≡ 0 and H− 6≡ 0, where
H± denote respectively the positive and the negative part of H. Then, for any ε > 0
there exist Hε ∈ C∞(T2), satisfying (1.1), (1.2) and (1.3), and Cε > 0 such that
any {Γt}t∈I , Γt = ∂Et, which moves by δ-periodic Hε-curvature satisfies

sup
s,t∈I

dH(Γs,Γt) ≤ Cεδ. (1.5)

Related pinning effects in the graph case have been studied in [4]. Theorem 1.2
should be compared with the results in [3, 2], where the limit of the functionals

E 7→ Per(E) +
1

δ

∫

E

H(x/δ) dx, (1.6)

is carefully investigated (as usual, in (1.6), we denoted by Per the perimeter of a
Caccioppoli set), and it is shown that the functionals in (1.6) converge, in the sense
of Γ-convergence, to an anisotropic perimeter, with anisotropy depending on H .
Since equation (1.4) corresponds to the gradient flow of (1.6), one may expect that
the solutions of (1.4) converge, as δ → 0, to a solution of the gradient flow of the
limit functional, that is to an anisotropic curvature flow.

We refer to [10] for a presentation of a general framework of convergence of
gradient flows, under suitable conditions on the energy. However, the result in
Theorem 1.2 indicates that this is not always the case, as the solutions of (1.4) do
not move in the limit due to the effect of the strong forcing term.



CLOSED CURVES OF PRESCRIBED CURVATURE AND A PINNING EFFECT 79

The rest of the paper is organized as follows: Section 2 contains the proof of
Theorem 1.1, by making use of an auxiliary result, namely Proposition 1, which is
proved in Section 3. The proof of Theorem 1.2 is given in Section 4.

2. Proof of Theorem 1.1. The main step towards the proof of Theorem 1.1
consists in the following

Proposition 1. Let K ∈ C∞(R2), with K(x) ≥ 0 for any x ∈ R
2.

Suppose that there exist r′ and r > 0 in such a way that r′ ∈ [r, 1/4] and c > 0
for which

K(x) ≥ c for any x ∈
⋃

j∈Z2

Br(j)

and

K(x) = 0 for any x outside
⋃

j∈Z2

Br′(j).

Then, there exists a C∞ closed, convex curve γ whose curvature at any points is
equal to K.

We postpone the proof of Proposition 1 to Section 3 and we show now that
Proposition 1 implies Theorem 1.1.

For this, we fix a small ε > 0 and we take H as in the statement of Theorem 1.1.
We consider a standard mollifier ρε and we define the mollification of H as

K̃ε :=
(
1−

ε

2

)
(H ∗ ρε),

where ρε is chosen in such a way that

‖H −H ∗ ρε‖L∞(R2) ≤ ε2 ‖H‖L∞(R2) . (2.1)

Note that K̃ε ∈ C∞(T2). Since H is not identically zero, we have that there

exist cε > 0, rε > 0, and xo ∈ R
2 such that K̃ε(x) ≥ cε or K̃ε(x) ≤ −cε, for

any x ∈ B3rε(xo). For simplicity, we assume that K̃ε ≥ cε on B3rε(xo), since the
other case can be treated analogously.

Up to change of coordinates, we may suppose xo = 0. Then, by periodicity,

K̃ε(x) ≥ cε for any x ∈
⋃

j∈Z2

B3rε(j). (2.2)

We take a cut-off function τε ∈ C∞(T2, [0, 1]) such that

τε(x) = 1 for any x ∈
⋃

j∈Z2

Brε(j)

and

τε(x) = 0 for any x outside
⋃

j∈Z2

B3rε(j).

We set

Kε := τεK̃ε.

Then, by (2.2),

Kε(x) ≥ cε for any x ∈
⋃

j∈Z2

Brε(j),
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and Kε ≥ 0 on R
2. Thus, in both the cases considered above, we have found Kε ∈

C∞(R2) such that Kε ≥ 0 on R
2,

‖Kε‖L∞(R2) ≤ ‖K̃ε‖L∞(R2) ≤
(
1−

ε

2

)
‖H‖L∞(R2), (2.3)

Kε(x) = 0 for any x outside
⋃

j∈Z2

B3rε(j) (2.4)

and

Kε(x) ≥ cε for any x ∈
⋃

j∈Z2

Brε(j),

for suitably small cε, rε > 0.
We can thus apply Proposition 1 and obtain a C∞ curve γε = ∂Eε, with Eε

compact convex set, such that

the curvature of γε is equal to Kε at any point. (2.5)

We denote by

π : R2 → T
2

the natural projection.
Notice that π(γε) is a closed set of zero Lebesgue measure in T

2 and so we can

find a ball βε, with Lebesgue measure bε ∈ (0, 1), and open sets U
(1)
ε ⊂ U

(2)
ε ⊂ T

2

such that π(γε) ⊂ U
(1)
ε , U

(2)
ε ∩ βε = ∅ and

∣∣∣U (2)
ε

∣∣∣ ≤ ε2bε . (2.6)

We consider a cut-off function ψε ∈ C∞(T2, [0, 1]) such that ψε(x) = 1 for

any x ∈ U
(1)
ε and ψε(x) = 0 for any x outside U

(2)
ε .

Hence, we take αε ∈ C∞(T2, [0,+∞)) to be a cut-off function such that αε(x) = 0
for any x outside βε and ∫

βε

αε(x) dx = 1.

By definition of bε, we can also suppose that

‖αε‖L∞(T2) ≤
2

bε
. (2.7)

Let also

`ε :=

∫

U
(2)
ε

ψε(x)
(
K̃ε(x) −Kε(x)

)
dx . (2.8)

For x ∈ T
2, we define

Hε(x) := ψε(x)Kε(x) +
(
1− ψε(x)

)
K̃ε(x) + `εαε(x).

Note that the curvature of γε agrees with Hε, due to (2.5), since the support of π(γε)

lies in U
(1)
ε .

Therefore, γε satisfies the claim of Theorem 1.1. We sow that Hε also satisfies
the claims of Theorem 1.1. For this, we use (2.6) and (2.8) to get

|`ε| ≤ 2ε2bε‖H‖L∞(R2). (2.9)
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As a consequence, from (2.3) and (2.7) we obtain (1.1). Also, by (2.1), (2.3) and
(2.6) we have
∫

T2

|Hε(x) −H(x)| dx ≤

∫

U
(2)
ε

|Kε(x)−H(x)| + |K̃ε(x)−H(x)| dx

+ |`ε|

∫

T2\U
(2)
ε

αε(x) dx +

∫

T2\U
(2)
ε

|K̃ε(x)−H(x)| dx

≤ 7ε2‖H‖L∞(T2) +
ε

2

∫

T2

|H ∗ ρε| dx

≤ ε‖H‖L∞(T2)

which proves (1.2). Finally, (2.8) gives (1.3) and Hε is C∞(T2) by construction.

Notice that, if we have instead K̃ε ≤ −cε on B3rε(xo), we can reason as above
replacing the function H with −H . The only difference is that in this case we obtain
a curve γε = ∂Eε, still satisfying (2.5), where Eε is unbounded and R

2 \ Eε is a
compact convex set.

This completes the proof of Theorem 1.1 when Proposition 1 is in force.

3. Proof of Proposition 1. First of all, we fix α > 0, to be taken conveniently
small in what follows, and we construct a closed convex polygon Pα whose vertex
are in Z

2 and such that the angles between its edges are in [π − α, π).
For this scope, we fix a small a > 0 and a point P1 ∈ Z

2. We take a half-line λ1
with rational slope through P1 whose angle with respect to the horizontal axis is in
[a, 2a]. Say, for definiteness, that the angles we consider are taken to be oriented
anticlockwisely.

3
P

P
P

λ

λ
1 2

1

2

Figure 1

Due to the rationality of the slope of λ1, there exists P2 ∈ Z
2 ∩λ1. We then take

a half-line λ2 with rational slope through P2 whose angle with respect to λ1 is in
[a, 2a].

We then iterate this procedure (see Figure 1) and we find a half-line λn with
rational slope through Pn whose angle with respect to λn−1 is in [a, 2a].
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We denote by βn the angle between λn and the horizontal axis. By construction,

βn ∈ [βn−1 + a, βn−1 + 2a] (3.1)

and therefore we can take m to be the first angle for which βm ≥ (π/2)− 3a.
We observe that, from (3.1), we have

(π/2)− 3a ≥ βm−1 ≥ βm − 2a

P
m+1

m

m

m
P

∼π/2β

λ

Figure 2

hence (see Figure 2)

βm ∈
[
(π/2)− 3a, (π/2)

)
.

In particular, the angle between λm and the vertical axis is in (0, 3a].
The polygon Pα is then obtained by the segments P1P2 . . . Pm+1 by even reflec-

tions along the horizontal and vertical axes.
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The reflections make Pα closed. Since Pn ∈ Z
2 for any n, the vertices of Pα are

in Z
2. Also, if a is chosen suitably small, the angles of Pα are close to π but less

then π (thus, in particular, Pα is convex).
We now take c and r > 0 as in the statement of Proposition 1 and we construct

a closed C1,1 curve Γ which consists in:

• pieces of segments outside

Br :=
⋃

j∈Z2

Br/2(j) (3.2)

• arcs of circumferences with curvature less then c/2 in Br.

The curve Γ is constructed by modifying Pα. Indeed, we take Γ to agree with
Pα outside Br.

Then, if P is a vertex of Pα, we callQ and R to be the two points in ∂Br/2(P )∩Pα

and we take Γ in Br/2(P ) to be the arc of circumference passing through Q and R
and tangent to Pα from inside (see Figure 3).

r/2

P

Q

R

Figure 3

If we call 2θ the angle of Pα in P , the radius ρ of such circumference satisfies

ρ =
r

2
tan θ,

due to standard trigonometry (see Figure 4).
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π/2

r/2

P

Q R

θ

ρ

π/2

Figure 4

Accordingly, the curvature of Γ inside Br/2(P ) is of the order of 1/(r tan θ). Since

we know that θ ∈
[
(π − α)/2, π/2

)
, such curvature is smaller than c/2, provided

that α is small enough (possibly in dependence of r and c).
This ends the construction of the curve Γ satisfying the desired properties.
We define E? to be the bounded set for which ∂E? = Γ.
Let also R? ⊇ E? to be a square, with horizontal/vertical edges, such that

∂R? ∩
⋃

j∈Z2

Br′(j) = ∅. (3.3)

By (3.3) and our hypotheses on K, we have that

K is zero near ∂R? . (3.4)

We look at the following functional. Given any bounded Caccioppoli set F ⊂ R
2

(see [8] for the definition and the basic properties of such an F ), we define

I(F ) := Per(F )−

∫

F

K(x) dx.

By standard compactness arguments (see, for instance, [8] or page 1425 in [1]), the
functional I attains its minimum under the constraint that

E? ⊆ F ⊆ R?.
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Let F? be one of such minima. We have that the curvature of γ := ∂F? is equal to
K at any point in which γ does not touch ∂E?∪∂R? (see, for instance, Section 11.1
in [1]).

Then, the proof of Proposition 1 will be finished once we show that

γ ∩ (∂E? ∪ ∂R?) = ∅. (3.5)

To prove (3.5), we first observe that

the curvature of γ is bigger or equal to K in a neighborhood of ∂E?. (3.6)

Indeed, if we take a small perturbation Fε of F?, supported in the neighborhood of
∂E?, for which F? ⊆ Fε, we know that

I(Fε) ≥ I(F?). (3.7)

We take ν to be the external normal of F? and we write Fε as a normal deformation
(see [8]), that is

Fε = {x+ ην(x)ζ(x), x ∈ ∂F?, η ∈ [0, ε]},

for some smooth compactly supported function ζ and ε > 0.
Then, if π∂F?

is the natural projection onto ∂F?, we have
∫

Fε\F?

K(x) dx =

∫

Fε\F?

K(π∂F?
x) dx + o(ε) (3.8)

= ε

∫

∂F?

K(y) ζ(y) dHn−1(y) + o(ε),

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.
Also (see formula (10.12) in [8]),

Per(Fε)− Per(F?) = ε

∫

∂F?

C(y) ζ(y) dHn−1(y) + o(ε), (3.9)

where C denotes the curvature (in fact, here, the only curvature) of ∂F?. Thus,
by (3.7), (3.8) and (3.9),

0 ≤
I(Fε)− I(F?)

ε

=

∫

∂F?

C(y) ζ(y) dHn−1(y)−

∫

∂F?

K(y) ζ(y) dHn−1(y) + o(1)

hence C ≥ K on ∂F?, which proves (3.6).
We now make an elementary observation of strong comparison principle type.

Namely, for δ > 0, if u ∈ C2((0, δ)) ∩ C1([0, δ)) with u(t) ≥ 0 for any t ∈ [0, δ),
u′(0) = u(0) = 0 and

div

(
u′(t)√

1 + (u′(t))2

)
≤ 0 for any t ∈ (0, δ),

then

u(t) = 0 for any t ∈ [0, δ). (3.10)

To prove (3.10) we just write the equation as

u′′

(1 + (u′)2)3/2
≤ 0
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and therefore, since u′(0) = u(0) = 0, we get

0 ≤ u(t) =

∫ t

0

∫ τ

0

u′′(s) ds dτ ≤ 0

for any t ∈ [0, δ), proving (3.10).
Now, we have that

γ cannot touch ∂E? in the interior of any Br(j), for j ∈ Z
2. (3.11)

Indeed, thanks to (3.6), the osculating circle of γ has curvature bigger than, or equal
to, c in Br(j). Since the curvature of the osculating circle of ∂E? in the interior
of Br/2(j) is at most c/2, we see that (3.11) holds true.

Moreover,

γ cannot touch ∂E? in the closure of R2 \
⋃

j∈Z2 Br(j). (3.12)

Indeed, if such a touching point P? existed, since ∂E? contains a segment passing
through P?, we would obtain from (3.10) that γ and ∂E? agree as long as ∂E? is
flat, that is up to ∂Br/2(j?), for some j? ∈ Z

2. But this would be in contradiction
with (3.11) and it thus proves (3.12).

Therefore, from (3.11) and (3.12), we have that

γ ∩ ∂E? = ∅. (3.13)

Furthermore, γ cannot touch ∂R? at its corner, since cutting the corner would
decrease the perimeter and leave unchanged the term

∫
F K(x) dx, thanks to (3.4),

thus decreasing I. Also, γ cannot touch ∂R? at the other points as well, since
otherwise it should be a straight line in a neighborhood of ∂R?, due to (3.4).

These observations together with (3.13) imply (3.5) and so complete the proof
of Proposition 1.

4. Proof of Theorem 1.2. For all ε > 0, we let γ±ε = ∂E±
ε be the smooth curves

given by Theorem 1.1, which correspond to the forcing term ±H respectively.1

Thanks to our assumptions on the function H , we may assume that the sets
E±

ε are both compact and convex. Therefore, we can find a square with integer
vertices containing γ±ε , and we denote by Cε the sidelength of such square. Thus,
we consider a tiling of R2 made by squares of sides Cε each containing an integer
translation of E±

ε (see Figure 5).

1We remark that the construction of γ−

ε may be performed consistently with the one of γ+
ε , up

to changing Hε in a small set. Indeed, if any of the straight segments of γ−

ε enter a ball Br/2(j)

of (3.2), used in the construction of γ+
ε , one takes a small neighborhood of such segment in Br/2(j),

resets Hε to be zero and γ
+
ε to be a segment there, with a smooth interpolation.
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εC

ε

t

γ

Γ

γε

+

_

Figure 5

In dealing with the proof of Theorem 1.2, up to a dilation of factor 1/δ, we may
and do assume that δ := 1 in (1.4). Thus, we take any {Γt}t∈I , with Γt = ∂Et,
that moves by 1-periodic Hε-curvature and we show that

sup
s,t∈I

dH(Γs,Γt) ≤ constCε. (4.1)

Dilating back by a factor δ the estimate in (4.1), we then obtain (1.5).
To prove (4.1), we observe that all the integer translations of E+

ε and of R2 \
E−

ε (which is an unbounded set) are stationary solutions of (1.4), with δ := 1.
Consequently, by comparison principle (see, for instance, page 18 in [5]), Γt cannot
travel neither through the translations z+γ+ε such that (z+E+

ε ) ⊂ Et, z ∈ Z
2, nor

through the translations z + γ−ε such that Et ⊂ (z + R
2 \ E−

ε ).
Such confinement proves (4.1) and thus completes the proof of Theorem 1.2.
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