Here, we study the existence and the convergence of solutions for the vanishing discount MFG problem with a quadratic Hamiltonian. We give conditions under which the discounted problem has a unique classical solution and prove convergence of the vanishing-discount limit to a unique solution up to constants. Then, we establish refined asymptotics for the limit. When those conditions do not hold, the limit problem may not have a unique solution and its solutions may not be smooth, as we illustrate in an elementary example. Finally, we investigate the stability of regular weak solutions and address the selection problem. Using ideas from Aubry-Mather theory, we establish a selection criterion for the limit.
Citation: |
[1] |
E. Al-Aidarous, E. Alzahrani, H. Ishii and A. Younas, A convergence result for the ergodic problem for Hamilton-Jacobi equations with Neumann-type boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 225-242.
doi: 10.1017/S0308210515000517.![]() ![]() ![]() |
[2] |
F. Camilli, I. Capuzzo-Dolcetta and D. Gomes, Error estimates for the approximation of the effective Hamiltonian, Appl. Math. Optim., 57 (2008), 30-57.
doi: 10.1007/s00245-007-9006-9.![]() ![]() ![]() |
[3] |
P. Cardaliaguet and P. J. Graber, Mean field games systems of first order, ESAIM Control Optim. Calc. Var., 21 (2015), 690-722.
doi: 10.1051/cocv/2014044.![]() ![]() ![]() |
[4] |
P. Cardaliaguet and A. Porretta, Long time behavior of the master equation in mean field game theory, Anal. PDE, 12 (2019), 1397-1453.
doi: 10.2140/apde.2019.12.1397.![]() ![]() ![]() |
[5] |
A. Davini, A. Fathi, R. Iturriaga and M. Zavidovique, Convergence of the solutions of the discounted Hamilton-Jacobi equation: Convergence of the discounted solutions, Invent. Math., 206 (2016), 29-55.
doi: 10.1007/s00222-016-0648-6.![]() ![]() ![]() |
[6] |
J. Dieudonné, Foundations of Modern Analysis, Enlarged and Corrected Printing, Pure and Applied Mathematics, 10-I, Academic Press, New York-London, 1969.
![]() ![]() |
[7] |
D. Evangelista, R. Ferreira, D. Gomes, L. Nurbekyan and V. Voskanyan, First-order, stationary mean-field games with congestion, Nonlinear Analysis, 173 (2018), 37-74.
doi: 10.1016/j.na.2018.03.011.![]() ![]() ![]() |
[8] |
D. Evangelista and D. Gomes, On the existence of solutions for stationary mean-field games with congestion, J. Dyn. Diff. Equ., (2016), 1–24.
doi: 10.1007/s10884-017-9615-1.![]() ![]() ![]() |
[9] |
L. C. Evans, Some new PDE methods for weak KAM theory, Calculus of Variations and Partial Differential Equations, 17 (2003), 159-177.
doi: 10.1007/s00526-002-0164-y.![]() ![]() ![]() |
[10] |
L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics. I, Arch. Ration. Mech. Anal., 157 (2001), 1-33.
doi: 10.1007/PL00004236.![]() ![]() ![]() |
[11] |
L. C. Evans and D. Gomes, Effective Hamiltonians and averaging for Hamiltonian dynamics II, Arch. Ration. Mech. Anal., 161 (2002), 271-305.
doi: 10.1007/s002050100181.![]() ![]() ![]() |
[12] |
A. Fathi, Solutions KAM faibles conjuguées et barrières de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.
doi: 10.1016/S0764-4442(97)84777-5.![]() ![]() ![]() |
[13] |
A. Fathi, Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046.
doi: 10.1016/S0764-4442(97)87883-4.![]() ![]() ![]() |
[14] |
A. Fathi, Orbite hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216.
doi: 10.1016/S0764-4442(98)80230-9.![]() ![]() ![]() |
[15] |
A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4.![]() ![]() ![]() |
[16] |
R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities, SIAM J. Math. Anal., 50 (2018), 5969-6006.
doi: 10.1137/16M1106705.![]() ![]() ![]() |
[17] |
R. Ferreira, D. Gomes and T. Tada, Existence of weak solutions to first-order stationary mean-field games with Dirichlet conditions, To appear in Proc. Amer. Math. Society, 2018.
doi: 10.1090/proc/14475.![]() ![]() ![]() |
[18] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
![]() ![]() |
[19] |
D. Gomes, Generalized Mather problem and selection principles for viscosity solutions and Mather measures, Adv. Calc. Var., 1 (2008), 291-307.
doi: 10.1515/ACV.2008.012.![]() ![]() ![]() |
[20] |
D. Gomes and H. Mitake, Existence for stationary mean-field games with congestion and quadratic Hamiltonians, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1897-1910.
doi: 10.1007/s00030-015-0349-7.![]() ![]() ![]() |
[21] |
D. Gomes, H. Mitake and H. Tran, The selection problem for discounted Hamilton-Jacobi equations: Some non-convex cases, J. Math. Soc. Japan, 70 (2018), 345-364.
doi: 10.2969/jmsj/07017534.![]() ![]() ![]() |
[22] |
D. Gomes, L. Nurbekyan and M. Prazeres, Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion, 2016 IEEE 55th Conference on Decision and Control, CDC 2016, (2016), 4534–4539.
doi: 10.1007/s13235-017-0223-9.![]() ![]() ![]() |
[23] |
D. Gomes, L. Nurbekyan and M. Prazeres, One-dimensional stationary mean-field games with local coupling, Dyn. Games and Applications, (2017).
doi: 10.1007/s13235-017-0223-9.![]() ![]() ![]() |
[24] |
D. Gomes, S. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games, Nonlinear Anal., 99 (2014), 49-79.
doi: 10.1016/j.na.2013.12.016.![]() ![]() ![]() |
[25] |
D. Gomes and H. Sánchez Morgado, A stochastic Evans-Aronsson problem, Trans. Amer. Math. Soc., 366 (2014), 903-929.
doi: 10.1090/S0002-9947-2013-05936-3.![]() ![]() ![]() |
[26] |
H. Ishii, H. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus, J. Math. Pures Appl. (9), 108 (2017), 125-149.
doi: 10.1016/j.matpur.2016.10.013.![]() ![]() ![]() |
[27] |
H. Ishii, H. Mitake and H. V. Tran, The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems, J. Math. Pures Appl. (9), 108 (2017), 261-305.
doi: 10.1016/j.matpur.2016.11.002.![]() ![]() ![]() |
[28] |
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019.![]() ![]() ![]() |
[29] |
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8.![]() ![]() ![]() |
[30] |
P.-L. Lions, Collège de France course on mean-field games, 2007-2011.
![]() |
[31] |
P.-L. Lions, G. Papanicolao and S. R. S. Varadhan, Homogeneization of Hamilton-Jacobi equations, Preliminary Version, (1988).
![]() |
[32] |
R. Mañé, On the minimizing measures of Lagrangian dynamical systems, Nonlinearity, 5 (1992), 623-638.
doi: 10.1088/0951-7715/5/3/001.![]() ![]() ![]() |
[33] |
J. Mather, Action minimizing invariant measure for positive definite Lagrangian systems, Math. Z, 207 (1991), 169-207.
doi: 10.1007/BF02571383.![]() ![]() ![]() |
[34] |
H. Mitake and H. Tran, Selection problems for a discount degenerate viscous Hamilton-Jacobi equation, Adv. Math., 306 (2017), 684-703.
doi: 10.1016/j.aim.2016.10.032.![]() ![]() ![]() |
[35] |
E. Pimentel and V. Voskanyan, Regularity for second-order stationary mean-field games, Indiana Univ. Math. J., 66 (2017), 1-22.
doi: 10.1512/iumj.2017.66.5944.![]() ![]() ![]() |