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Abstract

We consider N -person differential games involving linear systems affected by white
noise, running cost quadratic in the control and in the displacement of the state from
a reference position, and with long-time-average integral cost functional. We solve an
associated system of Hamilton-Jacobi-Bellman and Kolmogorov-Fokker-Plank equations
and find explicit Nash equilibria in the form of linear feedbacks. Next we compute the
limit as the number N of players goes to infinity, assuming they are almost identical and
with suitable scalings of the parameters. This provides a quadratic-Gaussian solution to
a system of two differential equations of the kind introduced by Lasry and Lions in the
theory of Mean Field Games [19]. Under a natural normalization the uniqueness of this
solution depends on the sign of a single parameter. We also discuss some singular limits,
such as vanishing noise, cheap control, vanishing discount. Finally, we compare the L-Q
model with other Mean Field models of population distribution.

1 Introduction

Consider a system of linear stochastic differential equations

dX i
t = (AiXi

t − αi
t)dt + σidW i

t , X i
0 = xi, i = 1, . . . , N, (1)

where W i
t is a Brownian motion and αi

t is the control of the i-th player of the differential
game that we now describe. For each initial vector of positions X = (x1, . . . , xN ) we consider
for the i-th player the long-time-average cost functional with quadratic running cost

J i(X, α1, . . . , αN ) := lim inf
T→+∞

1
T

E

[∫ T

0

Ri

2
(αi

t)
2 +

(
Xt −Xi

)T
Qi
(
Xt −Xi

)
dt

]
,

where Ri > 0, Qi is a symmetric matrix, and Xi is a given reference position. We wish to study
the Nash equilibrium strategies of this N -person game and understand the limit behavior as
N → +∞ within the theory of Mean Field Games initiated by Lasry and Lions [19, 20, 21].
We recall that this theory is intimately connected to the modeling of economic equilibrium
with rational anticipations, following the fundamental contribution of Aumann [4]. We refer
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to the recent survey [13] for several applications of Mean Field Games to economics and
mathematical finance.

In this paper we limit ourselves to the case of 1-dimensional state space for each player,
because our goal is to give solutions as explicit as possible to the systems of Hamilton-Jacobi-
Bellman (briefly, HJB) and Kolmogorov-Fokker-Plank equations arising in the theory. Thus
Ai is a given scalar here. However the case of general d-dimensional Xi

t can be studied similarly
via the solution of suitable matrix Riccati equations and will be treated in a forthcoming
paper.

In Section 2 we define the admissible strategies and introduce the system of 2N HJB and
KFP equations associated to the N -person game, as in [19, 21]. Under a generic condition
we find explicit quadratic solutions vi for the HJB equations and Gaussian solutions mi for
the KFP equations, and affine feedback strategies that give a Nash equilibrium of the game.

In Section 3 we introduce the assumption that the running cost of the i-th player is
symmetric with respect to the positions of any two other players. It leads to reducing the
(N +1)N/2 coefficients of Qi to just four parameters: the primary costs of self-displacement,
qi > 0, and cross-displacement, βi, and the secondary costs of self and cross-displacement,
ηi and γi; also the N entries of the reference position Xi reduce to two, the preferred value
hi is for the i-th player and his reference value ri for the other agents. Next we assume the
players are almost identical, i.e., they have the same parameters in the dynamical system and
cost functional, except possibly the secondary costs of displacement. Then there is a unique
identically distributed quadratic-Gaussian solution of the 2N HJB-KFP equations, i.e., such
that all vi are equal and so are all mi.

Section 4 is devoted to the limit as N → +∞ for parameters such that

qN → q, βN ∼ β/N, ηN
i ∼ η/N, γN

i ∼ γ/N2

Then the identically distributed solution vN ,mN , λN of the preceding 2N system converges
to a solution of the Mean Field system of two equations

−νvxx + (vx)2

2R −Axvx + λ = V [m](x) in IR,

−νmxx −
(

vx
R m−Axm

)
x

= 0 in IR,

min
[
v(x)− RAx2

2

]
= 0,

∫
IR m(x)dx = 1, m > 0 in IR.

(2)

Here V [m] is the non-local operator

V [m](x) := q(x− h)2 + β(x− h)
∫

IR
(y − r) dm(y)

+ γ

(∫
IR

(y − r) dm(y)
)2

+ η

∫
IR

(y − r)2 dm(y). (3)

Such solution is explicit and unique among quadratic-Gaussian ones, except for one critical
value of β. Moreover it is the unique solution of (2) if β ≥ 0, by a monotonicity argument
of Lasry and Lions [19, 21]. Note, however, that the normalization condition on v in (2) is
different from the null-average condition of the periodic case [19, 21].

2



The results of these three sections parallel those of the seminal papers [19, 21] on games
with ergodic cost criterion with the following main differences. Lasry and Lions consider sys-
tem (1) in dimension d ≥ 1 with Ai = 0, running costs of the form Li(Xi

t , α
i
t)+F i(X1

t , . . . , XN
t )

with Li superlinear in α and F i Zd-periodic in each entry, so their state space for each agent
is a torus. No explicit formulas can be expected for these general costs and the proofs rely
on some hard estimates for the HJB equations. In our Linear-Quadratic (briefly, L-Q) case
the explicit quadratic-Gaussian formulas for solutions allow rather elementary calculations;
on the other hand the unboundedness of data and solutions requires some additional care in
the proof of the verification theorem.

In Section 5 we exploit the formulas for solutions to study several singular limits. For
vanishing noise σi → 0 we show that the distributions mi become Dirac masses, the Nash
equilibrium feedback remains the same for the limit deterministic game, a fact known for finite
horizon problems [6, 9], and the vanishing viscosity limit commutes with N → +∞. For the
cheap control limit, that is, Ri → 0, the distributions mi become again Dirac masses and
the limit commutes with N → +∞. After solving in quadratic-Gaussian form the discounted
infinite horizon problem, we show that for vanishing discount there is convergence to the
long-time-average cost problem, and also this limit commutes with N → +∞. Finally we
study the scaling 1/N = o(βN ) that is related to a singular perturbation of (2).

Section 6 discusses an interpretation of the L-Q Mean Field Game as a model of the
distribution of a population. We compare it to the Mean Field model with local log utility
studied by Guéant [12, 11] and reported in [13], where explicit quadratic-Gaussian solutions
are also found. The important parameters of V (3) in this discussion are q and β, because
β > 0 means that it is costly for an individual to imitate his/her peers, whereas for β < 0
resembling the others is rewarding as in the log model of [12, 11].

We conclude this introduction with some bibliographical remarks. Huang, Caines, and
Malhamé studied L-Q stochastic games with discounted cost and large number of players
motivated by several engineering applications [14, 16]. They also developed their approach to
encompass nonlinear systems and more general costs [15, 17] independently of the Lasry-Lions
theory. Discrete Mean Field Games were studied by Gomes et al. [10], numerical methods
by Achdou and Capuzzo-Dolcetta [2], see also [18] and [1]. For the background on N -person
differential games we refer to the books [6, 9] and for the ergodic stochastic case to [7], see
also the references therein.

2 Games with N players and ergodic payoff

The notations of the paper are chosen to be consistent with those of [19, 21]. We assume that
each player controls a 1-dimensional state variable with linear dynamics, that is,

dX i
t = (AiXi

t − αi
t)dt + σidW i

t , X i
0 = xi ∈ IR, i = 1, . . . , N (4)

where Ai, σi ∈ IR are given, σi 6= 0, (W 1
t , . . . ,WN

t ) are N independent Brownian motions,
the control αi : [0,+∞) → IR of the i-th player is a bounded process adapted to W i

t . For
each initial vector of positions X = (x1, . . . , xN ) ∈ IRN we consider the long-time-average
cost functional

J i(X, α1, . . . , αN ) := lim inf
T→+∞

1
T

E

[∫ T

0

Ri

2
(αi

t)
2 + F i(X1

t , . . . , XN
t )dt

]
, Ri > 0,
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and we assume that F i is quadratic in the following sense. For each player i there is a
reference position of the whole state vector X̄i, and F i is a quadratic form in X − X̄i, i.e., for
a symmetric matrix Qi,

F i(x1, . . . , xN ) :=
(
X −Xi

)T
Qi
(
X −Xi

)
=

N∑
j,k=1

qi
jk(x

j − xj
i )(x

k − xk
i ), qi

ii > 0,

where the condition qi
ii > 0 means that xi

i is a preferred position for the i-th player.
We are interested in Nash equilibrium points, that is, vectors of admissible control strate-

gies α = (α1, . . . , αN ) such that

J i(X, α) = min
αi

J i(X, α1, . . . , αi−1, αi, αi+1, . . . , αN ) ∀ i = 1, . . . , N. (5)

For the current cost functional it is natural to choose as admissible strategy, or admissible
control function, for the i-th player any bounded process αi adapted to W i

t such that the
corresponding solution Xi

t of (4) satisfies, for some C > 0,

E[Xi
t ] ≤ C, E[(Xi

t)
2] ≤ C, ∀ t > 0, (6)

and is ergodic in the following sense: there exists a probability measure mαi such that∫
IR xdmαi(x),

∫
IR x2dmαi(x) < +∞, and for any polynomial g of degree at most two

lim
T→+∞

1
T

E

[∫ T

0
g
(
Xi

t

)
dt

]
=
∫

IR
g(x)dmαi(x), (7)

locally uniformly with respect to the initial position xi of Xi
t .

Note that for a N -vector α of such controls the liminf in the cost functionals is a lim and
J i(X, α) do not depend on the initial position X. Important examples of admissible strategies
are the affine feedbacks whose trajectory is ergodic, as made precise by the next Lemma.

Lemma 2.1. For the feedback

αi(x) = Kix + ci, x ∈ IR, Ki > Ai, (8)

consider the process αi
t := αi(Xi

t) where Xi
t solves

dXi
t = [(Ai −Ki)Xi

t − ci]dt + σidW i
t .

Then αi is admissible.

Proof. The explicit solution of the linear equation for Xi
t satisfies (6) and it is also known

to be ergodic with Gaussian invariant measure mαi of mean −ci/(Ki − Ai) and variance
νi/(Ki − Ai). Then (7) holds for any bounded and continuous g. To get the conclusion it’s
enough to check it for g(x) = x and g(x) = x2 and this is easily done by integrating on [0, T ]
the explicit expressions for E[Xi

t ] and E[(Xi
t)

2].

In order to write the system of Hamilton-Jacobi-Bellman equations and Kolmogorov-
Fokker-Plank equations associated to the game as in [19, 21] we observe that the i-th Hamil-
tonian is

H i(x, p) =
p2

2Ri
−Aixp, x, p ∈ IR,
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and for a N -vector of probability measures on IR (m1, . . . ,mN ) we denote

f i(x;m1, . . . ,mN ) :=
∫

IRN−1

F i(x1, . . . , xi−1, x, xi+1, . . . , xN )
∏
j 6=i

dmj(xj), νi :=
(σi)2

2
.

We want to solve the system

−νivi
xx + (vi

x)
2

2Ri
−Aixvi

x + λi = f i(x;m1, . . . ,mN ) in IR, i = 1, . . . , N

−νi(mi)xx −
(

vi
x

Ri
mi −Aixmi

)
x

= 0 in IR, i = 1, . . . , N

∫
IR mi(x)dx = 1, mi > 0 in IR,

(9)

where with a slight abuse of notation we are denoting with mi a measure as well as its
density. Since we are not in the periodic setting of [19, 21] the solutions vi are expected to be
unbounded and cannot be normalized by prescribing the value of their average. In the next
result we produce solutions with vi a quadratic polynomial and mi Gaussian, namely,

vi(x) =
(x− µi)2

2si
+

RiA
ix2

2
, mi(x) =

1√
2πsiνiRi

exp
(
−(x− µi)2

2siνiRi

)
, (10)

for two vectors µ = (µ1, . . . , µN ) and s = (s1, . . . , sN ) with si > 0 that we will compute
explicitly. We define the N ×N matrix B by

Bii := 2qi
ii + Ri(Ai)2, Bij := 2qi

ij i 6= j.

Theorem 2.1. Under the above conditions, if det B 6= 0 then
i) there exists a unique triple (λ1, . . . , λN ) ∈ IRN , µ ∈ IRN , s ∈ (0,+∞)N , such that (10)
solves (9), and

si =
(
2qi

iiRi + (RiA
i)2
)−1/2

, (11)

µ = B−1p, pi := 2qi
iix

i
i + 2

∑
j 6=i

qi
ijx

j
i , (12)

ii) the affine feedback

αi(x) =
x− µi

siRi
+ Aix, x ∈ IR, i = 1, . . . , N, (13)

is a Nash equilibrium point for all initial positions X ∈ IRN among the admissible strategies
and J i(X, α) = λi for all X and i.

Proof. For any vi ∈ C1(IR), the i-th equation of the second group on N equations in (9) can
be integrated to get

mi(x) = ci exp
(

1
νiRi

(
RiA

ix2

2
− vi(x)

))
.

Therefore we are left with the first group of N equations and we plug into them vi of the
form (10) to get

−νi

(
1
si

+ RiA
i

)
+

1
2Ri

(
(x− µi)2

s2
i

+ (RiA
ix)2

)
−Ri(Aix)2 + λi = f i. (14)
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Next we compute f i = f i(x;m1, . . . ,mN ) using that mi is the distribution of a Gaussian
random variable N (µi, siν

iRi):

f i(x;m1, . . . ,mN ) = qi
ii(x− xi

i)
2 + 2(x− xi

i)
∑
j 6=i

qi
ij(µj − xj

i ) + bi

bi :=
∑

j,k 6=i, j 6=k

qi
jk(µj − xj

i )(µk − xk
i ) +

∑
j 6=i

qi
jj(sjν

jRj + (µj − xj
i )

2).

Then (14) is an equality between two quadratic polynomials. By equating the coefficients of
x2 we get

1
2Ris2

i

− Ri(Ai)2

2
= qi

ii (15)

that gives (11). By equating the coefficients of x we get

− µi

Ris2
i

= −2qi
iix

i
i + 2

∑
j 6=i

qi
ij(µj − xj

i ), i = 1, . . . , N, (16)

and using (15) we get the matrix equation Bµ = p with p given by (12). Finally, by equating
the remaining terms we obtain

λi = νi

(
1
si

+ RiA
i

)
− µ2

i

2Ris2
i

+ qi
ii(x

i
i)

2 − 2xi
i

∑
j 6=i

qi
ij(µj − xj

i ) + bi. (17)

This completes the proof of i).
Consider the feedback α = (α1, . . . , αN ) given by (13) and note it is admissible by Lemma

2.1. Let αi be an admissible strategy for the i-th player. By Dynkin’s formula and the first
equation in (9)

E
[
vi(Xi

T )− vi(xi)
]

= E

[∫ T

0

(
νivi

xx + Aixvx − αi
tv

i
x

)
(Xi

t) dt

]
≥ E

[∫ T

0

(
νivi

xx + Aixvx −
(
vi
x

)2
2Ri

)
(Xi

t)−
Ri

2
(αi

t)
2 dt

]

= λiT − E

[∫ T

0

(
f i(Xi

t) +
Ri

2
(αi

t)
2

)
dt

]
,

where the inequality is an equality if αi = αi. We divide both sides by T and let T → +∞.
The left hand side vanishes because vi is a quadratic polynomial and the estimates (6) hold.
Then

λi ≤ lim inf
T→+∞

1
T

E

[∫ T

0

(
f i(Xi

t ;m1, . . . ,mN ) +
Ri

2
(αi

t)
2

)
dt

]
with equality if αi = αi. We claim that the right hand side is J i(X, α1, . . . , αi−1, αi, αi+1, . . . , αN ).
Then λi = J i(X, α) and (5) holds.

To prove the claim we consider each term of the running cost F i. We begin with the terms
with j = k, j 6= i. Then

lim
T→+∞

1
T

E

[∫ T

0
(Xj

t − xj
i )

2 dt

]
=
∫

IR
(xj − xj

i )
2dmj(xj) = sjν

jRj + (µj − xj
i )

2
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by (7) and the fact that the invariant measure mj of the process Xj
t corresponding to the

control αj is a Gaussian N (µj , sjν
jRj). Next, we consider the terms with j 6= k, j, k 6= i.

Then the ergodicity of (Xj
t , Xk

t ) gives

lim
T→+∞

1
T

E

[∫ T

0
(Xj

t − xj
i )(X

k
t − xk

i ) dt

]
=∫

IR2

(xj − xj
i )(x

k − xk
i )dmj(xj)dmk(xk) = (µj − xj

i )(µk − xk
i ).

The remaining terms are those involving Xi
t and Xj

t with j 6= i. By the definition of the ad-
missible controls (7) Xi

t is ergodic with invariant measure mαi . Then, for µ̃ :=
∫
IR x dmαi(x),

lim
T→+∞

1
T

E

[∫ T

0
(Xi

t − xi
i)(µj − xj

i ) dt

]
= (µ̃− xi

i)(µj − xj
i ).

On the other hand the ergodicity of (Xj
t , X i

t) gives

lim
T→+∞

1
T

E

[∫ T

0
(Xj

t − xj
i )(X

i
t − xi

i) dt

]
=∫

IR2

(xj − xj
i )(x

i − xi
i)dmj(xj)dmαi(xi) = (µj − xj

i )(µ̃− xi
i).

This completes the proof of the claim and of the theorem.

Remark 2.1. The solution associated to the optimal feedback αi is the Ornstein-Uhlenbeck
process

dX i
t = −Xi

t − µi

siRi
dt + σidW i

t

and therefore it is mean-reverting with constant mean µi. Note also that the Nash equilibrium
α does not depend on the noise intensities σi.

Remark 2.2. The minimal assumption on qi
ii for the validity of the preceding theorem is

qi
ii > −Ri(Ai)2/2 because si remains well-defined by (11).

Remark 2.3. The proof of Theorem 2.1 ii) shows that any solution (ṽ1, . . . , ṽN ), (m̃1, . . . , m̃N ),
(λ1, . . . , λN ) of (9) defines a Nash equilibrium feedback α̃i(x) := ṽi

x(x)
Ri

provided that α̃ is an
admissible strategy and |ṽi(x)| ≤ C(1 + |x|2) for some constant C and all x ∈ IR.

If the condition det B 6= 0 of Theorem 2.1 fails there may be either infinitely many solutions
or none, as the next example shows.

Example 2.1. For N = 2 we consider almost identical players, as we will do for all N later
on, namely, q1

11 = q2
22 =: q, R1 = R2 =: R, A1 = A2 =: A, q1

12 = q2
12 =: β/2, x1

1 = x2
2 =: h,

x1
2 = x2

1 =: r. Then det B = (2q + RA2)2 − β2. For β = 2q + RA2 all vectors µ = (µ1, µ2)
satisfying µ1 + µ2 = r + 2qh/β solve the equation Bµ = p with p defined by (12). Then there
are infinitely many Gaussian solutions. In the case β = −2q − RA2, instead, there are no
solutions of Bµ = p (and therefore no Gaussian solutions) unless 2qh = −βr, and in this last
case there are again infinitely many (all µ such that µ1 = µ2).
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3 Symmetric and almost identical players

A natural assumption that we will use in the rest of the paper is the following condition
saying that the i-th player is influenced in the same way by any two other players.
Symmetry Assumption: the cost F i of the i-player is symmetric with respect to the position
of any two other players, i.e.,

F i(x1, . . . , xj , . . . , xk, . . . , xN ) = F i(x1, . . . , xk, . . . , xj , . . . , xN ) ∀ j, k 6= i. (18)

Lemma 3.1. The Symmetry Assumption holds if and only if

qi
ij = qi

ik =:
βi

2
, qi

jj = qi
kk =: ηi, xj

i = xk
i =: ri, ∀ j, k 6= i,

qi
lj = qi

kl = qi
km =: γi ∀ l, j, k,m 6= i, l 6= j, k 6= l, k 6= m.

Proof. The sufficiency is trivial. For the necessity note that the Symmetry Assumption is
an identity between two second degree polynomials. By equating their coefficients one easily
gets the conclusions.

If we also set
qi := qi

ii, hi := xi
i i = 1, . . . , N,

the positional cost F i takes the simpler form

F i(x1, . . . , xN ) = qi(yi)2 + βiy
i
∑
j 6=i

yj + γi

∑
j,k 6=i, j 6=k

yjyk + ηi

∑
j 6=i

(yj)2,

where yi = xi − hi and yj = xj − ri for j 6= i. The parameters involved in the running cost
of the i-th player are only six, besides the control cost Ri, and they can be called

• hi = preferred own position (happy state),

• ri = reference position of the other players,

• qi = primary cost of self-displacement,

• ηi = secondary cost of self-displacement,

• βi = primary cost of cross-displacement,

• γi = secondary cost of cross-displacement.

The only sign condition on these parameters is qi > 0, that can be relaxed if Ai 6= 0, see
Remark 2.2. Under the Symmetry Assumption the formulas for the Gaussian solution of
the system (9) simplify a bit. For instance the cost corresponding to the Nash equilibrium
becomes

λi =
νi

si
+ νiRiA

i − µ2
i

2
(
2qi + Ri(Ai)2

)
+ qih

2
i − hiβi

∑
j 6=i

(µj − ri)

+ γi

∑
j,k 6=i, j 6=k

(µj − ri)(µk − ri) + ηi

∑
j 6=i

(sjν
jRj + (µj − ri)2). (19)
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A more important consequence of the Symmetry Assumption is that the positional cost
F i can be written in the form arising in Mean Field Games, that is,

F i(x1, . . . , xN ) = Vi

 1
N − 1

∑
j 6=i

δxj

 (xi) ∀ i = 1, . . . , N, (20)

where δxj is the Dirac measure on IR concentrated at xj , and the operator V maps probability
measures on IR to quadratic polynomials and is given by

Vi[m](x) := qi(x− hi)2 + βi(x− hi)(N − 1)
∫

IR
(y − ri) dm(y)

+ γi

(
(N − 1)

∫
IR

(y − ri) dm(y)
)2

+ (ηi − γi)(N − 1)
∫

IR
(y − ri)2 dm(y). (21)

This is easy to check using the identity
∑

j,k 6=i, j 6=k yjyk =
(∑

j 6=i y
j
)2
−
∑

j 6=i(y
j)2.

Remark 3.1. The Symmetry Assumption is essentially necessary for representing F i as in
(20) with Vi[m](x) depending only on x and on

∫
IR Kl(x, y) dm(y) for a finite number of

smooth kernels Kl. In fact, imposing such a form to each of the four terms of F i leads to the
conditions of Lemma 3.1.

Definition 3.1. We say that the players are almost identical if F i satisfies the Symmetry
Assumption (18) and the players have the same
- control system, i.e., Ai = A and σi = σ (and hence νi = ν > 0) for all i,
- cost of the control, i.e., Ri = R > 0 for all i,
- reference positions, i.e., hi = h and ri = r for all i,
- primary costs of displacement, i.e., qi = q > 0 and βi = β for all i.

The term almost identical is motivated by the independence on i of four of the parameters
appearing in the operator Vi, whereas the two secondary costs of displacement γi, ηi are still
allowed to depend on i. Note also that the reference state vectors Xi are all different if h 6= r.

For almost identical players we produce solutions of (9) that are Gaussian and also iden-
tically distributed.

Theorem 3.1. Assume the players are almost identical and

2q + RA2 6= β(1−N). (22)

Then
i) there exist unique µ ∈ IR, s > 0, such that

vi(x) = v(x) :=
(x− µ)2

2s
+

RAx2

2
, mi(x) = m(x) :=

1√
2πsνR

exp
(
−(x− µ)2

2sνR

)
(23)

solve (9) for some (λ1, . . . , λN ) ∈ IRN , moreover

s =
(
2qR + R2A2

)−1/2
, µ =

2qh + rβ(N − 1)
2q + β(N − 1) + RA2

, (24)
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λi =
ν

s
+ νRA− µ2

2Rs2
+ qh2 − hβ(N − 1)(µ− r)

+ γi(N − 1)(N − 2)(µ− r)2 + ηi(N − 1)(sνR + (µ− r)2), i = 1, . . . , N ; (25)

ii) the affine feedback

αi(x) =
x− µ

sR
+ Ax, x ∈ IR, i = 1, . . . , N,

is a Nash equilibrium point for all initial positions X ∈ IRN among the admissible strategies
(7), and J i(X, α) = λi for all X and i.

Proof. We plug solutions of the form (23) into (9) and we arrive, as in the proof of Theorem
2.1, at the equations (14), where now all terms on the left hand side are independent of i, but
λi, and the right hand side f i is given by

f i(x;m1, . . . ,mN ) = q(x− h)2 + (x− h)β(N − 1)(µ− r) + bi

bi := γi(N − 1)(N − 2)(µ− r)2 + ηi(sνR + (µ− r)2).

The equality of the coefficients of x2 gives the expression for s in (24), as in the proof of
Theorem 2.1. Next, by equating the coefficients of x the system (16) decouples and reduces
to

− µ

Rs2
= −2qh + β(N − 1)(µ− r),

that is solvable by (22) and gives

µ = Rs2 2qh + rβ(N − 1)
Rs2β(N − 1) + 1

as well as (24). Finally, by equating the remaining terms we obtain (25). The proof of ii) is
the same as in Theorem 2.1.

Remark 3.2. The assumption (22) of the last theorem is weaker than the one of Theorem
2.1, namely detB 6= 0. In fact, 2q+RA2 = β(1−N) implies det B = 0. On the other hand, if
N = 2 and β = 2q + RA2, (22) is satisfied and detB = 0. In this case we saw in Example 4.1
that there are infinitely many Gaussian solutions to (9) and only one is identically distributed.

Remark 3.3. If the drift A = 0 and β ≥ 0 the expected value µ of the distribution m is a
weighted average of the two reference states h and r, and it coincides with the preferred state
h if the cost of cross-displacement β vanishes.

Remark 3.4. If A 6= 0 we can allow any q > −RA2/2 in the Theorem.

4 The limit as N → +∞
In this section we study the limit as the number of players N goes to +∞. For simplicity we
assume that the control system, the cost per unit control, and the reference positions remain
the same, i.e., A, ν,R, h, r are independent of N . To underline the dependence of all the
other quantities on N we add a superscript N to them. The natural scaling of the coefficients
qN , βN , γN

i , ηN
i involved in the running cost is the following

lim
N

qN = q, lim
N

βN (N − 1) = β, lim
N

γN
i (N − 1)2 = γ, lim

N
ηN

i (N − 1) = η ∀ i. (26)
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We also denote with V N
i the operator defined by (21) and note that, for any probability

measure m on IR,

V N
i [m](x) → V [m](x) as N → +∞, locally uniformly in x,

where

V [m](x) := q(x− h)2 + β(x− h)
∫

IR
(y − r) dm(y)

+ γ

(∫
IR

(y − r) dm(y)
)2

+ η

∫
IR

(y − r)2 dm(y). (27)

Finally we denote with vN ,mN , λN
i the Gaussian identically distributed solution of (9) pro-

duced in Theorem 3.1. As in [19, 21] we expect the limit of these solution to satisfy the
system of two Mean Field equations

−νvxx + (vx)2

2R −Axvx + λ = V [m](x) in IR,

−νmxx −
(

vx
R m−Axm

)
x

= 0 in IR,

min
[
v(x)− RAx2

2

]
= 0,

∫
IR m(x)dx = 1, m > 0 in IR.

(28)

Note the normalization condition on v that replaces the null-average condition of the periodic
case in [19, 21].

Theorem 4.1. Assume the players are almost identical, (26) holds, and

2q + RA2 > 0, 2q + RA2 6= −β. (29)

Then
i) system (28) has exactly one solution v,m, λ of the quadratic-Gaussian form

v(x) :=
(x− µ)2

2s
+

RAx2

2
, m(x) :=

1√
2πsνR

exp
(
−(x− µ)2

2sνR

)
, (30)

given by

s =
(
2qR + R2A2

)−1/2
, µ =

2qh + rβ

β + 2q + RA2
, (31)

λ =
ν

s
+ νRA− µ2

2Rs2 + qh2 − hβ(µ− r) + (γ + η)(µ− r)2 + ηsνR; (32)

ii) as N → +∞, vN → v in C1
loc(IR) with second derivative converging uniformly in IR,

mN → m in Ck(IR) for all k, and λN
i → λ for all i;

iii) if in addition β ≥ 0, then v,m, λ given in i) is the unique solution of (28).

Proof. i) We plug a solution of the form (30) into (28) and get

− ν

s
− νRA +

1
2R

(
(x− µ)2

s2 + (RAx)2
)
−RA2x2 + λ =

q(x− h)2 + β(x− h)(µ− r) + (γ + η)(µ− r)2 + ηsνR.

11



By equating the coefficients of x2 and x on both sides we get (31), whereas the remaining
terms give (32).

ii) Note that (29) and (26) imply qN > −RA2/2 and (22) for N large enough. Then
Remark 3.4, the explicit formulas (23), (24), (25), and the assumption (26) give immediately
the stated convergence.

iii) To prove uniqueness let us first check the monotonicity of V in L2 if β ≥ 0. For two
probability measures with densities m,n∫

IR

(
V [m]− V [n]

)
(x) (m− n)(x) dx =

β

∫
IR

(x− h)
∫

IR
(y − r)(m− n)(y) dy (m− n)(x) dx =

β

∫
IR

x

∫
IR

y(m− n)(y) dy (m− n)(x) dx =

β

(∫
IR

x(m− n)(x) dx

)2

≥ 0.

Now we follow the method of [19, 21]. Let u, n, λ1 be another solution of (28). Multiply
the first equation in (28) by (m− n) and subtract the same expression computed on u, n, λ1;
next multiply the second equation in (28) by (m − n) and subtract the same expression
computed on u, n, λ1; subtract the second identity from the first and integrate on IRN . By
using

∫
IR m(x)dx =

∫
IR n(x)dx we arrive at

∫
IR

(
V [m]− V [n]

)
(x) (m− n)(x) dx +

∫
IR

m(x)
R

(
(ux)2

2
− (vx)2

2
− vx(ux − vx)

)
dx

+
∫

IR

n(x)
R

(
(vx)2

2
− (ux)2

2
− ux(vx − ux)

)
dx = 0.

Since each of the three terms is non-negative, it must vanish. Then m > 0 and p2/2 strictly
convex imply ux ≡ vx. Next, the condition min

[
v(x)−RAx2/2

]
= min

[
u(x)−RAx2/2

]
gives u ≡ u. Therefore w(x) := m(x)− n(x) solves

−νwxx −
(vx

R
w −Axw

)
x

= 0 in IR,

∫
IR

w(x)dx = 0

and by direct integration it is easy to see that w ≡ 0. Finally λ1 = λ2 by the first equation
in (28).

Remark 4.1. In the proof we showed the operator V defined by (27) is monotone in L2, as
defined in [19, 21], if and only if β ≥ 0, and strictly monotone if and only if β > 0.

Remark 4.2. The case left out of the theorem above is β = −2q −RA2. If 2qh 6= −βr then
there is no solution of the Gaussian form (30). If instead 2qh = −βr there is a continuum
of solutions, because for every µ ∈ IR the functions (30) with s =

(
2qR + R2A2

)−1/2 and the
constant (32) solve (28).

This is also an example that statement iii) of the last theorem concerning uniqueness may
not hold if β < 0. A different example of Mean Field system with infinitely many Gaussian
solutions was given by Guéant [12], see Section 6 for a discussion.
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Remark 4.3. The parameter β is the signed cost per unit time and per unit of displacement
of the single player from h and of the average player from r. If β > 0 there is a positive cost
if both displacements are in the same direction, i.e., both to the right or both to the left,
and a negative cost if they are in opposite directions. If β < 0 the reverse situation occurs.
Therefore we can say that imitation among players is costly if β > 0 and rewarding if β < 0.
The statement iii) of Theorem 4.1 says that there cannot be multiple solutions to (28) unless
imitation is rewarding.

Remark 4.4. The assumption β = βN ≥ 0 does not imply uniqueness for the system (9)
associated to N players, different from the case (28) describing infinitely many players. In
fact , for N = 2 and β = 2q + RA2 there are infinitely many Gaussian solutions, see Remark
3.2.

Remark 4.5. If A 6= 0 negative values of q are allowed. In this case h is not a preferred
positions as it is rewarding to stay far from it.

Remark 4.6. If we have expansions of the parameters in powers of 1/N , such as qN =
q + q1

N + q2

N2 + . . . , βN = β
N + β2

N2 + . . . , etc., we can easily get expansions of the solution
vN ,mN , λN

i in powers of 1/N . Note also that we can assume the parameters A, ν,R, h, r
depend on N , provided they converge as N →∞.

Example 4.1. In [14, 16] the authors considered infinite horizon discounted functionals, as
in Section 5.4 below, with positional cost

F i(x1, . . . , xN ) =

xi − b

 1
N

∑
j 6=i

xj + c

2

.

The case c 6= 0 requires some minor modifications to our previous calculations, but for c = 0
F i is a quadratic form in X with symmetric and almost identical players and the parameters
are

qN
i = 1, βN

i = −2b

N
, γN

i = ηN
i =

b2

N2
, ∀ i, N.

Then the scaling assumption (26) holds, with

q = 1, β = −2b, γ = b2, η = 0,

and the limit positional cost is

V [m](x) =
(

x− b

∫
IR

y dm(y)
)2

.

Therefore the quadratic-Gaussian solution of Theorem 4.1 has mean µ = 0, s =
(
2R + R2A2

)−1/2,

and cost λ = ν
(
2R + R2A2

)1/2 + νRA.

5 Other limiting cases

5.1 The small noise or vanishing viscosity limit

We consider the limit as the noise coefficient σj tends to 0 in the dynamics (4) of the j-th
player. This is a vanishing viscosity limit νj → 0 for the j-th HJB equation and the j-th

13



KFP equation in (9). The limit of the Gaussian solutions (10) found in Theorem 2.1 is easy:
the function vj in (10) does not change because sj and µj do not depend on νj , whereas mj

converge to the Dirac mass δµj in the sense of distributions. This limit satisfies the system
(9) with νj = 0, although the j-th KFP equation is verified only in the sense of distributions
by the measure δµj . The affine feedbacks αi (13) still define a Nash equilibrium point, since
the proof of Theorem 2.1 ii) holds unchanged. If σi = 0 for all i = 1, . . . , N we have therefore
found a Nash equilbrium for a deterministic N -person differential game. The fact that the
equilibrium feedback is the same for the limit deterministic game as for all positive noise
intensities is remarkable, and it was known for finite horizon L-Q problems [6, 9].

Next we perform the vanishing viscosity limit ν → 0 in the Mean Field system of equations
(28). As before v is unchanged and m → δµ in the sense of distributions. Then

v(x) =
(x− µ)2

2s
+

RAx2

2
, m(x) = δµ, λ = qh2− µ2

2Rs2 −hβ(µ−r)+(γ +η)(µ−r)2, (33)

with s, µ given by (31), solve the first order Mean Field system

(vx)2

2R −Axvx + λ = V [m](x) in IR,

−
(

vx
R m−Axm

)
x

= 0 in IR,

min
[
v(x)− RAx2

2

]
= 0,

∫
IR m(x)dx = 1, m > 0 in IR.

(34)

with V [m] defined by (27) and the second equation verified in the sense of distributions. It is
easy to see that s and µ are uniquely determined by the form of v and m in (33). Moreover
(33) is the unique solution of (34) if β ≥ 0, by the same proof as part iii) of Theorem 4.1.

Finally note that the limits N → +∞ and ν → 0 commute: if we assume the N players
be almost identical, vN ,mN , λN

i be the limit as νi = ν → 0 of the Gaussian identically
distributed solution of (9), and (26), then as N → +∞ vN → v in C2

loc(IR), mN → m in the
sense of distributions, and λN

i → λ for all i, where v,m, λ are given by (33). We refer to [21]
for an example where the small noise limit does not commute with N → +∞.

5.2 Cheap control

We investigate the limit as Ri → 0 and for simplicity we limit ourselves to the case of almost
identical players. Note that the equations in (9) become very degenerate for Ri = 0, but we
can use the explicit formulas of Theorem 3.1. We see that s → +∞ but sR → 0 as R → 0,
whereas

µ → 2qh + rβ(N − 1)
2q + β(N − 1)

=: µN .

Then v(x) → 0 in C2
loc(IR) and m → δµN in the sense of distributions. Therefore the Gaussian

solution converges to a Dirac mass as in the small noise limit, but here v vanishes. Moreover

λi → −(µN )2

4q
+ qh2 − hβ(N − 1)(µN − r)

+ γi(N − 1)(N − 2)(µN − r)2 + ηi(N − 1)(µN − r)2 =: λN (35)

for all i = 1, . . . , N .
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A very similar result holds for the Gaussian solutions of the Mean Field equations (28) of
Theorem 4.1: v(x) → 0 in C2

loc(IR), m → δµ̃ in the sense of distributions, where

µ → 2qh + rβ

2q + β
=: µ̃,

and

λ → − µ̃2

4q
+ qh2 − hβ(µ̃− r) + γ(µ̃− r)2 + η(µ̃− r)2 =: λ̃.

Note that both µN and µ̃ are weighted averages of the two reference states h and r, if
β ≥ 0.

Finally we remark that also the cheap control limit R → 0 commutes with N → +∞ (of
course under the assumption (26)). In fact µN → µ̃ and therefore δµN → δµ̃ in the sense of
distributions and λN → λ̃.

5.3 Large cost of cross-displacement

If the parameters of the cost functional scale in a different way from (26) the convergence of
the Gaussian identically distributed solution vN ,mN , λN

i is much harder. A case that we find
interesting is a decay of βN slower than 1/N as N → ∞, or even no decay at all. Therefore
we assume

lim
N→∞

|βN |(N − 1) = +∞ (36)

instead of the second condition in (26) and keep the other three assumptions on the behavior
at infinity of qN , γN

i , ηN
i . Then the second term in V N

i [mN ](x) diverges for x 6= h, unless∫
IR y dmN (y) → r, and we wonder about the validity of a Mean Field system of the form (28)

for some new limit operator V .
We pass to the limit in the formulas (23) (24) (25) for vN ,mN , λN

i and get (30) with s as
in (31) and µ = r, and

λ =
ν

s
+ νRA− r2

2Rs2 + qh2 − h(2qh− 2qr − rRA2) + ηsνR.

Therefore the mean value µ of the limit distribution is just the reference state r instead of a
linear combination of h and r as in all cases studied before. Moreover the limits v, µ, λ solve
the Mean Field system (28) with the limit operator V given by (27) with the second term
β
∫
IR(y − r) dm(y)(x− h) replaced by

(
2q(h− r)− rRA2

)
(x− h).

The same limit is obtained if we let the cost of cross-displacement β tend to +∞ or −∞.
This is a singular perturbation or penalization problem for the Mean Field system (27) (28).

5.4 Discounted problems and the vanishing discount limit

Consider cost functionals with infinite horizon and discounted running cost, that is, for some
ρ > 0 and the same quadratic F i

J i = E

[∫ +∞

0

(
Ri

2
(αi

t)
2 + F i(X1

t , . . . , XN
t )
)

e−ρtdt

]
.
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The associated system of 2N HJB and KFP equations is the same as (9) with λi replaced by
ρvi. By the same calculations as in Theorem 2.1 one finds Gaussian solutions with mi as in
(10) and

vi
ρ(x) =

(x− µi)2

2si
+

RiA
ix2

2
+ ci,

under the condition that det(B − ρD) 6= 0, where D is the diagonal matrix with Dii = RiA
i.

It is easy to write explicit formulas for the 3N unknown parameters sρ
i , µ

ρ
i , c

ρ
i ; in particular,

ρcρ
i = λi −

ρ(µρ
i )

2

2sρ
i

,

where λi is given by (17).
The vanishing discount limit consists of letting ρ → 0. We easily get that sρ

i → si,
µρ

i → µi, cρ
i → ∞, where the limits are given in Theorem 2.1, so vi

ρ diverges but ρvi
ρ → λi

and vi
ρ(x)− vi

ρ(0) + (µρ
i )

2/2sρ
i → vi(x) given by (10). Thus in the limit ρ → 0 we recover the

unique Gaussian solution of (9). This link between discounted infinite horizon problems and
ergodic control is well known for problems with a single player [5] or two-person zero-sum
games [3], see also the references therein.

Next for ρ > 0 fixed we let N → +∞ under the assumption of almost identical players (3.1)
and with the scaling (26) of the parameters. Denote with vN

ρ ,mN
ρ the identically distributed

Gaussian solutions of the discounted N -player problem. By the usual method we see that if

2q + RA2 + ρRA 6= −β

there is exactly one quadratic vρ and Gaussian mρ solving the Mean Field system for the
discounted problem

−νvxx + (vx)2

2R −Axvx + ρv = V [m](x) in IR,

−νmxx −
(

vx
R m−Axm

)
x

= 0 in IR,

min
[
v(x)− RAx2

2

]
= 0,

∫
IR m(x)dx = 1, m > 0 in IR.

(37)

Moreover one checks on the explicit formulas that vN
ρ → vρ and mN

ρ → mρ as N → +∞. If
we let now ρ → 0 in (37) we get the Gaussian solution of the Mean Field system (28) for
the ergodic problem found in Theorem 4.1, and therefore the limits N → +∞ and ρ → 0
commute.

6 Models of population distribution

The Mean Field equations (28) can be interpreted as modeling the stationary states of a pop-
ulation formed by a continuum of identical individuals who move around seeking to minimize
their own cost functional depending on the distribution function m of the entire population.
The form and the parameters of the cost functional describe the preferences of the individuals.
The archetype model of this kind has the discounted cost functional

E

[∫ +∞

0

(
|αi

t|2

2
+ q|Xi

t − h|2 − log m(Xi
t)
)

e−ρtdt

]
, q ≥ 0, (38)
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that was studied in depth by Guéant [12, 11] in many space dimensions and with drift A = 0,
see also the survey paper [13]. This model is not derived as the limit as N → +∞ of a N -
person game; in fact the right hand side of the H-J-B equation in (37) is q|x− h|2− log m(x)
instead of a non-local integral operator V [m](x), although it can be recovered as a limit of
such operators, as argued in [21].

We want to compare some of the results by Guéant [12, 11] with Theorem 4.1 on the L-Q
model (27), (28) (and the same can be done for the discounted problem (37) with similar
results). For simplicity we restrict to the case A = 0, as in [12, 11], and h = r, so there is
only one reference position in the state space, as in (38).

The choice of the strictly decreasing running cost − log m in (38) aims at modeling a
population whose agents wish to resemble their peers as much as possible. On the other
hand, a consequence of this monotonicity assumption is that no uniqueness is guaranteed for
the corresponding Mean Field equations for any value of the parameters. For this reason an
interesting stability analysis is performed in [12, 11, 13].

In our model, the term of V that describes the willingness to resemble the other individuals
is β(x − h)

∫
IR(y − h) dm(y). The term q(x − h)2 is the same as in the log model (38) and

the other two terms are irrelevant for the present discussion. The parameter β is the signed
cost per unit time and per unit of displacement of the single player and of the average player
from h. If β > 0 there is a positive cost if both displacements are in the same direction, i.e.,
both to the right or both to the left, and a negative cost if they are in opposite directions.
If β < 0 the reverse situation occurs. Therefore we can say that imitation among players is
costly if β > 0 and rewarding if β < 0. The statement iii) of Theorem 4.1 says that there is
uniqueness of solution to (28) unless imitation is rewarding.

We continue the comparison in the range β < 0, so that both models describe a preference
for imitation, although in different forms. One of the results of [12, 11, 13] for the log model
is the existence of a unique Gaussian solution for any q > 0, with mean h, whereas for q = 0
there is a continuum of Gaussian solutions, with arbitrary mean µ. In the L-Q model (with
A = 0 and h = r) there is existence and uniqueness of a Gaussian solution for any q > 0 and
q 6= −β/2, with mean h, and for q = −β/2 there is a continuum of Gaussian solutions with
arbitrary mean, cfr. Remark 4.2. So there is the same bifurcation phenomenon, but for a
different value of q. On the other hand, in our model as q → 0 the variance of m goes to +∞:
the distribution tries to become uniform on IR, so this limit is singular.

Finally we recall that two other models of population distribution are proposed in Section
5 of the survey [13] besides (38). They involve the following operators

V (1)[m](x) = b

(
x−

∫
y dm(y)

)2

, V (2)[m](x) = b

∫
(x− y)2 dm(y).

Note that both are special cases of V given by (27): it is enough to take h = r = 0 and
q = −β/2 = b in both, γ = b and η = 0 for V (1), γ = 0 and η = b for V (2).
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[14] M. Huang, P.E. Caines, R.P. Malhamé: Individual and mass behaviour in large pop-
ulation stochastic wireless power control problems: centralized and Nash equilibrium
solutions. Proc. the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, pp.
98-103, December 2003.
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[20] J.-M. Lasry, P.-L. Lions: Jeux à champ moyen. II. Horizon fini et contrôle optimal.
C. R. Acad. Sci. Paris 343 (2006), 679–684.

[21] J.-M. Lasry, P.-L. Lions: Mean field games. Jpn. J. Math. 2 (2007), 229–260.

19


