This paper presents a development of the mathematical theory of swarms towards a systems approach to behavioral dynamics of social and economical systems. The modeling approach accounts for the ability of social entities are to develop a specific strategy which is heterogeneously distributed by interactions which are nonlinearly additive. A detailed application to the modeling of the dynamics of prices in the interaction between buyers and sellers is developed to describe the predictive ability of the model.
Citation: |
[1] |
D. Acemoglu, D. Ticchi and A. Vindigni, Emergence and persistence of inefficient states, Journal of European Economic Association, 9 (2011), 177-208.
doi: 10.3386/w12748.![]() ![]() |
[2] |
S.-M. Ahn, H.-O. Bae, S.-Y. Seung, Y. Kim and H. Lim, Application of flocking mechanisms to the modeling of stochastic volatily, Math. Models Methods Appl. Sci., 23 (2013), 1603-1628.
doi: 10.1142/S0218202513500176.![]() ![]() ![]() |
[3] |
G. Ajmone Marsan, N. Bellomo and M. Egidi, Towards a mathematical theory of complex socio-economical systems by functional subsystems representation, Kinetic & Related Models, 1 (2008), 249-278.
doi: 10.3934/krm.2008.1.249.![]() ![]() ![]() |
[4] |
G. Ajmone Marsan, N. Bellomo and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26 (2016), 1051-1093.
doi: 10.1142/S0218202516500251.![]() ![]() ![]() |
[5] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler, Traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374.![]() ![]() ![]() |
[6] |
G. Albi, L. Pareschi, G. Toscani and M. Zanella, Recent advances in opinion modeling: Control and social influence, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 49-98.
![]() ![]() |
[7] |
H.-O. Bae, S.-Y. Cho, S.-H. Lee, J. Yoo and S.-B. Yun, A particle model for herding phenomena induced by dynamic market signals, Journal of Statistical Physics, 177 (2019), 365-398.
doi: 10.1007/s10955-019-02371-8.![]() ![]() ![]() |
[8] |
H.-O. Bae, S. -Y.Cho, J. Kim and S.-B. Yun, A kinetic description for the herding behavior in financial market, Journal of Statistical Physics, 176 (2019), 398-424.
doi: 10.1007/s10955-019-02305-4.![]() ![]() ![]() |
[9] |
K. D. Baley, Sociology and New Systems Theory - Toward a Theoretical Syntesis, Suny Press, 1994.
![]() |
[10] |
P. Ball, Why Society is a Complex Matter, Springer-Verlag, 2012.
doi: 10.1007/978-3-642-29000-8.![]() ![]() |
[11] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proceedings of the Natural Academy of Sciences USA, 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105.![]() ![]() |
[12] |
N. Bellomo, A. Bellouquid, L. Gibelli and N. Outada, A Quest Towards a Mathematical Theory of Living Systems, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2017.
doi: 10.1007/978-3-319-57436-3.![]() ![]() ![]() |
[13] |
N. Bellomo, F. Colasuonno, D. Knopoff and J. Soler, From a systems theory of sociology to modeling the onset and evolution of criminality, Netw. Heterog. Media, 10 (2015), 421-441.
doi: 10.3934/nhm.2015.10.421.![]() ![]() ![]() |
[14] |
N. Bellomo, G. Dosi, D. A.Knopoff and M.E. Virgillito, From particles to firms: on the kinetic theory of climbing up evolutionary landscapes, Math. Models Methods Appl. Sci., 30 (2020), 1441-14060.
doi: 10.1142/S021820252050027X.![]() ![]() |
[15] |
N. Bellomo and S.-Y. Ha, A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci., 27 (2017), 745-770.
doi: 10.1142/S0218202517500154.![]() ![]() ![]() |
[16] |
N. Bellomo, M. A. Herrero and A. Tosin, On the dynamics of social conflicts: Looking for the black swan, Kinet. Relat. Models, 6 (2013), 459-479.
doi: 10.3934/krm.2013.6.459.![]() ![]() ![]() |
[17] |
N. Bellomo, D. Knopoff and J. Soler, On the difficult interplay between life "complexity" and mathematical sciences, Math. Models Methods Appl. Sci., 23 (2013), 1861-1913.
doi: 10.1142/S021820251350053X.![]() ![]() ![]() |
[18] |
J. Bissell, C. C. S. Caiado, M. Goldstein and B. Straughan, Tipping Points: Modelling Social Problems and Health, Wiley, London, 2015.
doi: 10.1002/9781118992005.![]() ![]() |
[19] |
R. Boero, M. Morini, M. Sonnessa and P. Terna, Agent-based Models of the Economy From Theories to Applications, Palgrave Macmillan, 2015.
![]() |
[20] |
P. Bonacich and P. Lu, Introduction to Mathematical Sociology Princeton University Press,
Princeton, NJ, 2012.
![]() ![]() |
[21] |
S. Bowles, A. Kirman and R. Sethi, Retrospectives: Friedrich hayek and the market algorithm, Journal of Economic Perspectives, 31 (2017), 215-230.
doi: 10.1257/jep.31.3.215.![]() ![]() |
[22] |
C. Brugna and G. Toscani, Kinetic models of opinion formation in the presence of personal conviction, Physical Review E, 92 (2015), 052818.
doi: 10.1103/PhysRevE.92.052818.![]() ![]() |
[23] |
C. Brugna and G. Toscani, Boltzmann-type models for price formation in the presence of behavioral aspects, Netw. Heterog. Media, 10 (2015), 543-557.
doi: 10.3934/nhm.2015.10.543.![]() ![]() ![]() |
[24] |
C. Brugna and G. Toscani, Kinetic models for goods exchange in a multi-agent market, Physica A, 499 (2018), 362-375.
doi: 10.1016/j.physa.2018.02.070.![]() ![]() ![]() |
[25] |
D. Burini, S. De Lillo and L. Gibelli, Stochastic differential "nonlinear" games modeling collective learning dynamics, Physics of Life Reviews, 16 (2016), 123-139.
![]() |
[26] |
D. Burini, L. Gibelli and N. Outada, A kinetic theory approach to the modeling of complex living systems, Active Particles, Advances in Theory, Models, and Applications, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 229-258.
![]() ![]() |
[27] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 853-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[28] |
A. Deaton, Measuring and understanding behavior, welfare, and poverty, American Economic Review, 106 (2016), 1221-1243.
doi: 10.1257/aer.106.6.1221.![]() ![]() |
[29] |
M. Dolfin and M. Lachowicz, Modeling altruism and selfishness in welfare dynamics: The role of nonlinear interactions, Mathematical Models and Methods in Applied Sciences, 24 (2014), 2361-2381.
doi: 10.1142/S0218202514500237.![]() ![]() ![]() |
[30] |
M. Dolfin and M. Lachowicz, Modeling opinion dynamics: How the network enhances consensus, Netw. Heterog. Media, 10 (2015), 877-896.
doi: 10.3934/nhm.2015.10.877.![]() ![]() ![]() |
[31] |
M. Dolfin, L. Leonida and N. Outada, Modeling human behaviour in economics and social science, Physics of Life Reviews, 22 (2017), 1-21.
![]() |
[32] |
M. Dolfin, D. Knopoff, L. Leonida and D. Maimone Ansaldo Patti, Escaping the trap of 'blocking': A kinetic model linking economic development and political competition, Kinet. Relat. Models, 10 (2017), 423-443.
doi: 10.3934/krm.2017016.![]() ![]() ![]() |
[33] |
G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani, Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci., 27 (2017), 115-158.
doi: 10.1142/S0218202517400048.![]() ![]() ![]() |
[34] |
S. Gächter and J. F. Schultz, Intrinsic honesty and the prevalence of rule violations across societies, Nature, 531(7595) (2017), 496-499.
![]() |
[35] |
S. Galam, Sociophysics. A Physicist's Modeling of Psycho-Political Phenomena, Understanding Complex Systems, Springer, New York, 2012.
doi: 10.1007/978-1-4614-2032-3.![]() ![]() ![]() |
[36] |
F. Gino and L. Pierce, The abundance effect: Unethical behavior in the presence of wealth, Organizational Behavior and Human Decision Processes, 109 (2009), 142-155.
![]() |
[37] |
H. Gintis, Game Theory Evolving, Second edition, Princeton University Press, Princeton NJ,
2009.
![]() ![]() |
[38] |
R. Hegselmann, Thomas C. Shelling and James M. Sakoda: The intellectual, technical and social history of a model, Journal of Artificial Societies and Social Simulation, 20 (2017).
doi: 10.18564/jass.5311.![]() ![]() |
[39] |
R. Hegselmann and U. Krause, Opinion dynamics under the influence of radical groups, charismatic and leaders, and other constant signals: A simple unifying model, Netw. Heterog. Media, 10 (2015), 477-509.
doi: 10.3934/nhm.2015.10.477.![]() ![]() ![]() |
[40] |
J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bull. Amer. Math. Soc. (N.S.), 40 (2003), 479-519.
doi: 10.1090/S0273-0979-03-00988-1.![]() ![]() ![]() |
[41] |
A. Kirman, Complex Economics: Individual and Collective Rationality, Routledge, London, 2011.
doi: 10.4324/9780203847497.![]() ![]() |
[42] |
A. P. Kirman and J. B. Zimmermann, Economics with Heterogeneous Interacting Agents, Lecture Notes in Economics and Mathematical Systems, 503. Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-56472-7.![]() ![]() ![]() |
[43] |
D. Knopoff, On the modeling of migration phenomena on small networks, Math. Models Methods Appl. Sci., 23 (2013), 541-563.
doi: 10.1142/S0218202512500558.![]() ![]() ![]() |
[44] |
D. Knopoff, On a mathematical theory of complex systems on networks with application to opinion formation, Math. Models Methods Appl. Sci., 24 (2014), 405-426.
doi: 10.1142/S0218202513400137.![]() ![]() ![]() |
[45] |
M. Mazzoli, M. Morini and P. Terna, Rethinking Macroeconomics with Endogenous Market Structure, Cambridge University Press, 2019.
doi: 10.1017/9781108697019.![]() ![]() |
[46] |
S. McQuade, B. Piccoli and N. Pouradier Duteil, Social dynamics models with time-varying influence, Math. Models Methods Appl. Sci., 29 (2019), 681-716.
doi: 10.1142/S0218202519400037.![]() ![]() ![]() |
[47] |
M. Nieddu, Brownian and More Complex Agents to Explain Markets Behavior, Master's thesis, University of Torino, 2018, https://terna.to.it/tesi/nieddu.pdf.
![]() |
[48] |
M. A. Nowak, Evolutionary Dynamics. Exploring the Equations of Life, The Belknap Press
of Harvard University Press, Cambridge, MA, 2006.
![]() ![]() |
[49] |
L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte
Carlo Methods, Oxford University Press, Oxford, 2013.
![]() |
[50] |
L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A Boltzmann approach, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130396, 15 pp.
doi: 10.1098/rsta.2013.0396.![]() ![]() ![]() |
[51] |
B. Piccoli, N. Pouradier Duteil and E. Trelat, Sparse control of Hegselmann-Krause models: Black hole and declustering, SIAM Journal on Control and Optimization, 57 (2019), 2628-2659.
doi: 10.1137/18M1168911.![]() ![]() ![]() |
[52] |
P. K. Piff, D. M. Stancato, S. Coté, R. Mendoza-Denton and D. Keltner, Higher social class predicts increased unethical behavior, Proceedings of the Natural Academy of Sciences USA, 109 (2014), 4086-4091.
doi: 10.1073/pnas.1118373109.![]() ![]() |
[53] |
S. Salvi, Corruption corrupts: Society-level rule violations affect individuals' intrinsic honesty, Nature, 53 (2016), 456-457.
![]() |
[54] |
F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics, Springer-Verlag, Berlin, 2003.
![]() ![]() |
[55] |
K. Sigmund, The Calculus of Selfishness, Princeton Series in Theoretical and Computational
Biology, Princeton University Press, Princeton, NJ, 2010.
doi: 10.1515/9781400832255.![]() ![]() ![]() |
[56] |
J. E. Stiglitz, Information and the change in the paradigm in economics, The American Economic Review, 92 (2009), 460-501.
doi: 10.1017/CBO9780511754357.004.![]() ![]() |
[57] |
N. N. Taleb, The Black Swan: The Impact of the Highly Improbable, Random House, New York City, 2007.
![]() |
[58] |
R. H. Thaler, Misbehaving: The Making of Behavioral Economics, W. W. Norton & Company, New York, 2015.
![]() |
[59] |
R. H. Thaler, Behavioral economics: Past, present, and future, The American Economic Review, 106 (2016), 1577-1600.
![]() |
[60] |
T. A. Weber, Price theory in economics, in Ö. Özer, and R. Phillips, The Oxford Handbook of Pricing Management, (2012), 281–340.
![]() |
[61] |
E.G. Weyl, Price theory, Journal of Economic Literature, 57 (2019), 329-384.
doi: 10.1257/jel.20171321.![]() ![]() |
1.0, 5.0 ratios: 10/50 buyers (red) and 10/10 sellers (blue), mean price sequences; blue line hides in large part the red one
1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), zoom on individual price sequences. Y axes do not share the same scale
1.0, 5.0 ratio: 10/50 buyers (red) and 10/10 sellers (blue), standard deviation of mean prices within buyers and within sellers over time
Buyers
Sellers