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Abstract— The m-covering radii of codes are natural general-
izations of the covering radii of codes. In this paper we analyze
the 2-covering radii of double error correcting BCH code.

I. INTRODUCTION

Multicovering radii are generalizations of the covering ra-
dius. Let m and n be natural numbers. Denote the binary
Hamming space of length n by F". Given a code C of
length n, the m-covering radius of C, denoted by t,,(C),
is the smallest natural number r such that every m-tuple of
vectors in F'" is contained in a ball of radius 7 centered around
some codeword of C'. That is, t,,,(C) is the smallest integer
r such that Vvy,...,v,, € F" : dce C :Vi=1,...,m :
dist(c,v;) <.

General bounds on ?,,(C) are difficult, but it can be seen
that [n/2] < t2(C) < [n/2] + s, where s is the covering
radius of C. In some cases — Hamming codes and Reed-
Muller codes, for example — more precise results are known.
In this paper we develop a technique (based on Krasikov’s
and Litsyn’s method for studying the spectra of BCH codes)
to tighten these bounds for some codes. Applying this tech-
nique, we show that the 2-covering radius of the double error
correcting BCH code is (n + 1)/2 for sufficiently large n.

We use the following notation:

e 0™ and 1™ are the all O and all 1 vectors of length n.
o V is the bitwise complement of a vector v.
e A code with length n, cardinality K, and minimum
distance d is a (n, K, d) code or just a (n, K) code.
o A linear code with length n, dimension %k, and minimum
distance d is an [n, k, d] or simply an [n, k| code.
e cov(x,S) = max{dist(x,y) : y € S} is the radius of the
smallest ball centered at vector x and containing set S.
o Given subsets C and S of F", cov(C,S) =
min{cov(c, S) : c € C}.
Thus we have t,,(C) = max{cov(C, S) : |S| = m}.
Theorem 1 (Klapper [1]): Let C' be a code of length n.
Then for a positive m, t,,,(C) < t1(C) + £, (F™).
Theorem 2 (Klapper [2], [1]): For every m and n satisfy-
ing m < 2", we have t,,(F") > [(n+ |logy(m)| — 1)/2],
with equality for m = 2, 3,4, 5, 6.
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II. THE MULTICOVERING RADIUS OF BCH CODES

The binary primitive BCH code of length 2™ — 1 and
designed distance 2e + 1 is a cyclic

[n=2"—1,k>2" —me—1,d > 2e+1]

code, denoted BCH(e, m). BCH(e,m) is at least an e-error
correcting code as its minimum distance is at least 2e¢ + 1.
BCH(1,m) is the Hamming code and k = 2™ — me — 1 if
2e—1 < 20m/2] (see [3] for details). BCH codes are important
because their correction capabilities are known and they can be
easily encoded. The covering radius of the 2 error correcting
BCH codes are known.

Theorem 3 (Gorenstein, Peterson and Zierler [4]): The
covering radius of the 2-error correcting BCH code,
BCH(2, m), for m > 3, is equal to 3.

Theorems 1 and 2 give the bounds

[n/2] < t2(BCH(2,m)) < [n/2] + 3.

for m > 3. To obtain the 2-covering radius of BCH(2, m) we
use well known relations between the weight distribution of
a code and the weight distribution of its dual. These relations
depend on the Krawtchouk polynomials. Here we describe
some properties of these polynomials (see [3] and [5] for
details).

The binary Krawtchouk polynomial of degree i in x P]*(x)
is defined implicitly by the generating function

> PMa)E = (1-2)"(1+2)" "
=0

Explicitly,

P(z) = éHV (j) (ZL—JI)

J

Usually n is fixed and is omitted. We will use the following
relations involving Krawtchouk polynomials:

Pilx) = (n—2i)P;(x ;1_) ;iazl— V) Pi(z — 2)7 0

Pi(z) = (=1)"Pi(n — ), 2



(’;)B-(x) = (’Z)Px(z'), 3)

Pr(n/2) = 0 if ¢ is odd, @
A (—1)1'/2(?//22) if i is even.

Lemma 4 (Krasikov and Litsyn [6]): For any integers x, n
and 7, with 7 even

and if n is even,

BREAL
|P;(z)| < O

Let C' C F"™ be a linear binary code. Its weight distribution
A(C)=A = (Ap, A,..., A,) is defined by

A; =|{ceC:wt(c) =i}

That is, the i component of A(C) is the number of code-
words in C' with weight ¢. The weight distribution of the dual
code C*, denoted A+, is called the dual spectrum of C.

Theorem 5 (MacWilliams identities [3]): For a linear code
C of length n

1 n
A= 15 AP @)
=0

where P/*(z) is the Krawtchouk polynomial of degree i.
Let 4, = 2™~ — 20m=D/2 if ; is odd and §,, = 2! —
2™/2 is m is even. If m is understood we just write 4.
Theorem 6 (Krasikov and Litsyn [6]): Let C be the 2-error
correcting BCH code of length n = 2™ — 1. Then

(%)
A= ﬂ( + E;+),

where ¢* =i+ 1 if 7 is odd, ¢* = 7 if 7 is even, and

(n+1)? ((nrrg)lm) ((n;})Q/Q)

=)

We need Stirling’s bound on factorials and the following
bounds on binomial coefficients.
Lemma 7: For any natural numbers n and k,

D (n/k)* < (7) <nk;

|Ei| <

2) n! € v2mn(n/e)"(1+6(1/n))

Lemma 8 ( [3] §9.9): The weight of every nonzero code-
word of the dual of BCH(2,m) is in the range [0, 7 — ).

Adding an overall parity check to a linear code appends a
zero to each row of the parity check matrix and adds the all
one vector as a new row. The result is called the extended
code.

Corollary 9: The weight of every codeword of the dual of
the extended BCH(2,m) code is even and is in the range
[0m,n + 1 —0,,] or is equal to 0 or n + 1.

Lemma 8 combined with Theorem 5 can be used to study
the weight distribution of the BCH code. However, since
certain calculations work best with even indices, we use the
extended 2-error correcting BCH code.

Theorem 10: Let 0 < a < 4 and 0 < b < 3. Let S and
T be disjoint sets of coordinates with |S| = a and |T'| = b.
Then for sufficiently large m there exists a codeword v of
BCH(2,m) with (n—1)/2—a+b<wt(v) < (n+1)/2+D
and with zeros at all of the coordinates in .S and ones at all
of the coordinates in 7.

Proof: Suppose ¢ is a positive integer and U and V
are disjoint sets of coordinates. Let A; 7 be the number of
codewords in the extended 2-error correcting BCH code with
weight ¢, zeros in all of the coordinates in U and ones in all of
the coordinates in V. If V' is the empty set then we may omit
it from our notation. That is, A; 79 = A; . Also, let Al{-va
denote the same quantity in the dual code. We next establish
a useful equation for A; .

Suppose U is a set of coordinates in F™ and the size of U
is a. Let Cy be the subcode of the extended 2-error correcting
BCH code with zeros in the coordinates of U and in the last
coordinate of the extended code. Since every codeword of
Cy has a zero in the last coordinate, we can remove this
coordinate and obtain a BCH codeword that has the same
weight. The code Cy; can be constructed by adding a+1 parity
checks, namely the a+ 1 vectors that are all zero except in one
coordinate in U or in the last coordinate. From Corollary 9 we
know that the minimal distance of the dual of the extended 2-
error correcting BCH code is at least 6 = (n+1)/2—+/n + 1.
Therefore as long as a + 1 < ¢§ the added parity checks are
independent. It follows that

(“tY) for0<i<a+1

Al =AL, =
wU ntl=iU {O fora+1<i<d—a-—1.

Also,

n+1

ZAJU_|Cé|

_ 22m+1+a+1 — 2a+2(n + 1)2.

Using Theorem 5 and the above values for A+ we have
A; v =0if 4 is odd and, if ¢ is even,

n+1

2a+2 n+12Z

1 n+2—95+a
= 20+2(p + 1)2 ( Z Ai,UPZ-nH(’I) +

r=§—a—1

Lil (“ M 1) (PP () + PP (n+ 1 - x))) .

x
=0

Ai,U _ Pn+1



When ¢ is even we can use equation (2) to write A; ;7 as:

A = ; QGZ—H a+1 Pn+1(x)—|—
W= 20+2(n + 1)2 T i

=0
n+2—d0+a
> A;,erm)
rz=0—a—1
= 0,1+ 06iv),
where
) o Ai,a
Yia = 9at2(n 1 1)2
and
1 n+2—5+a
> alEw
’ax d—a—1
with

Za—zﬁf( )ﬂ”%xy

Since both n and ¢ are even in this case, we may use Lemma
4 to bound the absolute value of 3; .

n+2—95+a
G| = > APt (a)
v,a r=0—a—1
CJ_
< | A?' max{| P+ (2)] -

d—a—1<z<n+2-40+a}
( n+1 )((nJrl)/2)
(n+1)/2 i/2

@ia (50 01)

We denote the last quantity by v, ,. We now proceed by cases
for different a and b.

Case a =4, b = 3: Suppose S and T are disjoint sets of
coordinates with |S| = 4 and |T'| = 3. It suffices to show that
A(ns1y/2,s,r = 1 for sufficiently large n. This implies the
existence of a weight (n+1)/2 codeword with the appropriate
structure. Such a codeword satisfies the requirements of other
cases as well, namely when (n + 1)/2 and (n — 1)/2 are in
the range of acceptable weights. Thus any case where (n —
1)/2—a+b<(n—1)/2 < (n+1)/2+b, which is equivalent
to b < a, will also have been proved. Also, any case where
(n—1)/2—a+b < (n+1)/2and a < 3,ie. b—1 < a < 3, will
have been proved. This leaves only the cases (a,b) = (0,2),
(0,3), and (1, 3).

Let T' = {t1,t2, t3}. Using the inclusion exclusion principal
we can write A; g1 as follows:

Ais — Aisugey — Aisufeay — Aisufts)
+Ai sUfty 2y T Ai sUftr s} T Ai SULLs 51

AisT =

—A; sur-

Rewriting this equation in terms of « and 3 we have

A”T“,S,T

= Q%A(l + ﬂnTJrlﬁ) — O[nTH75(3 +
Bugr suqey +Best supesy T 8281 sugeay)
JranTHvG(S + /8”3'1 SUft1 ta} T ﬂ%vSU{th%} +

O‘"T“»7(l+ﬁ"THvSUT)' (5)

5"7“,Su{t2,t3}) -

To determine the asymptotic behavior of A(n+1) /2,5, We
consider the behavior of the o and § terms. Using equations
(3) and (4) we can write P( +1)/2( x) as

Pn+1 ( ) _ ((ntfi)l/Q)Pn-i_l((n + 1)/2)
(n+1)/2 - (n+1)

x
D2 (55,2 (ME ")

_ @) if = is even,
0 if z is odd.
Thus
1 a+1 a+1 .
Gt T (1) & < >55ﬁnx>
n I_a+1 a n
() 2) ~D7 (PN (")
2041 (n +1)% 4 (%
n et a nrs
e [, Lf (5 CE)
201 (n + 1)2 —~ ("

Since x and a are constant, ((”21)/ 2) is a polynomial of degree

z in n, and (") is a polynomial of degree 2z in n, we have

(1) () (1) @<<<““>/2>>
X X E x

(%) (%)

C o(1).
for x > 1. Therefore,

((nﬁ)l/z)

m (I1+0(1)).

X(n+1)/2,0a €

Using our asymptotic bounds on a: we can bound 7(,,41)/2,a-
which in turn bounds £, 1)/2, With [U] = a:

(rtd o) ()
Ant1)/2.a (5700 1)

20 (e

(75 ) (1 +0(1))

Using Stirling’s formula we obtain the usual estimate

n+1 2(n+1)/2
2
(n+1) g @ () .
ntl Jntl

Y(n+1)/2,a




We can also estimate
d—a—2

H (n+1—2)
n+1 - =0
§—a—1) d-a-2

H (0—a—-1—-2x)

=0
Since (n+1)/2 —+v/n+ 141> 4, we have

n+1—-2vn+1—2a—2x
20 —a—1-—2).

n+1 >
>

Also,if z > (n+1—-4yn+1—4a)/3thenn+1—2z >
4[(n+1)/2—vn+1]| —a—1—-2z). Let p = n+1—
4v/n + 1. Then

il [(n—4a)/3]-1 5—a—2
> 2
oSN IEN E | REE O TR
=0 w=[(s—4a)/3]

02(6—a—2[(u—4a)/3]+1)+[(u—4a) /3]
225—2(1—2— [(n—4a)/3]

> 226—2@—2—((;5—4&)/3+1)
_ 9i(n—vatT-a-})

For any € > 0, we have

9e(n=vnFl) ¢ (2<C—€>") .

ESSRRICES

for any € > 0. Thus

Therefore

2a+1(n 4 1)2@ (2(71;-1*_){2)

Q (2<%*6)") (1+o0(1)

Y(n+1)/2,a €
This implies that v(,,41)/2,a tends to 0 as n gets large and so
must (3(,41)/2,u, Where U is of size a. Equation (5) becomes

A(7L+1)/2,S,T
= Qnt1)/24 — 3%n+1)/2,5 T 3X(nt1)/2,6 — X(n+1)/2,7

n+1
(n+1)/2) 3 3 1
A At
(n+1)7 ( 56 tor ~ s oll)
( n+1

(n+1)/2)

T (n41)? (256 M (1)>
Therefore A(,,41)/2,5,7 tends to infinity with n and there exist
BCH codewords of weight (n 4+ 1)/2 with the sought after
structure for large enough n (or, equivalently, large enough
m).

Case a=1, b= 3: Suppose S and 7T are disjoint sets
of coordinates with |S| = 1 and |T| = 3. It suffices to
show that A(,15)/2,5,7 > 1 for sufficiently large n. This is
equivalent to the existence of a weight (n + 5)/2 codeword
with the appropriate structure. Such a codeword also satisfies

the requirements of cases (a,b) = (0,2) and (0, 3) since
(n+5)/2 is in the range of acceptable weights for those cases.
As before let T = {t1, t2,t3}. Using the inclusion exclusion
principal we can write A, 15)/2,5,7 in terms of o and (3
Ange s
= cnp (14O ) —anp 53+
Buis surny T Ongs sug,y + 5%5,5u{t3})
+O‘%,3(3 + ﬁ";f’ ,SU{t1,t2} + ﬁ%,su{tl,tg} +
angs 4(1+ Bugs gur)- (6)

To understand the asymptotic behavior of A, 52,57 we
consider the behavior of the o and 3 terms. From the explicit
expression for a Krawtchouk polynomial, for any k£ we have

@ k k
s () (37)
=0 J ]
For fixed ¢ this is a sum of ¢ + 1 polynomials in k of degree
1 and is therefore also a polynomial of degree at most ¢. Thus
PF(E/2+2) € O(K). (7)

Also, PF(k/2+2) = 1. Taking k = n+ 1 in equation (7) and
using equation (3), we have

ﬁ#,su{tz,tg}) -

PF(k/2+2) =

( n+1 O(nx)
n41 (n+5)/2)
P(nis)/z(x) € (n+1)

n+1 _ n+1
and P(;:‘_F))/Q(O) = ((n+5)/2). Thus

1 a+1 a+1 Pn+1
20+1(n + 1)2 (@)

(n+5)/2
((ni?/z) <1 + § (“IHo(n gﬁ))

A(n45)/2,a

m

2a+1(n + ]_ Tl-‘rl)

€T
(us5)/2)
n—+
—— =01
- 20tl(p41)2 (1)
Using this bound on «;,45)/2,. We obtain the bound

(d ) (i)

Ant5)/2,a (s 0l1)

20 (n + 1) (n + 5)(n + 3) (g::ié;ﬁ)

n+1
(n—1)(;252,)00)
Using Stirling’s formula we obtain the estimate

n+l 2(n73)/2
nts Vn—3

n+1 (2-O)n
<6—a—1>69<2 )
for any € > 0. Thus
201 (1 + 5)(n + 3) (n + 1)0 (252

n—3
(n—1)Q (2( *6)") o(1)

Y(n+5)/2,a

€

As before

Y(n+5)/2,a €

(AN



This implies that v, 45)/2,a tends to 0 as n gets large and so
must 3,4 5)/2,u, where |U| = a. Thus equation (6) becomes

A(nts)/2,8,T
= O(n+5)/2,1 — 304(n+5)/2,2 + 304(71-5-5)/2,3 — Q(n45)/2,4

(i520M 1 3 3 1
(n+1)2 (22 23 T o1 25>
(i) 2)001)
32(n+1)2

for large n. So A(,y5)/2,5,7 tends to infinity as n gets
large and therefore there exist BCH codewords of weight
(n 4+ 5)/2 with the sought after structure for large enough
n (or, equivalently, large enough m). ]

Corollary 11: Given two vectors x and y with a = n —
dist(x,y) < 4, let z = X +y. There exist codewords u and
v of the code BCH(2,m) that satisfy the following properties
for sufficiently large m:

Hbe dist(u, x) < 3;

2) (n—1)/2—a+b<wt(v) <

3) supp(u +x) C supp(v);

4) supp(z) Nsupp(u+x+v) = 0.

Proof: Property 1 can be satisfied since the covering
radius of BCH(2,m) is 3 for m > 3 by Theorem 3. Note
that wt(z) = a, wt(x + u) = b, and supp(u + x + v) =
supp(v) — supp(u + x), so the fourth condition says that v
has zeros wherever z is one and u + x is zero. There are at
most three such coordinates. The third condition says that v
has ones wherever u + x has ones. Thus by Theorem 10 with
S = supp(z) and T = supp(x + u) there exists a codeword v
of BCH(2,m) that satisfies properties 2, 3, and 4. [ |

Theorem 12: t2(BCH(2,m)) = (n + 1)/2 for sufficiently
large m.

Proof: Consider vectors x and y with dist(x,y) = n—a.
First suppose a > 5. There exists a vector v/ with distance at
most (n—>5)/2 from both x and y, and there exists a codeword
v with dist(v,v’) < 3. Thus the distance from v to both x
and y is at most (n —5)/2+3 = (n+1)/2.

Now suppose that a < 4. Let u, v, z, and let b be as in
Corollary 11. Then

(n+1)/24+b;

dist(x,u+v) = wtlu+v+x)
= wt(v) — wt(u + x)
= wt(v)—b
< n —2|— 1

and

dist(y,u+v) wt(u+v+y)
wt(u+v+X+2z)
n—wtlu+v+x+z)
n—wt(u+ v + x) — wt(z)
= n—wt(v)+b—a
n+1

2 u

IN

III. GENERALIZATION

Our technique for determining the 2-covering radius of the
2-error correcting BCH code can be applied to other codes.
We can generalize Corollary 11 as follows.

Theorem 13: Let C be a linear code with ¢;(C) = r.
Suppose that for any two vectors x and y, with a = n —
dist(x,y) < r+1 and z = X + y, there exists codewords u
and v such that

D b2 dist(u,x) <7

2) [(n=r+2)/2|—a+b<wt(v) < [(n+r—2)/2]+D

3) supp(u+ x) C supp(v)

4) supp(z) Nsupp(u+x +v) = 0.

Then t5(C) < [245=2].

Proof: Consider vectors x and y with dist(x,y) = n—a,
where a > r+2. There exists a vector v/ with distance at most
[(n —r —2)/2] to both x and y and there exists a codeword
v with dist(v,v’) < r. Thus the distance from v to both x
and y is at most [(n —r —2)/2] +r=[(n+7r—2)/2].

Consider vectors x and y with dist(x,y) = n — a, where
a <r-+1. Let u, v, z, and b be as in the hypothesis. Then

dist(x,u+v) = wtlu+v+x)
= wt(v) — wt(u + x)
= wt(v)—b
< [n+r=2)/21,
and
dist(y,u+v) wt(u+v+y)
= wtlu+v+X+12)
= n—wt(lu+v+x+2)
= n—wtlu+v+x)— wt(z)

n—wt(v)+b—a
< [(n+r—-2)/2].

|
To prove the hypotheses of Corollary 11 we took advantage
of the fact that both the covering radius and the dual distri-
bution were known. In the case of the dual distribution we
needed it to be concentrated around n/2. In other words no
small or large weight codewords could be in the dual. Other
codes, such as the 3-error correcting BCH code, have this
property as well.
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