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Abstract. Consider an undirected bipartite graph G = (V = I ∪A,E), with
no edge inside I nor A. For any vertex v ∈ V , let N(v) be the set of neighbours
of v. A code C ⊆ A is said to be discriminating if all the sets N(i) ∩ C, i ∈ I,
are nonempty and distinct.

We study some properties of discriminating codes. In particular, we give
bounds on the minimum size of these codes, investigate graphs where minimal
discriminating codes have size close to the upper bound, or give the exact
minimum size in particular graphs; we also give an NP-completeness result.

1. Introduction

We consider undirected graphs, in which a code is simply a subset of vertices.
We define different classes of codes which, in various meanings, can help to unam-
biguously determine a vertex. The motivations may come from processor networks
where we wish to locate a faulty vertex under certain conditions, or from the need
to identify an individual, given its set of attributes.
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Let G = (V,E) be an undirected graph. For any vertex v ∈ V , let N(v) denote
the neighbourhood of v and B1(v) = N(v) ∪ {v}. More generally, for an integer
r ≥ 1, we define Br(v), the ball of radius r centred at v, as the set of vertices
within distance r from v, where the distance d(x, y) between two vertices x and y
is the smallest possible number of edges in any path between them. Whenever two
vertices v1 and v2 are such that v1 ∈ Br(v2) (or, equivalently, v2 ∈ Br(v1)), we say
that they r-cover each other. A set X ⊆ V r-covers a set Y ⊆ V if every vertex
in Y is r-covered by at least one vertex in X.

The elements of a code C ⊆ V are called codewords. For each vertex v ∈ V , we
denote by

KC,r(v) = C ∩Br(v)

the set of codewords r-covering v. Two vertices v1 and v2 with KC,r(v1) 6= KC,r(v2)
are said to be r-separated by code C.

We now give several definitions for a code C, for which there are two particular
sets of vertices, A and I: C must be included in A, and all vertices in I must be
r-covered and pairwise r-separated by C. More specifically:

A code C ⊆ V is called r-locating-dominating [14] if all the setsKC,r(v), v ∈ V \C,
are nonempty and distinct. In other words, A = V and I = V \ C.

A code C ⊆ V is called r-identifying [13] if all the sets KC,r(v), v ∈ V , are
nonempty and distinct. In other words, A = V and I = V .

For an abundant literature on r-locating-dominating and r-identifying codes,
see [15]. The next definition is more recent.

We consider a bipartite graph G = (V = I ∪A,E), with no edge inside A nor I.
A code C ⊆ A is called r-discriminating [5] if all the sets KC,r(v), v ∈ I, are
nonempty and distinct.

Since any distance between a vertex in I and a vertex in A is odd, we shall only
consider r-discriminating codes with odd r. Anyway, we shall deal with general val-
ues of r in Section 5 only, and before that, we shall concentrate on 1-discriminating
codes (which we shall simply call discriminating when there is no ambiguity). In
this setting, I can be viewed as a set of individuals and A as a set of attributes,
with an edge between i ∈ I and a ∈ A if i owns a; a discriminating code C is a
set of attributes such that no two individuals have the same set of attribute code-
words, and each individual has a nonempty set of attribute codewords. If we drop
the latter condition, we say that C is a separating code; in this case, at most one
individual has the empty set as its set of attribute codewords, and in a given graph
the cardinalities of the smallest separating and discriminating codes differ by at
most one. Separating codes are of practical interest for the study of discriminat-
ing codes, because the two notions are very close, and separating codes present a
nice symmetry with respect to the empty set and the whole set of attributes, that
discriminating codes do not possess.

Discriminating codes do not always exist. A necessary and sufficient condition
for existence is that any individual i has a nonempty neighbourhood and any two
distinct individuals i1, i2 have distinct neighbourhoods. Indeed, if this condition
holds, then C = A is discriminating, and if not, then for all codes C ⊆ A, we have
KC,1(i1) = N(i1) ∩ C = N(i2) ∩ C = KC,1(i2) or KC,1(i) = ∅.

One of the main issues now is, given a bipartite graph G and an integer r, to find
r-discriminating codes with minimum cardinalities — if they exist. This problem
is polynomial for instance when r = 1 and the graph is a tree [6], but in general, it
is NP-hard (see [5], [6] for the case r = 1 and Section 5 here for the general case).
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Discriminating codes in graphs 3

In Section 2, we give various bounds on the minimum cardinality of a 1-discrimi-
nating code, using 1-separating codes as a tool. In Section 3, we study graphs
in which the minimal 1-discriminating codes have a size which is equal or close
to the upper bound; from this, we also derive a result on 1-identifying codes in
Subsection 3.4. We study particular graphs or families of graphs in Section 4, and
the aforementioned result on complexity, with its full proof, is given in the last
section, Section 5.

2. Bounds on 1-Discriminating Codes

Let G = (V = I ∪A,E) be an undirected, bipartite graph, with E ⊆ {{i, a} : i ∈
I, a ∈ A}. Denote by G = (V,E) the “complementary” graph with E = {{i, a} :
i ∈ I, a ∈ A} \ E. Then obviously a code is separating in G if and only if it is
separating in G.

2.1. Lower Bounds. Let G = (V = I ∪A,E) be a bipartite graph, and let C be
a discriminating code in G. A first trivial bound is that

(1) |C| ≥ dlog2(|I|+ 1)e,
and this bound can be achieved, for instance by a graph where A has n elements,
I has 2n− 1 elements representing the nonempty subsets of [1, n] and an edge links
an attibute ak to the subsets containing k.

Let αmax = max{deg(a) : a ∈ A} and αmin = min{deg(a) : a ∈ A}. If αmax =
αmin = α, we say that G is attribute-regular with degree α.

Theorem 1. Let C be a discriminating code in a bipartite graph G. Then

(2) |C| ≥ max

{
2|I|

αmax + 1
,

2|I|
|I| − αmin + 2

}
.

As a consequence, if G is attribute-regular with degree α, then

(3) |C| ≥ max

{
2|I|
α+ 1

,
2|I|

|I| − α+ 2

}
.

Proof. Because C is discriminating in G, at most |C| individuals can be 1-covered
by exactly one codeword, and the other individuals are 1-covered by at least two
codewords. Therefore |C| × αmax ≥ 1× |C|+ 2× (|I| − |C|), or:

(4) |C| ≥ 2|I|
αmax + 1

.

A similar counting argument for a separating code D leads to |D|×αmax ≥ 0× 1 +
1× |D| + 2× (|I| − |D| − 1), or:

(5) |D| ≥ 2|I| − 2

αmax + 1
.

Now consider the bipartite graph G∗ = (V ∗ = I∗ ∪ A,E) where I∗ = I ∪ {i},
which is simply obtained from G by adding an isolated individual i. The code C
is separating in G∗, and therefore also in the complementary graph G∗, which has
|I|+ 1 individuals and maximum degree |I|+ 1− αmin. Using (5), we obtain:

(6) |C| ≥ 2|I|
|I| − αmin + 2

,

which, together with (4), yields (2). Trivially, (3) follows.
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Inequality (4) is tight: consider perfect matchings, i.e., graphs with 2p vertices,
I = {ik : 1 ≤ k ≤ p}, A = {ak : 1 ≤ k ≤ p}, and E = {{ik, ak} : 1 ≤ k ≤
p}; here αmax = α = 1 and C = A is the only discriminating code, of size |I|.
See also Section 4.1. Inequalities (4) and (6) are simultaneously achieved in the
complementary graph of a perfect matching with p = 3: here, |I| = 3, αmax =
αmin = α = 2, and any set with two attributes is a discriminating code.

2.2. Upper Bounds. We first give a lemma which characterizes minimal discrim-
inating codes.

Lemma 1. A discriminating code C ⊆ A is minimal for inclusion if and only if

(7) ∀c ∈ C, ∃i, j ∈ I :
(
N(i) ∩ C

)
∆
(
N(j) ∩ C

)
= {c}

or ∃k ∈ I : N(k) ∩ C = {c} ,

where ∆ stands for symmetric difference.

Proof. If condition (7) holds, then removing any codeword from C leads to a code
which is not discriminating anymore: i and j are not 1-separated by the code
anymore, or k is not 1-covered by the code anymore. If condition (7) is violated by
some c0 ∈ C, then C \ {c0} is still discriminating.

Define C the incidence matrix of a code C, whose |C| rows represent the codewords
and |I| columns the individuals. We use Lemma 1 to give an upper bound on |C|
with a very short proof.

Lemma 2. If a discriminating code C ⊆ A is minimal for inclusion, then the rows
of C are linearly independent over any field, and

(8) |C| = rank(C) ≤ rank(A).

As a consequence,

(9) |C| ≤ |I|.
Proof. By Lemma 1, for any row c in C, there exist two columns i, j in C differing
exactly on c, or there is one column k in C whose only “1” is on row c. Therefore any
combination of rows involving c leads to a nonzero configuration on columns i, j, or
on column k. The inequalities follow because rank(C) ≤ rank(A) ≤ |I|.

Note that the inequality |C| ≤ |I| is tight, since it is again reached in a perfect
matching: if I = {ik : 1 ≤ k ≤ p}, A = {ak : 1 ≤ k ≤ p}, E = {{ik, ak} : 1 ≤ k ≤
p}, then C = A is the only discriminating code.

From G and a separating code C which is minimal for inclusion, we now define a
new graph, H(G,C), which will be very important in the sequel. First we state the
following lemma, which can be proved using exactly the same kind of argument as
for Lemma 1.

Lemma 3. A separating code C ⊆ A is minimal for inclusion if and only if

(10) ∀c ∈ C, ∃i, j ∈ I :
(
N(i) ∩ C

)
∆
(
N(j) ∩ C

)
= {c}.

With this lemma, and following [3], we can define, for a minimal separating code C,
the graph H(G,C) in the following way: H(G,C) has vertex set I, and for every
codeword c ∈ C, we take exactly one pair of vertices i, j ∈ I which is such that(
N(i)∩C

)
∆
(
N(j)∩C

)
= {c}, and we put in H(G,C) the edge {i, j} labelled by c.
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For short, we shall call such an edge a c-edge. Note that in general, H(G,C) is
not necessarily unique. When there is no ambiguity on G and C, we shall denote
H = H(G,C).

Example 1. Let G be the following graph with 2p+ 1 vertices:

I = {ik : 0 ≤ k ≤ p}, A = {ak : 1 ≤ k ≤ p}, E = {{ik, ak} : 1 ≤ k ≤ p};

in other words, we have added an isolated individual, i0, to a perfect matching.
Then C = A is the only separating code, and there is only one graph H, where i0
is linked to every ik, 1 ≤ k ≤ p, by the ak-edge. Such a graph is called a star with
centre i0.

Lemma 4. [3] There is no cycle in H(G,C).

Proof. Assume on the contrary that there is a cycle i1, i2, . . . , i`, i1, where the edge
{ik, ik+1}, 1 ≤ k ≤ `−1, is labelled by ck and the edge {i`, i1} is labelled by c`. This
means that (N(ik)∩C)∆(N(ik+1)∩C) = {ck} and (N(i`)∩C)∆(N(i1)∩C) = {c`}.

Consider the c1-edge {i1, i2}. Without loss of generality, we can assume that
c1 ∈ N(i1), c1 /∈ N(i2). Because

c1 6= c2 and {c2} = (N(i2) ∩ C)∆(N(i3) ∩ C),

c1 does not belong to N(i3) either. Repeating this argument leads to c1 /∈ N(i4),
. . . , c1 /∈ N(i`) and ultimately c1 /∈ N(i1), a contradiction.

Corollary 1. If C is a separating code which is minimal for inclusion, then

(11) |C| ≤ |I| − 1.

Proof. A graph H has |I| vertices, |C| edges, and we have just proved that H is a
forest.

The bound (11) is tight: consider the graphG in Example 1. On the way, Corollary 1
obviously implies the bound for discriminating codes |C| ≤ |I| in Lemma 2.

Lemma 5. Consider, in a connected component T of the graph H(G,C), the c-edge
{i, j}, with c ∈ N(i), c /∈ N(j).

(i) Then, in this component, all vertices v such that d(i, v) < d(j, v) belong to
N(c) and no vertex w such that d(i, w) > d(j, w) belongs to N(c). In other words,
a c-edge divides the component into two parts: on one side of the edge, all vertices
belong to N(c), on the other side, no vertex does.

(ii) In any of the connected components not containing the c-edge {i, j}, either
all the vertices belong to N(c) or no vertex belongs to N(c).

Proof. Consider in T a neighbour v of i, v 6= j (respectively, a neighbour w of j,
w 6= i). Then, because c ∈ N(i) and (N(i)∩C)∆(N(v)∩C) is a singleton not equal
to {c}, we have c ∈ N(v). Similarly, c /∈ N(w). Step by step, we obtain (i).

For (ii), consider two vertices v, w in a connected component S 6= T . If v ∈ N(c),
using the above argument leads, step by step, to w ∈ N(c); similarly, if v /∈ N(c),
then w /∈ N(c).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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j w
v

i

c

d

Figure 1. The tree H

3. Codes with Sizes Close to the Upper Bound

We have just seen in the previous section that a minimum discriminating code
has at most |I| elements. In this section, we are interested in characterizing “bad
graphs”, that is, graphs in which any discriminating code has a “large” size, namely
|I| or |I| − 1.

What we actually do is to consider graphs where |A| = |I| or |A| = |I|−1, and A is
the only discriminating code. To do this, we first study, in Subsections 3.1 and 3.2,
graphs where |A| = |I| − 1 or |A| = |I| − 2, and A is the only separating code, from
which we derive results on discriminating codes in Subsection 3.3. Ultimately, in
Subsection 3.4, we shall also obtain results on graphs which are “bad” with respect
to identifying codes.

Let G = (V = I ∪A,E) be a bipartite graph such that |A| = |I| − 1 or |I| − 2 and
C = A is the only separating code.

3.1. The Case |A| = |I| − 1. Since |C| = |I| − 1, the graph H is a tree, and we
can polish Lemma 3.

Lemma 6. For every codeword c ∈ C, there exists a unique pair i, j of individuals
such that (

N(i) ∩ C
)
∆
(
N(j) ∩ C

)
= {c}.

Proof. Suppose on the contrary that we have two distinct pairs {i, j} and {v, w}
such that

(
N(i) ∩ C

)
∆
(
N(j) ∩ C

)
=
(
N(v) ∩ C

)
∆
(
N(w) ∩ C

)
= {c},

and construct the graph H where the c-edge is {i, j} — see Figure 1.
We can assume, without loss of generality, that N(c) contains i and v, and

neither j nor w. By Lemma 5(i), in H the vertices i, v are on one side of the c-
edge, and j, w are on the other side. We assume that, for instance, i 6= v, which
means that the shortest path between i and v contains at least one d-edge. Now
v is on one side of this edge, and w is on the other side, so that d also belongs to
(N(v) ∩ C)∆(N(w) ∩ C), a contradiction.

Corollary 2. The tree H is unique.

Corollary 3. The number of labelled bipartite graphs with |I| = n individuals and
admitting a minimal separating code C such that |A| = |C| = n− 1 is equal to

(12) nn−2 × (n− 1)!× 2n−1.

Proof. Cayley’s formula [4] states that there are nn−2 trees with n labelled vertices;
this in turn generates nn−2(n− 1)! trees with n labelled vertices and n− 1 labelled
edges. Each of these doubly labelled trees can be considered as a graph H. We
have seen in Corollary 2 that two different trees cannot be produced by the same

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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G4 G5 G6 G7 G8

i1

i3
i4

c1

c2

c3

i2

i3

i4

G2

i2

G31GH(G,C)

i1

c1

c2
c3

Figure 2. The star with four vertices as graph H(G,C)

graph. Finally, from such a doubly labelled tree we can recover 2n−1 graphs G,
where the set of n individuals is labelled and the set of n− 1 attributes is labelled,
in the following way: we know how each of the n − 1 c-edges divides H into two
parts, the vertices which belong to N(c) and those which do not. All we have to do
is a binary choice, vertex by vertex and independently, in order to determine which
part of I we link to c in G and which part we do not.

By construction, these 2n − 1 graphs all give the same graph H, and they are
such that C = A is the only separating code: a code C∗ 6= A would have at most
|I| − 2 elements and its graph H(G,C∗) would not be a tree, but a forest with at
least two components.

Figures 2 and 3 illustrate how to recover 8 graphs G when the graph H is the star
with centre i4 and leaves i1, i2, i3, or the path i1, i2, i3, i4. For instance, in Figure 2,
in the first four graphs, G1, G2, G3, G4, the vertex i1 is linked to c1, and it is not
in the last four.

If we restrict ourselves to attribute-regular graphs with degree α, which implies
that all codewords c have |N(c)| = α, then the number of graphs given by (12)
reduces and actually we can describe all these graphs. In H, we consider a leaf i1,
linked to a vertex i2 by a c1-edge. We distinguish between two cases.

(i) c1 ∈ N(i1); then, by Lemma 5(i), no vertex other than i1 belongs to N(c1),
i.e., N(c1) = {i1} and α = 1.

(ii) c1 ∈ N(i2); then, by Lemma 5(i), all vertices, except i1, belong to N(c1), i.e.,
N(c1) = I \ {i1} and α = |I| − 1.

For our purposes, we use a restricted definition of isomorphism: two bipartite graphs

G1 = (V1 = I1 ∪A1, E1) and G2 = (V2 = I2 ∪A2, E2)

are said to be isomorphic if there is a one-to-one onto function f : V1 → V2 such
that f(I1) = I2, f(A1) = A2, and {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2; then
we can conclude with the following theorem.

Theorem 2. The only bipartite attribute-regular graphs (I ∪ A,E) with |I| = n
individuals and admitting a minimal separating code C such that |A| = |C| = n− 1

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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i2

i3

i4

c3

i2
i3
i4

c1

c2

c3

G2
H(G,C)

1

c2

c

i1

G4 G5 G6 G7 G8

G1 G3
i1

Figure 3. The path with four vertices as graph H(G,C)

are isomorphic to the graph G consisting of a perfect matching plus an isolated
individual, and its complementary graph G.

This graph G was described in Example 1. See the graphs G1 and G8 = G1 in the
example of Figure 2 when n = 4.

3.2. The Case |A| = |I| − 2. In this subsection, we assume that the graph G is
attribute-regular with degree α — otherwise, the investigation gets too complicated.
So we have: ∀c ∈ A, |N(c)| = α. It is straightforward to see that the case α = 1,
and, using complementation, the case α = |I| − 1, are impossible. So from now on,
2 ≤ α ≤ |I| − 2.

Since |C| = |I| − 2, the graph H is a forest with two connected components, S
and T , with |S|+ |T | = |I|. We distinguish between two cases.

(i) |S| ≥ 2, |T | ≥ 2. Consider in S a leaf iS together with its cS-edge.

If iS ∈ N(cS), then, using Lemma 5 and the fact that α ≥ 2, all vertices in T belong
to N(cS), and α = |T | + 1. Consider in T a leaf iT together with its cT -edge. If
iT /∈ N(cT ), then either |N(cT )| = |T | − 1 = α − 2 or |N(cT )| = |T | − 1 + |S| =
|I| − 1 > α, in both cases a contradiction. Therefore iT ∈ N(cT ), S ⊂ N(cT ), and
α = |S|+ 1, and finally

|S| = |T | = α− 1 =
|I|
2

= |I| − α+ 1.

We now show that S is a star (and so is T ). Assume on the contrary that in S
we have a path i1, i2, i3, i4, with the c-edge {i2, i3} and, without loss of generality,
i1, i2 ∈ N(c), i3, i4 /∈ N(c). If T ⊂ N(c), then |N(c)| ≥ |T | + 2 = α + 1, and if
T ∩N(c) = ∅, then |N(c)| ≤ |S| − 2 = α− 3, in both cases a contradiction.

So the graph H(G,C) consists of two stars S and T with α − 1 vertices, and
inside each star, any c-edge {i, j}, where i is the centre and j is a leaf, is such that
the leaf j and all the α − 1 vertices in the other star belong to N(c). We are now
able to build the corresponding family of graphs G with parameter α or |I|, see
Figure 4, with |I1| = |I2| = |A1|+ 1 = |A2|+ 1 = α− 1.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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I2 A2

i

j

S

T

c A1I1

cj

I A=C

G

H(G,C)

Figure 4. The union of two stars of same size as graph H(G,C);
the bold lines mean that all possible edges exist between I1 and A2,
and between I2 and A1

i 5i 1 i 1 i 4
d d

Figure 5. Trees containing paths i1, i2, i3, i4, i5 or i1, i2, i3, i4 can
be ruled out by examining the d-edge

If iS /∈ N(cS), then we consider G, the complementary graph of G, and we are back
to case (i). We can conclude that we shall obtain the graphs which are complemen-
tary to the graphs described in Figure 4.

(ii) |T | = 1, |S| = |I| − 1. We set T = {t}. Consider in S a leaf i together with
its c-edge.

If i ∈ N(c), then, using Lemma 5 and α ≥ 2, t ∈ N(c) and α = 2.
Now there is no path i1, i2, i3, i4, i5, i6 in S, otherwise, because of the d-edge

{i3, i4}, there would be at least three vertices, i1, i2, i3 or i4, i5, i6, in N(d), con-
tradicting |N(d)| = α = 2. Applying the same argument to trees containing paths
of length 4 or less, we can rule out the two trees given in Figure 5, and conclude
that the only possibility left is that S is an extended star, consisting of a centre z
and branches of length one, z, i, or length two, z, v, w, see Figure 6. Let p be the
number of leaves linked to z, and q the number of leaves not linked to z (p ≥ 0,
q ≥ 0, 2q + p = |S| − 1); then q is also the number of vertices linked to a leaf and
to z. The case |S| = 3 is treated in Figure 7. If |S| = 4, the case of the star will be
included in the general case with p = 3, q = 0, and the case of the path is described
in Figure 8. In the remaining cases, that is, when S is a star with four vertices and

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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q

i2
i1

w2

2

vq

v

z

S 1
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Figure 6. The tree S is an extended star with branches of
lengths 1 or 2

4

I

3 A=C

2

1

b

a

T
3

2

1
a

b 4

S

Figure 7. The forest S ∪ T gives four isomorphic graphs when
|S| = 3, with α = 2

a

I

A=C

2

3

4

5

a

b

c

1

I

A=C

2

3

4

5

a

b

c

1

T

S

3

4

2

1

5
b

c

Figure 8. The forest S ∪ T gives two isomorphic graphs when
|S| = 4 and S is a path (α = 2)

when |S| ≥ 5 (see Figure 9 for notation), using repeatedly Lemma 5 and the fact
that α = 2, we obtain that

– for each of the p edges ck, N(ck) = {ik, t},
– for each of the q edges dk, N(dk) = {wk, t},
– for each of the q edges ek, N(ek) = {vk, wk},

and we can build the corresponding family of graphs G with parameters p, q, see
Figure 9.

If i /∈ N(c), then, similarly to the case iS /∈ N(cS) at the end of case (i), we
obtain the graphs which are complementary to the graphs described in Figures 7, 8
and 9; therefore, we have proved the following result.
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Figure 9. The forest S ∪ T and the graphs G when |S| ≥ 5 or
when S is the star with 4 vertices; the bold lines mean that all
possible edges exist between t and A1, and t and A3

Theorem 3. The only bipartite attribute-regular graphs (I ∪ A,E) with |I| = n
individuals, |A| = n − 2 attributes, and admitting A as only separating code, are
isomorphic to the families of graphs G described in Figures 4 and 9 and their com-
plementary graphs G, plus the particular cases given in Figures 7 and 8 and their
complementary graphs.

Note that the particular cases given in Figures 7 and 8 are actually included in the
general case, but are different if considered as labelled graphs, because they do not
have a vertex playing the same role as the isolated individual z.

3.3. 1-Discriminating Codes with Sizes |I|, |I| − 1. Using the results just
obtained on separating codes, we can now exhibit bipartite graphs G = (V =
I ∪A,E) where |A| = |I| or |I| − 1 and C = A is the only discriminating code.

3.3.1. The Case |A| = |I|. We obtain all bipartite graphs with |I| = n individuals,
|A| = n attributes, and admitting A as only discriminating code, by considering all
bipartite graphs with |I| = n+1 individuals, |A| = n attributes, admitting A as only
separating code and containing an individual without attribute, and by removing
this individual.

Surveying the graphs G described in the proof of Corollary 3, we see that, for
each labelled tree with n + 1 vertices, n + 1 graphs G have an isolated individ-
ual. For instance, in Figure 2, the graph G1 (respectively, G2, G3, G5) deprived
of the individual i4 (respectively, i3, i2, i1) has a minimal discriminating code of
size 3; in Figure 3, the same holds for G1 (respectively, G2, G3, G7) deprived of the
individual i3 (respectively, i4, i2, i1).
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Figure 10. The complementary graphs of the graphs G given in
Figure 9, particular cases: (a) p = 4, q = 0, (b) p = 0, q = 1

Figure 11. Another graph requiring |I| − 1 codewords to consti-
tute a discriminating code

In the particular case of attribute-regular graphs, mentioned at the end of Sub-
section 3.1, we obtain only the graph G of Example 1 deprived of the isolated
individual i0, that is, a perfect matching.

3.3.2. The Case |A| = |I| − 1. In order to obtain bipartite graphs with |I| = n
individuals, |A| = n − 1 attributes, and admitting A as only discriminating code,
we consider the graphs we know with |I| = n+1 individuals, |A| = n−1 attributes,
admitting A as only separating code and containing an individual without attribute,
and we remove this individual.

Using the results of Subsection 3.2, we see that neither the family of graphs
in Figure 4 nor their complementaries have isolated individuals. As far as Fig-
ure 9 is concerned, the family of graphs described there have an isolated individual,
namely z, whereas their complementaries do not, unless we are in some particular
cases: (a) the individual t can be isolated if q = 0, and (b) w1 can be isolated if
p = 0, q = 1, see Figure 10. We can observe that case (a) is the complementary
graph of the graph G in Example 1.

Since in Subsection 3.2, we considered only attribute-regular graphs, here also we
obtain only attribute-regular graphs, and not all graphs requiring |I|−1 codewords.
One example which we do not reach is given in Figure 11.

3.3.3. Summary. The following table recapitulates the results of Subsection 3.3.

1-discriminating codes 1-discriminating codes
with |A| = |C| = |I| with |A| = |C| = |I| − 1

any • some graphs of Cor. 3 • graph of Fig. 11
graph minus one individual (= all) • . . .?

attribute- • perfect matchings (= all) • graphs of Fig. 9 minus z
regular • particular cases, cf. Fig. 10
graphs (= all)
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3.4. A Result and a Conjecture on 1-Identifying Codes. The following is
known about “bad” graphs G∗ = (V ∗, E∗) with respect to identifying codes: if G∗

is connected and finite and admits a 1-identifying code C∗, then |C∗| ≤ |V ∗| − 1,
see [2], [10], [12]. Using the r-transitive closure, or r-th power, of G∗, which is
the graph with vertex set V ∗ and edges between any two vertices at distance at
most r in G∗, it is straightforward to see that the same is true for r-identifying
codes. On the other hand, if G∗ is finite and not connected, then the only family of
graphs in which the only identifying code is the whole set of vertices is the family
of independent, or stable, sets (graphs for which E∗ = ∅).

Note that in the case of infinite graphs, there are connected examples where all
the vertices are necessary in an identifying code [9], [10].

The bound |C∗| ≤ |V ∗| − 1 is tight: when r = 1, it is easy to observe that the
bound is reached by the star with at least three elements and the complete graph
minus a maximum matching. It is more difficult to find examples of graphs reaching
the bound when r > 1, see [9], [10]. In both cases, we do not know whether these
graphs are the only ones to achieve the bound |C∗| ≤ |V ∗| − 1. Using the previous
subsection, we can improve slightly our knowledge, in the case r = 1.

We consider a graph G∗ = (V ∗, E∗) and we construct the bipartite graph G = (V =
I ∪A,E) in the following way:

I = V ∗, A = {B1(j) : j ∈ V ∗}, E = {{i, B1(j)} : i ∈ B1(j), j ∈ V ∗}.
We call this graph the 1-ball membership graph of G∗ (1-BM graph for short). We
shall see in Section 5 that there is a 1-identifying code of size at most k in G∗ if
and only if there is a 1-discriminating code of size at most k in G; and that if C∗

is a 1-identifying code in G∗, then C = {B1(c∗) : c∗ ∈ C∗} ⊆ A is 1-discriminating
in G.

Now we assume that G∗ admits a minimum 1-identifying code C∗ of size |V ∗|−1
which is regular with degree α − 1, that is: ∀c∗ ∈ C∗, deg(c∗) = α − 1. Setting
C∗ = V ∗ \ {x0}, we construct the 1-BM graph of G∗ and from it we remove the
vertex B1(x0) and its edges, to obtain a graph G′ = (V ′ = I ∪A′, E′) where I = V ∗

and A′ = {B1(c∗) : c∗ ∈ C∗}.
Because C∗ is a minimum 1-identifying code in G∗, we know that A′ is a minimum

1-discriminating code in the 1-BM graph of G∗; in G′, A′ is the only 1-discriminating
code, has size |I| − 1 and is regular with degree α, which is the size of a ball of
radius 1 centred at any codeword c∗ ∈ C∗. We can therefore apply the results
of Subsection 3.3.2, summarized in the rightmost downmost square of the table in
Subsection 3.3.3.

It is then tedious but straightforward to check that, going back to G∗, the only
possibilities are the star with at least three vertices and the complete graph minus
a maximum matching. So, we have the following proposition.

Proposition 1. The only connected graphs with n vertices such that there is a
regular minimum 1-identifying code with size n − 1 are the star and the complete
graph minus a maximum matching.

We believe that this is still true when we drop the regularity condition on the code.

Conjecture 1. The only connected graphs with n vertices such that there is a
minimum 1-identifying code with size n − 1 are the star and the complete graph
minus a maximum matching.
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4. Miscellaneous Families of Bipartite Graphs

The family of bipartite planar graphs, and in particular trees, has beeen investi-
gated in [6], where, among other results, a linear-time algorithm is described, which,
given a tree, outputs a minimum 1-discriminating code. In [7], strong links between
discriminating and identifying codes are shown in the binary n-hypercube (or binary
Hamming space of dimension n).

Here, we give the exact size or density of a minimum 1-discriminating code in
three particular bipartite graphs, namely the Fano graph and two infinite graphs,
the square and the hexagonal grids.

4.1. The Fano Graph. The Fano graph, for which we can efficiently use Lemma 2,
consists of seven individuals 1, 2, . . . , 7 and seven attributes a, b, . . . , g, and an indi-
vidual owns an attribute if and only if the individual belongs to the curve labelled
by the attribute, see Figure 12(a).

Proposition 2. In the Fano graph, any minimum 1-discriminating code has size
four.

Proof. Let C be any minimum discriminating code in the Fano graph. If F2 de-
notes the field {0, 1}, it is straigthforward to see that the F2-rank of the incidence
matrix A of the Fano graph, given in Figure 12(b), is four, therefore by Lemma 2,
|C| ≤ 4. On the other hand, we can use inequality (3) with α = 3, and obtain that
|C| ≥

⌈
2×7

4

⌉
= 4. An example of such a code is {a, b, f, g}.

4.2. The Infinite Square Grid. The two-dimensional infinite square grid has
vertex set Z2 and edge set

{{(i, j), (i, j ± 1)}, {(i, j), (i± 1, j)} : i ∈ Z, j ∈ Z}.
Without loss of generality, we can choose the set A of attributes to be {(i, j) : i ∈
Z, j ∈ Z, i+j odd}, and the set I of individuals to be {(i, j) : i ∈ Z, j ∈ Z, i+j even},
see Figure 13(a).

Taking the limit of (4) with α = αmax = 4, we see that a 1-discriminating code
has density at least 0.4 among the attributes. On the other hand, we now give a
periodic construction of a discriminating code using 40% of the attributes: consider,
as in Figure 14, a pattern of five columns, take as codewords the two attributes of
each row containing exactly two attributes, and repeat this pattern. It is easy to
see that the code thus constructed is 1-discriminating.
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(a) (b)

(0,0) (0,0)

Figure 13. Partial representations of the infinite square and
hexagonal grids; individuals are represented by black squares, at-
tributes by white squares

5 columns

Figure 14. Partial representation of a periodic discriminating
code in the infinite square grid; individuals are represented by black
squares, attributes by white squares, large white squares are code-
words

4.3. The Infinite Hexagonal Grid. The two-dimensional infinite hexagonal
grid has vertex set Z2 and edge set

{{(i, j), (i, j + (−1)i+j)}, {(i, j), (i± 1, j)} : i ∈ Z, j ∈ Z}.
Without loss of generality, we can choose the set A of attributes to be {(i, j) : i ∈
Z, j ∈ Z, i+j odd}, and the set I of individuals to be {(i, j) : i ∈ Z, j ∈ Z, i+j even},
see Figure 13(b).

Taking the limit of (4) with α = αmax = 3, we see that a 1-discriminating code
has density at least 0.5 among the attributes. On the other hand, we now give a
periodic construction of a discriminating code using half of the attributes: simply
take as codewords all the attributes on every second row. It is easy to check on
Figure 15 that the code thus constructed is 1-discriminating.

5. Complexity

For notions of complexity and NP-completeness, we refer to [11]. We consider
only odd integers r, r ≥ 1, as mentioned in the Introduction.

Theorem 4. The following decision problem is NP-complete:
Name: r-Discrimination (r-DISC).
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Figure 15. Partial representation of a periodic discriminating
code in the infinite hexagonal grid; individuals are represented by
black squares, attributes by white squares, large white squares are
codewords

Instance: A bipartite graph G = (V = I ∪A,E), an integer k.
Question: Is there an r-discriminating code C ⊆ A of size at most k?

Proof. Since we shall consider two graphs G = (V = I ∪A,E) and G∗ = (V ∗, E∗),
in order to avoid ambiguities we shall use the notation dG(x1, x2) for x1, x2 ∈ V
and dG∗(y1, y2) for y1, y2 ∈ V ∗, and we draw the attention of the reader to the fact
that we shall use B1(x) only for vertices x in V ∗, which will be made equal to I.

First, we see that r-DISC belongs to NP, by observing that, given a set C ⊆ A,
it is polynomial, with respect to the number of vertices of G, to check whether C is,
or is not, an r-discriminating code (of convenient size); details are left to the reader.
Next, we polynomially reduce the following NP-complete problem to r-DISC:

Name: r-Identification (r-ID).
Instance: A graph G∗ = (V ∗, E∗), an integer k∗.
Question: Is there an r-identifying code of size at most k∗ in G∗?

It has been proved in [8] that r-ID is NP-complete. We consider an instance of
r-ID and, starting from G∗, we construct the bipartite graph G in the following
way: I = V ∗, A = {B1(v) : v ∈ V ∗}, E = {{i, B1(v)} : i ∈ B1(v), v ∈ V ∗}; we set
k = k∗. We can see that this is exactly the 1-ball membership graph described in
Subsection 3.4. Note that this reduction is polynomial with respect to the size of
the instance (G∗, k∗) of r-ID, and that it does not depend on r.

We claim that there is an r-identifying code of size at most k in G∗ if and only
if there is an r-discriminating code of size at most k in G.

This will be a direct consequence of the following fact (remember that r is odd):

(13) ∀x, v ∈ V ∗ = I, dG(x,B1(v)) ≤ r ⇐⇒ dG∗(x, v) ≤ r.

Indeed, if in G there is a path x, u1, v1, u2, v2, . . . , up, vp, B1(v) with 2p+ 2 ≤ r+ 1,
ui ∈ A and vj ∈ I, then, if ui = B1(zi), zi ∈ V ∗, the path x, z1, v1, z2, v2, . . . , zp, vp, v
in G∗ shows that dG∗(x, v) ≤ dG(x,B1(v)) ≤ r. This is illustrated in Figure 16,
with a path on 8 vertices in G (case p = 3).

We now prove the reciprocal; assume that there is in G∗ a path x, z1, z2, . . . , zp, v,
with p+2 ≤ r+1. Note that if p is odd, then p ≤ r−2, since r is odd. If p is even, then
the path x,B1(z1), z2, . . . , zp−2, B1(zp−1), zp, B1(v) exists in G and has at most p+2
vertices, with p ≤ r− 1; if p is odd, then the path x,B1(z1), z2, . . . , B1(zp−2), zp−1,
B1(zp), zp, B1(v) exists in G and has at most p+ 3 vertices, with p ≤ r − 2. So in
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both cases, dG(x,B1(v)) ≤ r. This is illustrated in Figure 17, with paths on 6 and
5 vertices in G∗ (cases p = 4 and p = 3, respectively).

We are now ready to prove that an r-identifying code C∗ of size at most k exists
in G∗ if and only if an r-discriminating code C of size at most k exists in G.

If C∗ exists, we take C = {B1(v) : v ∈ C∗} ⊆ A. Then, since any vertex
x ∈ V ∗ is within distance r from at least one codeword v ∈ C∗, by (13) we have:
dG(x,B1(v)) ≤ r, for all x ∈ I. Also, since, given any two vertices x, y ∈ V ∗, there
is a codeword v ∈ C∗ such that, say, dG∗(x, v) ≤ r and dG∗(y, v) > r, we have,
using (13): dG(x,B1(v)) ≤ r and dG(y,B1(v)) > r, for all x, y ∈ I. This proves
that C is r-discriminating.

Conversely, assume that we have an r-discriminating code C ⊆ A in G; there
exists C∗ ⊆ V ∗ such that C = {B1(v) : v ∈ C∗}, and we claim that C∗ is an r-
identifying code in G∗. Since any vertex x ∈ I is within distance r from at least one
codeword B1(v) ∈ C, by (13) we have: dG∗(x, v) ≤ r, for all x ∈ V ∗, with v ∈ C∗.
Also, since, given any two vertices x, y ∈ I, there is a codeword B1(v) ∈ C such
that, say, dG(x,B1(v)) ≤ r and dG(y,B1(v)) > r, we have, using (13): dG∗(x, v) ≤ r
and dG∗(y, v) > r, for all x, y ∈ V ∗, with v ∈ C∗. This proves that C∗ is r-
identifying.
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Remark. It can be proved [1] that the problem r-ID is still NP-complete when
restricted to graphs with maximum degree at most three. Therefore the problem
r-DISC is NP-complete even when restricted to graphs where attributes and indi-
viduals have degree at most four.
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