
ar
X

iv
:1

20
4.

13
00

v1
 [

m
at

h.
N

T
]

 5
 A

pr
 2

01
2

Preprint Web site: http://www.lix.polytechnique.fr/ biasse/
Volume X, No. 0X, 200X, X–XX

IMPROVEMENTS IN THE COMPUTATION OF IDEAL CLASS

GROUPS OF IMAGINARY QUADRATIC NUMBER FIELDS

Jean-François Biasse

LIX - École Polytechnique
91128 Palaiseau , France

(Communicated by Tanja Lange)

Abstract. We investigate improvements to the algorithm for the computation
of ideal class groups described by Jacobson in the imaginary quadratic case.
These improvements rely on the large prime strategy and a new method for
performing the linear algebra phase. We achieve a significant speed-up and are
able to compute ideal class groups with discriminants of 110 decimal digits in
less than a week.

1. Introduction

Given a fundamental discriminant ∆, it is known that the corresponding ideal
class group Cl(∆) of the order O∆ of discriminant ∆ in K = Q(

√
∆) is a finite

abelian group that can be decomposed as

Cl(∆) ≃
⊕

i

Z/diZ,

where the divisibility condition di|di+1 holds. In this paper we investigate improve-
ments in the computation of the group structure of Cl(∆): that is, determining
the di, which is of both cryptographic and number theoretic interest. Indeed some
cryptographic protocols relying on the difficulty of solving the discrete logarithm
problem (DLP) in imaginary quadratic orders have been proposed [3, 9], and solving
instances of the DLP is closely related to finding the group structure of Cl(∆).

In 1968 Shanks [19] proposed an algorithm relying on the baby-step giant-step
method in order to compute the structure of the ideal class group of an imaginary
quadratic number field in time O

(

|∆|1/4+ǫ
)

, or O
(

|∆|1/5+ǫ
)

under the extended
Riemann hypothesis [13]. This allows us to compute class groups of discriminants
having up to 20 or 25 decimal digits. Then a subexponential strategy was described
in 1989 by Hafner and McCurley [8]. The expected running time of this method is

e(
√
2+o(1))

√
log |∆| log log |∆|.

Buchman and Düllmann [2] computed class groups with discriminants of around
50 decimal digits using an implementation of this algorithm. An improvement of
this method was published by Jacobson in 1999 [10]. He achieved a significant
speed-up by using sieving strategies to generate the matrix of relations. He was
able to compute the structure of class groups of discriminants having up to 90

2000 Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases: Ideal Class group, index calculus, large prime variant, Gaussian elim-

ination, Hermite normal form.
The author is supported by a DGA grant.

1 c©200X AIMS-SDU

http://arxiv.org/abs/1204.1300v1

2 Jean-François Biasse

decimal digits. More recently Sutherland [22] used generic methods in order to
compute class groups with discriminants having 100 decimal digits. Unlike the
previous algorithms, this one relies heavily on the particular structure of Cl(∆)
thus obtaining variable performances depending on the values of ∆.

Our approach is based on that of Jacobson, using new techniques to accelerate
both the sieving phase and the linear algebra phase; we have obtained the group
structure of class groups of 110 decimal digit discriminants.

2. The ideal class group

In this section we give essential results concerning the ideal class group and
the subexponential strategies for computing its structure. For a more detailed
description of the theory of ideal class groups we refer to [5] and [17]. In the
following, ∆ is a non-square integer congruent to 0 or 1 modulo 4, and the quadratic
order of discriminant ∆ is defined as the Z-module

O∆ = Z+
∆+

√
∆

2
Z.

We also denote by K the field Q(
√
∆).

2.1. Description. Elements of Cl(∆) are obtained from fractional ideals of O∆,
which are Z-modules of K of the form:

a = q

(

aZ+
b+
√
∆

2
Z

)

,

where a and b are integers with b ≡ ∆ mod 2 and q is a rational number. The prime
ideals are the fractional ideals for which there exists a prime number p such that:

p = pZ+
bp +

√
∆

2
Z or p = pZ (p inert in K).

Definition 2.1 (Ideal Class group). Let I∆ be the set of invertible fractional ideals
of O∆, and P∆ = {(α) ∈ I∆, α ∈ K} the subset of principal ideals. We define the
ideal class group of ∆ as :

Cl(∆) := I∆/P∆,

where the group law is the one derived from the multiplication of Z-modules.

For every a ∈ I∆, there exist uniquely determined prime ideals p1, . . . , pn and
exponents e1, . . . , en in Z such that

a = pe11 . . . penn .

Unlike I∆, the ideal class group Cl(∆) is a finite group. Its order is called the class
number and usually denoted by h(∆). It grows like |∆|1/2+ǫ, as shown in [20].

2.2. Computing the group structure. The algorithm for computing the group
structure of Cl(∆) is divided into two major phases: relation collection and linear
algebra. In the first phase, we begin by precomputing a factor base B = {p1, . . . , pn}
of non-inert prime ideals satisfying N (pi) ≤ B, where B is a smoothness bound.
Then we look for relations of the form

(α) = pe11 . . . penn ,

where α ∈ K. Every n-tuple [e1, . . . , en] collected becomes a row of what we will
refer to as the relation matrix A ∈ Zm×n. We have from [1] the following important
result:

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 3

Theorem 2.2. Let Λ be the lattice spanned by the set of the possible relations.

Assuming GRH, if B ≥ 6 log2 ∆, then we have

Cl(∆) ≃ Zn/Λ.

After the relation collection phase we can test if A has full rank and if its rows
generate Λ using methods described in §3.3. If it is not the case then we have to
compute more relations. From now on we assume that A has full rank and that its
rows generate Λ.

The linear algebra phase consists of computing the Smith Normal Form (SNF)
of A. Any matrix A in Zn×n with non zero determinant can be written as

A = V −1













d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dn













U−1

, where di+1|di for all 1 ≤ i < n and U and V are unimodular matrices in Zn×n.
The matrix diag(d1, . . . , dn) is called the SNF of A. If m = n and diag(d1, . . . , dn) =
SNF(A) then

Cl(∆) ≃
n
⊕

i=1

Z/diZ.

This reduces the problem of computing the group structure of Cl(∆) to computing
the SNF of a relation matrix A in Zn×n. For an arbitrary A in Zm×n we start by
computing the Hermite Normal Form (HNF) of A. A matrix H is said to be in
HNF if it has the shape

H =



































h1,1 0 . . . 0

... h2,2
. . .

...

...
...

. . . 0

∗ ∗ . . . hn,n

(0)



































, where 0 ≤ hij < hii for all j < i and hij = 0 for all j > i. For each matrix A in
Zm×n there exists a matrix H in HNF and a unimodular matrix W in Zm×m such
that

H = WA.

The upper block of H is a n× n relation matrix whose SNF provides us the group
structure of Cl(∆). There is an index l such that hi,i = 1 for every i ≥ l. The upper
left l × l submatrix of H is called the essential part of H . In order to compute the
group structure of Cl(∆) it suffices to compute the SNF of the essential part of H ,
which happens to have small dimension in our context.

Preprint Volume X, No. X (200X), X–XX

4 Jean-François Biasse

2.3. The use of sieving for computing the relation matrix. The use of
sieving to create the relation matrix was first described by Jacobson [10]. Here we
follow the approach of [11] Chap.13, which relies on the following lemma:

Lemma 2.3. If a =
(

aZ+ b+
√
∆

2 Z

)

with a > 0, then for all x, y in Z there exists

b ∈ I∆ such that ab ∈ P and

N (b) = ax2 + bxy +
b2 −∆

4a
y2.

The strategy for finding relations is the following: We start with

a =
∏

i

peii =:

(

aZ+
b+
√
∆

2
Z

)

,

whose norm isB-smooth. Then we choose a sieve radiusR satisfyingR ≈
√

|∆|/2/N (a)
and we look for values of x ∈ [−R,R] such that ϕ(x, 1) is B-smooth where

ϕ(x, y) = ax2 + bxy +
b2 −∆

4a
y2,

which allows us to find b =
∏

i p
fi
i satisfying ab = (γ) for some γ in K. The pi and

fi are deduced from the decomposition ϕ(x, 1) =
∏

i p
vi
i . For more details we refer

to [11], Chap 13. This method yields the relation

(γ) =
∏

i

p
ei+fi
i .

Now given a binary quadratic form ϕ(x, y) = ax2 + bxy + cy2 of discriminant ∆,
we are interested in finding values of x ∈ [−R,R] such that ϕ(x, 1) is B-smooth.
This can be done trivially by testing all the possible values of x, but there is a
well-known method for pre-selecting some values of x in [−R,R] that are going to
be tested, namely the quadratic sieve (introduced by Pomerance [18]). It consists
in initializing to 0 an array S of length 2R+ 1 and precomputing the roots r′i and

r′′i , or the double root r′i, of ϕ(x, 1) mod pi for each pi ≤ B such that
(

∆
pi

)

6= −1 .

Then for each x in [−R,R] of the form x = ri + kpi for some k, we add ⌊log pi⌋ to
S[x]. At the end of this procedure, if ϕ(x, 1) is B-smooth, then S[x] ≈ logϕ(x, 1).

As ϕ(x, 1) ≈
√

∆/2R, we set a bound

(1) F = log

(
√

∆

2
R

)

− T log(pn),

where T is a number representing the tolerance to rounding errors due to integer
approximations. We then perform a trial division test on every ϕ(x, 1) such that
S[x] ≥ F .

3. Practical improvements

In this section we describe the improvements that allowed us to achieve a signif-
icant speed-up with respect to the existing algorithm and the computation of class
group structures of large discriminants. Our contribution is to take advantage of
the large prime variants, of an algorithm due to Vollmer [23] for the SNF which had
not been implemented in the past, and of special Gaussian elimination techniques.

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 5

3.1. Large prime variants. The large prime variants were developed in the con-
text of integer factorization to speed up the relation collection phase in both the
quadratic sieve and the number field sieve. Jacobson considered analogous variants
for class group computation [10], but the speed-up of the relation collection phase
was achieved at the price of such a slow-down of the linear algebra that it did not
significantly improve the overall time. The main idea is the following: We define the
“small primes” to be the prime ideals in the factor base and the small prime bound
as the corresponding bound B1 = B. Then we define a large prime bound B2.
During the relation collection phase we choose not to restrict ourselves to relations
only involving primes p in B but we also keep relations of the form

(α) = p1 . . . pnp and (α) = p1 . . . pnpp
′

for pi in B, and for p, p′ of norm less than B2. We will respectively refer to them as
1-partial relations and 2-partial relations. Keeping partial relations only involving
one large prime is the single large prime variant, whereas keeping two of them is
the double large prime variant which was first described by Lenstra and Manasse
[12]. In this paper we do not consider the case of more large primes, but it is a
possibility that has been studied in the context of factorization [14].

Partial relations may be identified as follows. Let m be the residue of ϕ(x, 1)
after the division by all primes p ≤ B1, and assume that B2 < B2

1 . If m = 1 then
we have a full relation. If m ≤ B2 then we have a 1-partial relation. We can see
here that detecting 1-partial relations is almost for free. If we also intend to collect
2-partial relations then we have to consider the following possibilities:

1. m > B2
2 ;

2. m is prime and m > B2;
3. m ≤ B2;
4. m is composite and B2

1 < m ≤ B2
2 .

In Cases 1 and 2 we discard the relation. In Case 3 we have a 1-partial relation, and
in Case 4 we have m = pp′ where p = N (p) and p′ = N (p′). After testing if we are
in Cases 1, 2, or 3 we have to factorize the residue. We have done that using Milan’s
implementation of the SQUFOF algorithm [15] based on the theoretical work of [7].

Even though we might have to factor the residue, collecting a partial relation is
much faster than collecting a full relation because the probability that N (b) is B2-
smooth is much greater than the probability that it is B1-smooth. This improvement
in the speed of the relation collection phase comes at a price: The number of columns
in the relation matrix is much greater, thus preventing us from running the linear
algebra phase directly on the resulting relation matrix and forcing us to find many
more relations since we have to produce a full rank matrix. We will see in §3.2
how to reduce the dimensions of the relation matrix using Gaussian elimination
techniques and in §4 how to optimize the parameters to make the creation of the
relation matrix faster, even though there are many more relations to be found.

3.2. Gaussian elimination techniques. Traditionally rows were recombined to
give full relations as follows: In the case of 1-partial relations, any pair of relations
involving the same large prime p were recombined into a full relation. In the case
of 2-partial relations, Lenstra [12] described the construction of a graph whose
vertices were the relations and whose edges linked vertices having one large prime in
common. Finding independent cycles in this graph allows us to find recombinations
of partial relations into full relations.

Preprint Volume X, No. X (200X), X–XX

6 Jean-François Biasse

In this paper we rather follow the approach of Cavallar [4], developed for the
number field sieve, which uses Gaussian elimination on columns without distin-
guishing those corresponding to the large primes from the others. One of the main
differences between our relation matrices and the matrices produced in the number
field sieve is that our entries are in Z rather than F2, thus obliging us to monitor the
evolution of the size of the coefficients. Indeed, eliminating columns at the price of
an explosion of the size of the coefficients can be counter-productive in preparation
for the HNF algorithm.

In what follows we will use a few standard definitions that we briefly recall here.
First, subtracting two rows is called merging. This is because rows are stored as
lists of the non-zero entries sorted with respect to the corresponding columns and
subtracting them corresponds to merging the two sorted lists. If two rows r1 and
r2 share the same prime p with coefficients c1 and c2 respectively then multipling
r1 by c2 and r2 by c1 and merging is called pivoting. Finally, finding a sequence
of pivots leading to the elimination of a column of Hamming weight k is a k-way
merge.

We aim to reduce the dimension of the relation matrix by performing k-way
merges on the columns of weight k = 1, . . . , w in increasing order for a certain
bound w. Unfortunately, the density of the rows and the size of the coefficients in-
crease during the course of the algorithm, thus obliging us to use optimized pivoting
strategies. In what follows we describe an algorithm performing k-way merges to
minimize the growth of both the density and the size of the coefficients.

First we have to define a cost function defined over the set of the rows encapsu-
lating the difficulty induced for the HNF algorithm. In factorization, we want to
find a vector in the kernel of the relation matrix which is defined over F2; the only
property of the row that really matters is its Hamming weight. In our context, we
need to minimize the Hamming weight of the row, but we also have to take into
account the size of the coefficients. Different cost functions lead to different elimina-
tion strategies. Our cost function was determined empirically: We took the number
of non-zero entries, counting c times those whose absolute value was above a bound
Q, where c is a positive number. If r = [e1, . . . , en] corresponds to (α) =

∏

i p
ei
i

then

C(r) =
∑

1≤|ei|≤Q

1 + c
∑

|ej |>Q

1.

Indeed as we will see, matrices with small entries are better suited for the HNF
algorithm described in §3.3. Let us assume now that we are to perform a k-way
merge on a given column. We construct a complete graph G of size k as follows:

• The vertices are the rows ri.
• Every edge linking ri and rj is labeled by C(rij), where rij is obtained by
pivoting ri and rj .

Finding the best sequence of pivots with respect to the cost function c we chose
is equivalent to finding the minimum spanning tree T of G, and then recombining
every row r with its parent starting with the leaves of T .

Unfortunately, some coefficients might grow during the course of column elimi-
nations despite the use of this strategy. Once a big coefficient is created in a given
row r, it is likely to spread to other rows once r is involved in another column
elimination. We must therefore discard such rows as quickly as possible. In our
implementation we chose to do it regularly: Once we have performed all the k-way

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 7

merges for k ≤ 10 · i and i = 1, . . . , w/10 we discard a fixed number K of the rows
containing the largest coefficients.

We show in Table 1 the effect of the use of a cost function taking into account the
size of the coefficients and the regular discard of the worst rows for ∆ = −4(1070+1)
with c = 100, Q = 8 and K = 10. We kept track of the evolution of the dimensions
of the matrix, the average Hamming weight of the rows, and the maximum and
minimum size of the coefficients. In the first case we use the traditional cost function
that only takes into account the Hamming weight of the rows and we keep deleting
the worst rows regularly; this corresponds to taking c = 1 and K = 10. In the
second case, we use the cost function described above but without row elimination
by setting c = 100 and K = 0. In the third case, we combine the two (c = 100 and
K = 10). We clearly see that the coefficients are properly monitored only in the
latter case. Indeed using a cost function that does not take into account the size of
the coefficients and just discarding the worst rows regularly seems more efficient in
terms of reduction of the matrix dimension, but the row corresponding to i = 12
(that is to say after all the 120-way merges) clearly shows that we run the risk of
an explosion of the coefficients.

Figure 1. Comparative table of elimination strategies

Without score depending on the size of the coefficients

i Row Nb Col Nb Average weight max min

0 38752 45975 22 10 -10

2 2334 1668 76 21 -20

4 2123 1477 117 52 -56

6 2028 1402 146 59 -62

8 1951 1345 175 72 -65

10 1890 1304 203 193 -196

12 1836 1270 219 212 -2147483648

Without row elimination

i Row Nb Col Nb Average weight max min

0 38752 45975 22 10 -10

2 2373 1687 79 30 -40

4 2224 1538 118 67 -50

6 2158 1472 148 71 -132

8 2117 1431 179 2648 -10568

10 2097 1411 196 347136 -337920

12 2080 1394 214 268763136 -173162496

With adapted score and row elimination

i Row Nb Col Nb Average weight max min

0 38752 45975 22 10 -10

2 2357 1691 76 17 -17

4 2176 1530 114 27 -30

6 2074 1448 149 37 -37

8 2013 1407 177 43 -43

10 1958 1372 199 44 -45

12 1908 1342 224 54 -53

3.3. Vollmer’s algorithm for computing the HNF. In [10] it has been ob-
served that the algorithm used to compute the HNF of the relation matrix relied
heavily on the sparsity of the matrix. While recombinations of the kind described

Preprint Volume X, No. X (200X), X–XX

8 Jean-François Biasse

in [12] or the techniques of §3.2 reduce the dimensions of the matrix, they also dra-
matically increase the density of the matrix, thus slowing down the computation
of the HNF. We had to find an HNF algorithm whose features were adapted to
our situation. Vollmer described in [23] an algorithm of polynomial complexity de-
pending on the capacity to solve diophantine linear systems, but not on the density
of the matrix. It was not implemented at the time because there was no efficient
diophantine linear system solver available. We implemented Vollmer’s algorithm
using the IML [21] library provided by Storjohann.

Here we give a brief description of the algorithm (for more details we refer to
[23]). We assume we have created an m×n relation matrix A of full rank. For each
i ≤ n, we define two matrices

Ai =





















a1,1 . . . am,1

...
...

a1,i . . . am,i





















and ei =





















0

...

0

1





















.

For each i, we define hi to be the minimal denominator of a rational solution of the
system

Aix = ei;

this is computed using the function MinCertifiedSol of IML, which is an imple-
mentation of (Special)MinimalSolution from [16], and used in [23] for the complexity
analysis. In [23] it is shown that

h(∆) =
∏

i

hi.

Fortunately, analytic formulae allow us to compute a bound h∗ such that

h∗ ≤ h(∆) < 2h∗,

so we do not have to compute hi for every i ∈ [1, n]. In addition, the matrices
produced for the computation of the group structure of Cl(∆) have small essential
part, which keeps the number of diophantine systems to solve small (about the same
size as the number of columns of the essential part) as shown in [23].

Algorithm 1 Computation of the class number

Input: ∆, relation matrix A of full rank and h∗
Output: h(∆)
h← 1
i← n
while h < h∗ do

Compute the minimal denominator hi of a solution of Ai · x = ei
h← h · hi

i← i− 1
end while

return h

We can compute the essential part of the HNF of A with a little extra effort
involving only modular reductions of coefficients; we refer to [23] for more details.

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 9

This part of the algorithm is highly dependent on the performance of the diophantine
solver we use, which in turn is mostly influenced by the number of columns of the
matrix and the size of the coefficients. The bechmarks available [21] show that the
algorithm runs much faster on matrices with 3-bit coefficients, which is why we took
coefficient size into account in the cost function for the Gaussian elimination.

4. Optimization of the parameters

In this section we proceed to optimize the parameters involved in the relation
collection phase. Each parameter has an effect on the overall time taken to compute
the group structure of Cl(∆). Recall (1) giving the bound F ; when we collect partial
relations it should be adapted in the following way:

F = log

(
√

∆

2
R

)

− T logB2,

where B2 is the large prime bound.

4.1. Optimization of T . The parameter T represents the tolerance to rounding
errors in the traditional sieving algorithms. Its value is empirically determined, and
usually lies in the interval [1, 2]. In the large prime variant it also encapsulates the
number of large primes we want to allow. Indeed, if there were no rounding errors
one would expect this value to be 1 for one large prime and 2 for two large primes.
In practice, we can exhibit an optimum value which differs slightly from what we
would expect. In figure 2 we show the overall running time of the algorithm when
the parameter T varies between 1.5 and 3.5 for the discriminant ∆ = −4(1075 +1).
The size of the factor base taken is 3250, the ratio B2/B1 equals 120, and we allow
two large primes.

Figure 2. Optimum value of T

 5000

 10000

 15000

 20000

 25000

 1 1.5 2 2.5 3 3.5 4

T
im

e

T

One of the main issues for determining the optimal value of T is that it tends to
shift when one modifies the value of B1, the rest being unchanged. Indeed, if for
example B2/B1 = 120 then

F = log

(
√

∆

2
R

)

− T log 120B1,

Preprint Volume X, No. X (200X), X–XX

10 Jean-François Biasse

so when we increase B1 we have to lower T to compensate. Figure 3 illustrates this
phenomenon on the example ∆ = −4(1075 + 1), with two large primes.

Figure 3. Effect of |B| on the optimal value of T

 1.5

 2

 2.5

 3

 3.5

 2500 3000 3500 4000 4500

T

|FB|

In Figure 4 we study the evolution of the optimal value of T for the single and
double large prime variants on discriminants of the form −4(10n+1) where n ranges
between 60 and 80. It appears that, as we expected, the optimal value for the double
large prime variant is greater than the one corresponding to the single large prime
variant. This value is between 2 and 2.3 for one large prime and around 2.7 when
we allow two large primes.

Figure 4. Optimal value of T when n varies

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 55 60 65 70 75 80 85

T

n

1 large prime
2 large primes

4.2. The size of the factor base. The optimal size of the factor base reflects
the trade-off between the time spent on the relation collection phase and on the
linear algebra phase. This optimum is usually not the size that minimizes the
time spent on the relation collection phase. To illustrate this, Figure 5 shows the
time taken by the algorithm for ∆ = −4(1075 + 1) with B2/B1 = 120 and the
corresponding optimal T .

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 11

Figure 5. Optimal value of |B|

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

T
im

e

|FB|

The optimal size of the factor base increases with the size of the discriminant.
Figure 6 shows the optimal size of the factor base for discriminants of the form
−4(10n + 1) as n ranges between 60 and 80 for both one large prime and two large
primes. We notice that the single large prime variant requires smaller factor bases
than without large primes, and bigger factor bases than the double large prime
variant.

Figure 6. Optimal value of |B| when n varies

 2000

 4000

 6000

 8000

 10000

 55 60 65 70 75 80 85

|F
B

|

n

0 large primes
1 large prime

2 large primes

4.3. The ratio B2/B1. Theoretically B2 should not exceed B2
1 . In practice, when

the ratio B2/B1 is too high we lose time taking into account partial relations in-
volving primes that are so large that they are very unlikely to occur twice and to
lead to a recombination. This phenomenon is known in the context of factorization,
and 120 is a common choice of value of B2/B1 (see [6]). We ran experiments using
12, 120 and 1200 as values for the ratio B2/B1. Figure 7 shows the results for
∆ = −4(1075 + 1) with two large primes. We give the optimum timings for each
value of the size of the factor base, and compare those values for the three different

Preprint Volume X, No. X (200X), X–XX

12 Jean-François Biasse

ratios. It appears that 120 is indeed the best choice, but the performance of the
algorithm is not highly dependent on this parameter.

Figure 7. Comparative table of B2/B1

|FB| 12 120 1200
3000 6399.60 6051.11 6173.66
3250 6795.43 6185.67 6754.02
3500 6539.69 6821.77 6754.02
3750 6916.93 6750.88 7456.92
4000 6671.18 6390.48 7009.72

5. Computational results

5.1. Comparative timings. In Figure 8 we give comparative timings in seconds
between no large primes and the large prime variants for discriminants of the form
−4(10n + 1), for n between 60 and 80. We used 2.4GHz Opterons with 16GB of
memory, and the NTL library with GMP. It appears that we achieved a significant
speed-up by using the large prime strategy. Direct comparison with previous meth-
ods based on sieving is hard since the timings available in [10] were obtained on
296 MHz UtraSPARC-II processors; therefore we just quote that the computation
of the group structure corresponding to ∆ = −4(1080 + 1) took 5.37 days (463968
CPU time) at the time. We also notice that the double large prime variant does not
provide an impressive improvement on the overall time for the sizes of discriminant
involved. The performance is comparable for discriminants of 60 decimal digits and
starts showing an improvement when we reach 75 digit discrimants.

Figure 8. Comparative table of the performances (CPU time)

n 0 Large primes 1 Large prime 2 Large primes
60 374 284 280
65 1019 756 776
68 2010 1489 1122
70 2148 1663 1680
75 8409 6669 5347
80 21215 17123 14664

5.2. Large discriminants. In the imaginary case, the largest class groups that
had been computed using relation collection methods had 90 digits; some 100 dec-
imal digit discriminant class group structures could be computed using the tech-
niques of [22]. With the techniques described in this paper, we achieved the com-
putation of a class group with a 110 decimal digit discriminant. We used 100 Core2
Duo 2.4GHz Pentium IV processors with 2 GB of memory each for the sieving,
and one 2.66 GHz Opteron with 64 GB of memory for the linear algebra, which
is the real bottleneck of this algorithm. Indeed, the sieving phase can be trivially
parallelized for as many processors as we have and does not require much memory,
whereas the linear algebra can only be parallelized into the number of factors of
h that we get from Vollmer’s algorithm (around 10 in our examples) and requires

Preprint Volume X, No. X (200X), X–XX

Computation of ideal class groups 13

a lot of memory. Indeed the limit in terms of matrix dimensions for the diophan-
tine solver on a 64GB memory computer seems to be around 10000 columns. For
comparison, in the case of the 110 decimal digit discriminant we had to handle an
8000-column matrix (after the Gaussian reduction).

Figure 9. Decomposition of Cl(∆) for ∆ = −4(10n + 1)

n decomposition
100 C(2)7 × C(1462491779472195274571694315857495335176880879072)
110 C(2)11 × C(8576403641950292891121955131452148838284294200071440)

Acknowledgements

The author thanks Andreas Enge for his support on this project, the fruitful
discussions we had and a careful reading of this article. We thank Nicolas Thériault
and all the organizing comitee of the conference CHILE 2009 where the original
results of this paper were first presented. We also thank Jérôme Milan for his
support on issues regarding implementation, especially with the TIFA library.

References

[1] E. Bach, Explicit bounds for primality testing and related problems, Mathematics of Compu-
tations, 55 (1990), 335–380.

[2] J. Buchmann and S. Düllmann, On the computation of discrete logarithms in class groups, in
“Advances in Cryptology - CRYPTO ’90,” Lecture Notes in Computer Science, 537 (1991),
134–139.

[3] J. Buchmann and H.C. Williams, A key-exchange system based on imaginary quadratic fields,
Journal of Cryptology, 1 (1988), 107–118.

[4] S. Cavallar, Strategies in Filtering in the Number Field Sieve, in “ANTS-IV: Proceedings of
the 4th International Symposium on Algorithmic Number Theory,” Lecture Notes in Com-
puter Science, 1838 (2000), 209–232.

[5] H. Cohen, “A course in computational algebraic number theory,” vol 138 of Graduate Texts
in Mathematics, Springer-Verlag, 1991.

[6] S. Contini “Factoring integers with the self initializing quadratic sieve,” Master thesis, Uni-
versity of Georgia, 1997

[7] J.E. Gower and S. Wagstaff, Square form factorization, Mathematics of Computations, 77

(2008), 551–588.
[8] J.L. Hafner and K.S. McCurley, A rigorous subexponential algorithm for computation of class

groups, J. Amer. Math. Soc., 2 (1989), 839–850.
[9] D. Hühnlein, M.J. Jacobson, S. Paulus and T. Takagi, A cryptosystem based on non-maximal

imaginary quadratic orders with fast decryption, in “Advances in Cryptology - EUROCRYPT
’98,” Lecture Notes in Computer Science, 1403 (1998), 294–307.

[10] M. Jacobson, “Subexponential Class Group Computation in Quadratic Orders,” Ph.D thesis,
Technische Universität Darmstadt, 1999, Shaker Verlag GmbH.

[11] M.J. Jacobson and H.C. Williams, “Solving the Pell equation,” CMS Books in Mathematics,
Springer-Verlag, 2009.

[12] A.K. Lenstra and M.S. Manasse, Factoring with two large primes (extended abstract), in
“Advances in Cryptology - EUROCRYPT ’90,” Lecture Notes in Computer Science, 473

(1991), 72–82.
[13] A.K. Lenstra, On the calculation of regulators and class numbers of quadratic fields, in

“Journées arithmétiques,” Cambridge Univ. Press, (1982).
[14] P.C. Leyland, A.K. Lenstra, B. Dodson, A. Muffett and S. Wagstaff, MPQS with Three

Large Primes, in “ANTS-V: Proceedings of the 5th International Symposium on Algorithmic
Number Theory,” Lecture Notes in Computer Science, 2369 (2002), 446–460.

Preprint Volume X, No. X (200X), X–XX

14 Jean-François Biasse

[15] J. Milan, “TIFA”, http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/tifa.xhtml.
[16] T. Mulders and A. Storjohann, Certified linear system solving, Technical report, ETH Zürich

(2000).
[17] J. Neukirch, “Algebraic Number Theory,” vol 322 of Comprehensive Studies in Mathematics,

Springer-Verlag, 1999. Translation into english by Norbert Schappacher.
[18] C. Pomerance, Analysis and comparison of some integer factoring algorithms, in “Computa-

tional methods in number theory I,” Mathematical Centre Tracts, 154 (1982), 89–139.
[19] D. Shanks, Class number, a theory of factorization, and genera, in “Proceedings of symposia

in pure mathematics,” American Mathematical Society, 20 (1969), 415–440.

[20] C.Siegel, Über die Klassenzahl quadratischer Zahlkörper, Acta Arithmetica, 1 (1936), 83–86.
[21] A. Storjohann, “IML”, http://www.cs.uwaterloo.ca/∼astorjoh/iml.html.
[22] A. Sutherland, “Order Computations in Generic Groups,” Ph.D thesis, Massachusetts Insti-

tute of Technology, 2007.
[23] U. Vollmer, A note on the Hermite basis computation of large integer matrices, in “ISSAC ’03:

Proceedings of the 2003 international symposium on Symbolic and algebraic computation,”
ACM, (2003), 255–257.

Received June 2009; revised December 2009.

E-mail address: biasse@lix.polytechnique.fr

Preprint Volume X, No. X (200X), X–XX

http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/tifa.xhtml
http://www.cs.uwaterloo.ca/~astorjoh/iml.html

	1. Introduction
	2. The ideal class group
	2.1. Description
	2.2. Computing the group structure
	2.3. The use of sieving for computing the relation matrix

	3. Practical improvements
	3.1. Large prime variants
	3.2. Gaussian elimination techniques
	3.3. Vollmer's algorithm for computing the HNF

	4. Optimization of the parameters
	4.1. Optimization of T
	4.2. The size of the factor base
	4.3. The ratio B2/B1

	5. Computational results
	5.1. Comparative timings
	5.2. Large discriminants

	Acknowledgements
	References

