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Abstract— The m-covering radii of codes are natural general-
izations of the covering radii of codes. In this paper we analyze
the 2-covering radii of double error correcting BCH code.

I. INTRODUCTION

Multicovering radii are generalizations of the covering ra-
dius. Let m and n be natural numbers. Denote the binary
Hamming space of length n by F n. Given a code C of
length n, the m-covering radius of C, denoted by tm(C),
is the smallest natural number r such that every m-tuple of
vectors in F n is contained in a ball of radius r centered around
some codeword of C. That is, tm(C) is the smallest integer
r such that ∀v1, . . . ,vm ∈ F n : ∃c ∈ C : ∀i = 1, . . . ,m :
dist(c,vi) ≤ r.

General bounds on tm(C) are difficult, but it can be seen
that dn/2e ≤ t2(C) ≤ dn/2e + s, where s is the covering
radius of C. In some cases — Hamming codes and Reed-
Muller codes, for example – more precise results are known.
In this paper we develop a technique (based on Krasikov’s
and Litsyn’s method for studying the spectra of BCH codes)
to tighten these bounds for some codes. Applying this tech-
nique, we show that the 2-covering radius of the double error
correcting BCH code is (n + 1)/2 for sufficiently large n.

We use the following notation:

• 0n and 1n are the all 0 and all 1 vectors of length n.
• v is the bitwise complement of a vector v.
• A code with length n, cardinality K, and minimum

distance d is a (n, K, d) code or just a (n, K) code.
• A linear code with length n, dimension k, and minimum

distance d is an [n, k, d] or simply an [n, k] code.
• cov(x, S) = max{dist(x,y) : y ∈ S} is the radius of the

smallest ball centered at vector x and containing set S.
• Given subsets C and S of F n, cov(C,S) =

min{cov(c, S) : c ∈ C}.

Thus we have tm(C) = max{cov(C,S) : |S| = m}.
Theorem 1 (Klapper [1]): Let C be a code of length n.

Then for a positive m, tm(C) ≤ t1(C) + tm(F n).
Theorem 2 (Klapper [2], [1]): For every m and n satisfy-

ing m ≤ 2n, we have tm(F n) ≥ d(n + blog2(m)c − 1)/2e,
with equality for m = 2, 3, 4, 5, 6.

II. THE MULTICOVERING RADIUS OF BCH CODES

The binary primitive BCH code of length 2m − 1 and
designed distance 2e + 1 is a cyclic

[n = 2m − 1, k ≥ 2m −me− 1, d ≥ 2e + 1]

code, denoted BCH(e,m). BCH(e,m) is at least an e-error
correcting code as its minimum distance is at least 2e + 1.
BCH(1,m) is the Hamming code and k = 2m − me − 1 if
2e−1 ≤ 2dm/2e (see [3] for details). BCH codes are important
because their correction capabilities are known and they can be
easily encoded. The covering radius of the 2 error correcting
BCH codes are known.

Theorem 3 (Gorenstein, Peterson and Zierler [4]): The
covering radius of the 2-error correcting BCH code,
BCH(2,m), for m ≥ 3, is equal to 3.

Theorems 1 and 2 give the bounds

dn/2e ≤ t2(BCH(2,m)) ≤ dn/2e+ 3.

for m ≥ 3. To obtain the 2-covering radius of BCH(2,m) we
use well known relations between the weight distribution of
a code and the weight distribution of its dual. These relations
depend on the Krawtchouk polynomials. Here we describe
some properties of these polynomials (see [3] and [5] for
details).

The binary Krawtchouk polynomial of degree i in x Pn
i (x)

is defined implicitly by the generating function
∞∑

i=0

Pn
i (x)zi = (1− z)x(1 + z)n−x.

Explicitly,

Pn
i (x) =

i∑
j=0

(−1)j

(
x

j

)(
n− x

i− j

)
.

Usually n is fixed and is omitted. We will use the following
relations involving Krawtchouk polynomials:

Pi(x) =
(n− 2i)Pi(x− 1)− (x− 1)Pi(x− 2)

n− x + 1
, (1)

Pi(x) = (−1)iPi(n− x), (2)



(
n

x

)
Pi(x) =

(
n

i

)
Px(i), (3)

and if n is even,

Pn
i (n/2) =

{
0 if i is odd,
(−1)i/2

(
n/2
i/2

)
if i is even.

(4)

Lemma 4 (Krasikov and Litsyn [6]): For any integers x, n
and i, with i even

|Pi(x)| ≤

(
n

n/2

)(
n/2
i/2

)(
n
x

) .

Let C ⊆ F n be a linear binary code. Its weight distribution
A(C) = A = (A0, A1, . . . , An) is defined by

Ai = |{c ∈ C : wt(c) = i}|.

That is, the ith component of A(C) is the number of code-
words in C with weight i. The weight distribution of the dual
code C⊥, denoted A⊥, is called the dual spectrum of C.

Theorem 5 (MacWilliams identities [3]): For a linear code
C of length n

A⊥
i =

1
|C|

n∑
x=0

AxPn
i (x),

where Pn
i (x) is the Krawtchouk polynomial of degree i.

Let δm = 2m−1 − 2(m−1)/2 if m is odd and δm = 2m−1 −
2m/2 is m is even. If m is understood we just write δ.

Theorem 6 (Krasikov and Litsyn [6]): Let C be the 2-error
correcting BCH code of length n = 2m − 1. Then

Ai =

(
n
i

)
(n + 1)2

(1 + Ei∗),

where i∗ = i + 1 if i is odd, i∗ = i if i is even, and

|Ei∗ | ≤
(n + 1)2

(
n+1

(n+1)/2

)(
(n+1)/2

i∗/2

)(
n+1
i∗

)(
n+1
δm

) .

We need Stirling’s bound on factorials and the following
bounds on binomial coefficients.

Lemma 7: For any natural numbers n and k,
1) (n/k)k ≤

(
n
k

)
≤ nk;

2) n! ∈
√

2πn(n/e)n(1 + Θ(1/n)).

Lemma 8 ( [3] §9.9): The weight of every nonzero code-
word of the dual of BCH(2,m) is in the range [δm, n− δm].

Adding an overall parity check to a linear code appends a
zero to each row of the parity check matrix and adds the all
one vector as a new row. The result is called the extended
code.

Corollary 9: The weight of every codeword of the dual of
the extended BCH(2,m) code is even and is in the range
[δm, n + 1− δm] or is equal to 0 or n + 1.

Lemma 8 combined with Theorem 5 can be used to study
the weight distribution of the BCH code. However, since
certain calculations work best with even indices, we use the
extended 2-error correcting BCH code.

Theorem 10: Let 0 ≤ a ≤ 4 and 0 ≤ b ≤ 3. Let S and
T be disjoint sets of coordinates with |S| = a and |T | = b.
Then for sufficiently large m there exists a codeword v of
BCH(2,m) with (n− 1)/2− a + b ≤ wt(v) ≤ (n + 1)/2 + b
and with zeros at all of the coordinates in S and ones at all
of the coordinates in T .

Proof: Suppose i is a positive integer and U and V
are disjoint sets of coordinates. Let Ai,U,V be the number of
codewords in the extended 2-error correcting BCH code with
weight i, zeros in all of the coordinates in U and ones in all of
the coordinates in V . If V is the empty set then we may omit
it from our notation. That is, Ai,U,∅ = Ai,U . Also, let A⊥

i,U,V

denote the same quantity in the dual code. We next establish
a useful equation for Ai,U .

Suppose U is a set of coordinates in F n and the size of U
is a. Let CU be the subcode of the extended 2-error correcting
BCH code with zeros in the coordinates of U and in the last
coordinate of the extended code. Since every codeword of
CU has a zero in the last coordinate, we can remove this
coordinate and obtain a BCH codeword that has the same
weight. The code CU can be constructed by adding a+1 parity
checks, namely the a+1 vectors that are all zero except in one
coordinate in U or in the last coordinate. From Corollary 9 we
know that the minimal distance of the dual of the extended 2-
error correcting BCH code is at least δ = (n+1)/2−

√
n + 1.

Therefore as long as a + 1 < δ the added parity checks are
independent. It follows that

A⊥
i,U = A⊥

n+1−i,U =

{(
a+1

i

)
for 0 ≤ i ≤ a + 1

0 for a + 1 < i < δ − a− 1.

Also,

n+1∑
j=0

A⊥
j,U = |C⊥

U | = 22m+1+a+1 = 2a+2(n + 1)2.

Using Theorem 5 and the above values for A⊥ we have
Ai,U = 0 if i is odd and, if i is even,

Ai,U =
1

2a+2(n + 1)2

n+1∑
x=0

A⊥
x,UPn+1

i (x)

=
1

2a+2(n + 1)2

(
n+2−δ+a∑
x=δ−a−1

A⊥
x,UPn+1

i (x) +

a+1∑
x=0

(
a + 1

x

)(
Pn+1

i (x) + Pn+1
i (n + 1− x)

))
.



When i is even we can use equation (2) to write Ai,U as:

Ai,U =
1

2a+2(n + 1)2

(
2

a+1∑
x=0

(
a + 1

x

)
Pn+1

i (x) +

n+2−δ+a∑
x=δ−a−1

A⊥
x,UPn+1

i (x)

)
= αi,a(1 + βi,U ),

where

αi,a =
Ai,a

2a+2(n + 1)2

and

βi,U =
1

Ai,a

n+2−δ+a∑
x=δ−a−1

A⊥
x,UPn+1

i (x)

with

Ai,a = 2
a+1∑
x=0

(
a + 1

x

)
Pn+1

i (x).

Since both n and i are even in this case, we may use Lemma
4 to bound the absolute value of βi,U .

|βi,U | =
1

Ai,a
|
n+2−δ+a∑
x=δ−a−1

A⊥
x,UPn+1

i (x)|

≤ |C⊥
U |

Ai,a
max{|Pn+1

i (x)| :

δ − a− 1 ≤ x ≤ n + 2− δ + a}

≤

(
n+1

(n+1)/2

)(
(n+1)/2

i/2

)
αi,a

(
n+1

δ−a−1

) .

We denote the last quantity by γi,a. We now proceed by cases
for different a and b.

Case a = 4, b = 3: Suppose S and T are disjoint sets of
coordinates with |S| = 4 and |T | = 3. It suffices to show that
A(n+1)/2,S,T ≥ 1 for sufficiently large n. This implies the
existence of a weight (n+1)/2 codeword with the appropriate
structure. Such a codeword satisfies the requirements of other
cases as well, namely when (n + 1)/2 and (n − 1)/2 are in
the range of acceptable weights. Thus any case where (n −
1)/2−a+b ≤ (n−1)/2 ≤ (n+1)/2+b, which is equivalent
to b ≤ a, will also have been proved. Also, any case where
(n−1)/2−a+b ≤ (n+1)/2 and a ≤ 3, i.e. b−1 ≤ a ≤ 3, will
have been proved. This leaves only the cases (a, b) = (0, 2),
(0, 3), and (1, 3).

Let T = {t1, t2, t3}. Using the inclusion exclusion principal
we can write Ai,S,T as follows:

Ai,S,T = Ai,S −Ai,S∪{t1} −Ai,S∪{t2} −Ai,S∪{t3}

+Ai,S∪{t1,t2} + Ai,S∪{t1,t3} + Ai,S∪{t2,t3}

−Ai,S∪T .

Rewriting this equation in terms of α and β we have

An+1
2 ,S,T

= αn+1
2 ,4(1 + βn+1

2 ,S)− αn+1
2 ,5(3 +

βn+1
2 ,S∪{t1} + βn+1

2 ,S∪{t2} + βn+1
2 ,S∪{t3})

+αn+1
2 ,6(3 + βn+1

2 ,S∪{t1,t2} + βn+1
2 ,S∪{t1,t3} +

βn+1
2 ,S∪{t2,t3})− αn+1

2 ,7(1 + βn+1
2 ,S∪T ). (5)

To determine the asymptotic behavior of A(n+1)/2,S,T we
consider the behavior of the α and β terms. Using equations
(3) and (4) we can write Pn+1

(n+1)/2(x) as

Pn+1
(n+1)/2(x) =

(
n+1

(n+1)/2

)
Pn+1

x ((n + 1)/2)(
n+1

x

)
=


(−1)x/2( n+1

(n+1)/2)((n+1)/2
x/2 )

(n+1
x ) if x is even,

0 if x is odd.

Thus

αn+1
2 ,a =

1
2a+1(n + 1)2

a+1∑
x=0

(
a + 1

x

)
Pn+1

(n+1)/2(x)

=

(
n+1

(n+1)/2

)
2a+1(n + 1)2

b a+1
2 c∑

x=0

(−1)x
(
a+1
2x

)(
(n+1)/2

x

)(
n+1
2x

)
=

(
n+1

(n+1)/2

)
2a+1(n + 1)2

1 +
b a+1

2 c∑
x=1

(−1)x
(
a+1
2x

)(n+1
2
x

)(
n+1
2x

)
 .

Since x and a are constant,
(
(n+1)/2

x

)
is a polynomial of degree

x in n, and
(
n+1
2x

)
is a polynomial of degree 2x in n, we have

(−1)x
(
a+1
2x

)(
(n+1)/2

x

)(
n+1
2x

) ∈ Θ

((
(n+1)/2

x

)(
n+1
2x

) )
⊆ o(1).

for x ≥ 1. Therefore,

α(n+1)/2,a ∈

(
n+1

(n+1)/2

)
2a+1(n + 1)2

(1 + o(1)) .

Using our asymptotic bounds on α we can bound γ(n+1)/2,a,
which in turn bounds β(n+1)/2,U with |U | = a:

γ(n+1)/2,a =

(
n+1

(n+1)/2

)(
(n+1)/2
(n+1)/4

)
α(n+1)/2,a

(
n+1

δ−a−1

)
∈

2a+1(n + 1)2
(
(n+1)/2
(n+1)/4

)(
n+1

δ−a−1

)
(1 + o(1))

.

Using Stirling’s formula we obtain the usual estimate(n+1
2

n+1
4

)
⊆ Θ

(
2(n+1)/2

√
n + 1

)
.



We can also estimate

(
n + 1

δ − a− 1

)
=

δ−a−2∏
x=0

(n + 1− x)

δ−a−2∏
x=0

(δ − a− 1− x)

.

Since (n + 1)/2−
√

n + 1 + 1 ≥ δ, we have

n + 1 ≥ n + 1− 2
√

n + 1− 2a− 2x

≥ 2(δ − a− 1− x).

Also, if x ≥ (n + 1 − 4
√

n + 1 − 4a)/3 then n + 1 − x ≥
4(
⌈
(n + 1)/2−

√
n + 1

⌉
− a − 1 − x). Let µ = n + 1 −

4
√

n + 1. Then(
n + 1

δ − a− 1

)
≥

d(µ−4a)/3e−1∏
x=0

2

 δ−a−2∏
x=d(µ−4a)/3e

22


= 22(δ−a−2−d(µ−4a)/3e+1)+d(µ−4a)/3e

= 22δ−2a−2−d(µ−4a)/3e

≥ 22δ−2a−2−((µ−4a)/3+1)

= 2
2
3 (n−

√
n+1−a− 7

2 ).

For any ε > 0, we have

2c(n−
√

n+1) ∈ Ω
(
2(c−ε)n

)
.

Therefore (
n + 1

δ − a− 1

)
∈ Ω

(
2( 2

3−ε)n
)

for any ε > 0. Thus

γ(n+1)/2,a ∈
2a+1(n + 1)2Θ

(
2(n+1)/2
√

n+1

)
Ω
(
2( 2

3−ε)n
)

(1 + o(1))
.

This implies that γ(n+1)/2,a tends to 0 as n gets large and so
must β(n+1)/2,U , where U is of size a. Equation (5) becomes

A(n+1)/2,S,T

= α(n+1)/2,4 − 3α(n+1)/2,5 + 3α(n+1)/2,6 − α(n+1)/2,7

∈

(
n+1

(n+1)/2

)
(n + 1)2

(
1
25

− 3
26

+
3
27

− 1
28

+ o(1)
)

=

(
n+1

(n+1)/2

)
(n + 1)2

(
1

256
+ o(1)

)
.

Therefore A(n+1)/2,S,T tends to infinity with n and there exist
BCH codewords of weight (n + 1)/2 with the sought after
structure for large enough n (or, equivalently, large enough
m).

Case a = 1, b = 3: Suppose S and T are disjoint sets
of coordinates with |S| = 1 and |T | = 3. It suffices to
show that A(n+5)/2,S,T ≥ 1 for sufficiently large n. This is
equivalent to the existence of a weight (n + 5)/2 codeword
with the appropriate structure. Such a codeword also satisfies

the requirements of cases (a, b) = (0, 2) and (0, 3) since
(n+5)/2 is in the range of acceptable weights for those cases.

As before let T = {t1, t2, t3}. Using the inclusion exclusion
principal we can write A(n+5)/2,S,T in terms of α and β

An+5
2 ,S,T

= αn+5
2 ,1(1 + βn+5

2 ,S)− αn+5
2 ,2(3 +

βn+5
2 ,S∪{t1} + βn+5

2 ,S∪{t2} + βn+5
2 ,S∪{t3})

+αn+5
2 ,3(3 + βn+5

2 ,S∪{t1,t2} + βn+5
2 ,S∪{t1,t3} +

βn+5
2 ,S∪{t2,t3})− αn+5

2 ,4(1 + βn+5
2 ,S∪T ). (6)

To understand the asymptotic behavior of A(n+5)/2,S,T we
consider the behavior of the α and β terms. From the explicit
expression for a Krawtchouk polynomial, for any k we have

P k
i (k/2 + 2) =

i∑
j=0

(−1)j

(k
2 + 2

j

)(k
2 − 2
i− j

)
.

For fixed i this is a sum of i + 1 polynomials in k of degree
i and is therefore also a polynomial of degree at most i. Thus

P k
i (k/2 + 2) ∈ O(ki). (7)

Also, P k
0 (k/2+2) = 1. Taking k = n+1 in equation (7) and

using equation (3), we have

Pn+1
(n+5)/2(x) ∈

(
n+1

(n+5)/2

)
O(nx)(

n+1
x

)
and Pn+1

(n+5)/2(0) =
(

n+1
(n+5)/2

)
. Thus

α(n+5)/2,a =
1

2a+1(n + 1)2

a+1∑
x=0

(
a + 1

x

)
Pn+1

(n+5)/2(x)

∈

(
n+1

(n+5)/2

)
2a+1(n + 1)2

(
1 +

a+1∑
x=1

(
a+1

x

)
O(nx)(

n+1
x

) )

⊆

(
n+1

(n+5)/2

)
2a+1(n + 1)2

Θ(1).

Using this bound on α(n+5)/2,a we obtain the bound

γ(n+5)/2,a =

(
n+1

(n+1)/2

)(
(n+1)/2
(n+5)/4

)
α(n+5)/2,a

(
n+1

δ−a−1

)
∈

2a+1(n + 1)(n + 5)(n + 3)
(
(n+1)/2
(n+5)/4

)
(n− 1)

(
n+1

δ−a−1

)
Θ(1)

.

Using Stirling’s formula we obtain the estimate(n+1
2

n+5
4

)
⊆ Θ

(
2(n−3)/2

√
n− 3

)
.

As before (
n + 1

δ − a− 1

)
∈ Ω

(
2( 2

3−ε)n
)

.

for any ε > 0. Thus

γ(n+5)/2,a ∈
2a+1(n + 5)(n + 3)(n + 1)Θ

(
2(n−3)/2
√

n−3

)
(n− 1)Ω

(
2( 2

3−ε)n
)

Θ(1)
.



This implies that γ(n+5)/2,a tends to 0 as n gets large and so
must β(n+5)/2,U , where |U | = a. Thus equation (6) becomes

A(n+5)/2,S,T

= α(n+5)/2,1 − 3α(n+5)/2,2 + 3α(n+5)/2,3 − α(n+5)/2,4

∈

(
n+1

(n+5)/2

)
Θ(1)

(n + 1)2

(
1
22

− 3
23

+
3
24

− 1
25

)
=

(
n+1

(n+5)/2

)
Θ(1)

32(n + 1)2
.

for large n. So A(n+5)/2,S,T tends to infinity as n gets
large and therefore there exist BCH codewords of weight
(n + 5)/2 with the sought after structure for large enough
n (or, equivalently, large enough m).

Corollary 11: Given two vectors x and y with a = n −
dist(x,y) ≤ 4, let z = x + y. There exist codewords u and
v of the code BCH(2,m) that satisfy the following properties
for sufficiently large m:

1) b , dist(u,x) ≤ 3;
2) (n− 1)/2− a + b ≤ wt(v) ≤ (n + 1)/2 + b;
3) supp(u + x) ⊆ supp(v);
4) supp(z) ∩ supp(u + x + v) = ∅.

Proof: Property 1 can be satisfied since the covering
radius of BCH(2,m) is 3 for m ≥ 3 by Theorem 3. Note
that wt(z) = a, wt(x + u) = b, and supp(u + x + v) =
supp(v) − supp(u + x), so the fourth condition says that v
has zeros wherever z is one and u + x is zero. There are at
most three such coordinates. The third condition says that v
has ones wherever u+x has ones. Thus by Theorem 10 with
S = supp(z) and T = supp(x+u) there exists a codeword v
of BCH(2,m) that satisfies properties 2, 3, and 4.

Theorem 12: t2(BCH(2,m)) = (n + 1)/2 for sufficiently
large m.

Proof: Consider vectors x and y with dist(x,y) = n−a.
First suppose a ≥ 5. There exists a vector v′ with distance at
most (n−5)/2 from both x and y, and there exists a codeword
v with dist(v,v′) ≤ 3. Thus the distance from v to both x
and y is at most (n− 5)/2 + 3 = (n + 1)/2.

Now suppose that a ≤ 4. Let u, v, z, and let b be as in
Corollary 11. Then

dist(x,u + v) = wt(u + v + x)
= wt(v)− wt(u + x)
= wt(v)− b

≤ n + 1
2

and

dist(y,u + v) = wt(u + v + y)
= wt(u + v + x + z)
= n− wt(u + v + x + z)
= n− wt(u + v + x)− wt(z)
= n− wt(v) + b− a

≤ n + 1
2

.

III. GENERALIZATION

Our technique for determining the 2-covering radius of the
2-error correcting BCH code can be applied to other codes.
We can generalize Corollary 11 as follows.

Theorem 13: Let C be a linear code with t1(C) = r.
Suppose that for any two vectors x and y, with a = n −
dist(x,y) ≤ r + 1 and z = x + y, there exists codewords u
and v such that

1) b , dist(u,x) ≤ r
2) b(n− r + 2)/2c−a+b ≤ wt(v) ≤ d(n + r − 2)/2e+b
3) supp(u + x) ⊆ supp(v)
4) supp(z) ∩ supp(u + x + v) = ∅.

Then t2(C) ≤
⌈

n+r−2
2

⌉
.

Proof: Consider vectors x and y with dist(x,y) = n−a,
where a ≥ r+2. There exists a vector v′ with distance at most
d(n− r − 2)/2e to both x and y and there exists a codeword
v with dist(v,v′) ≤ r. Thus the distance from v to both x
and y is at most d(n− r − 2)/2e+ r = d(n + r − 2)/2e.

Consider vectors x and y with dist(x,y) = n − a, where
a ≤ r + 1. Let u, v, z, and b be as in the hypothesis. Then

dist(x,u + v) = wt(u + v + x)
= wt(v)− wt(u + x)
= wt(v)− b

≤ d(n + r − 2)/2e ,

and

dist(y,u + v) = wt(u + v + y)
= wt(u + v + x + z)
= n− wt(u + v + x + z)
= n− wt(u + v + x)− wt(z)
= n− wt(v) + b− a

≤ d(n + r − 2)/2e .

To prove the hypotheses of Corollary 11 we took advantage
of the fact that both the covering radius and the dual distri-
bution were known. In the case of the dual distribution we
needed it to be concentrated around n/2. In other words no
small or large weight codewords could be in the dual. Other
codes, such as the 3-error correcting BCH code, have this
property as well.
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