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New Linear Codes from Matrix-Product Codes with
Polynomial Units

Fernando Hernando and Diego Ruano

Abstract—A new construction of codes from old ones is is the set of all matrix-products; - - - ¢5] - A wherec; € C; is
considered, it is an extension of the matrix-product constiction.  gnym x 1 column vector; = (Cliy--sCm i)T fori=1,...,s.

Several linear codes that improve the parameters of the know Thei-th column of any codeword is an element of the form
ones are presented. . .
P > 5-1ajic; € Fy, hence reading the entries of the x I-

Index Terms—Linear Code, Bounds on the minimum distance, matrix above in column-major order, the codewords can be
Matrix-Product Code, Quasi-Cyclic Code. viewed as vectors of lengthul,

. INTRODUCTION = Zaj,wj,---,zaj,zcj GFZM'
M ATRIX-PRODUCT codes were initially considered in j=1 j=1

. [1], [2]. They are an extension of_ sevgral classic €oN- A generator matrix o' is of the form:
structions of codes from old ones. In this article we conside

this construction with cyclic codes, extended cyclic matri a11G1 a12G1 - asGro a6
product codes,where the elements of the matrix used to defi(tE)e_ az1Ge  az2G2 0 azsGeo oo a2 G

the codes are polynomials instead of elements of the finite™ : : : : ’
fleld_. The codes obtained with this constructlon are quasi- 151Gy 520Gy o+ ssGs o a5 Gy
cyclic codes|[[B]. These codes became important after it was _ . '

shown that some codes in this class meet a modified GilbeMbereG; is a generator matrix af, s = 1,..., s. Moreover,
Varshamov bound[4]. if C; is a[m,k;,d;] code then one has th&f, ---Cs] - A

An extension of the lower bound froni][2] is obtainediS @ linear code ovef, with lengthim and dimensior: =
This bound is sharp for a matrix-product code of nestéd +---+k; if the matrix A is full rank andk < ki +---+k;
codes, however it is not sharp in this new setting, that is vigherwise.
obtain codes with minimum distance beyond this bound. TheWe denote byR; = (ai1,...,a;;) the element off,
decoding algorithm from[]5] can be used for the extendé@®nsisting of thei-th row of A, for i« = 1,...,s. We
cyclic matrix-product code of two nested codes. Finally, b§et D; the minimum distance of the cod€r, generated
investigating the construction of the words with possibleY (Ri,...,Ri) in F,. In [2] the following lower bound
minimum weight of a matrix-product code, we are able tfor the minimum distance of the matrix-product codeis
sift an exhaustive search and to obtain three extendedxmat@btained,d(C’) = min{diD1,d2Ds, ..., dsDs}, whered; is
product codes, by extending theu + v-construction, that the minimum distance of’;. Furthermore this bound is sharp
improve the parameters of the codesin [6]. Another fourdineif C1 2 -+ 2 Cs [5].
codes, improving the parameters of the known linear codes,
are obtained from the previous ones. Finally, we preserdta li  |ll. EXTENDED CYCLIC MATRIX-PRODUCT CODES
of_new quasi-f:yclic codes with good parameters obtained wit |, this article we consider the case whéh, ..., C, are
this construction. cyclic codes. A cyclic code is an ideal if,[z]/(z™ — 1).

The matrix-product cod€’ = [C; - - - C] - A, for a matrix A
Il. MATRIX-PRODUCT CODES is a quasi-cyclic code.

Let F, be the finite field withy elements(, C. C Fm The_ new approa(_:h of this arti(_:le consists in_ considering the
i ! d f lenathn and A — (a. - o 4 following construction: we consider the matrix-productleo
inear codes of lengthn an (ai;) € M(Fq,s x1) a ‘ 1 q ¢ lenathn with ‘ I-matrix A
matrix with s < [. The matrix-product cod€' = [C - -- C;]- A ot 5 Cyclic codes of ‘engthm WIth respect a > f-matrix

whose entries are units i, [x]/(z™ — 1), an element with a
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M((Fy[X]/(z™ —1)*, s x 1), with s <. The extended cyclic if one considers some extra conditions, this conditions are

matrix-product codeC = [C;---Cs] - A is the set of all necessary for having good parameters, but not sufficient. We

matrix-productde; - - - ¢;]- A wherec; € F,[z]. As for matrix- will assume further particular conditions that allowed os t

product codes, if the matrid is full-rank the dimension of achieve successfully a search, discarding a significanuamo

C is the sum of the dimensions @f,...,Cs. An extended of cases. We have used the structure obtained in the previous

cyclic matrix-product code is a quasi-cyclic code. section for extended matrix-product codes from nested s£ode
We denote byR;, = (ai1,...,a;;) the element of and we have obtained some binary linear codes improving the

(Fy[z]/(z™ — 1))! consisting of thei-th row of A, for parameters of the codes previously known.

i=1,...,s. We consideCl,, theF,[z]/(z™—1)-submodule  Let s =1[ =2, and A the matrix

of (F,[z]/(z™ — 1))! generated byRi,...,R;. In other P

words, Cg, is a linear code over a ring, and we denote by A= ( ) )

D; the minimum Hamming weight of the words dfg,, o o .

D; = min{wt(z) | = € Cg,}. whereg, g, 94 are units infy[z]/(z™ — 1), in this way A is
Then we have a lower bound for the minimum distance &l rank overFs[z]/(z™ — 1) with D, =2 and D, = 1. We

a extended cyclic matrix-product code similar to the one MY also conS|der_ this family of codes as an extension of the

[, d(C) > d* = min{dy Dy, d>Ds, ..., d,D,}. The proof is | u + v-construction.

the same as the one for matrix-product codes. For nested matrix-product codes, the lower bound for the

If we considerC, . .., C nested codes, the previous bounglinimum distanced” = min{d, Dy,...,d.D,} is sharp.
is sharp for matrix-product codes. However, if we considerfarthermore, by theorer|[S, Theorem 1] we have some words
extended cyclic matrix-product code, then it is not sharp ith weightd;D; fori =1,...,s. We follow the construction
general, as one can see in the examples. Let us consider@hdhese words and consider a matik in a such a way
same approach as that 6f [5] to construct a codeword wifigt they have weight larger thahD;. Let Cy = (f1) and
minimum weight in this more general setting: set. .., c, Cy = (f2), with f1 | f2 (that is,Cy D C5). We consider
such thaie; = - - = ¢,, With wt(c,) = dp, andcpyq = ... = 1. he € Fofz] such thatwt(fih) = di andwt(f2hs) = da.

o =0.Letr =P rR;, with r; € Fylz]/(z™ — 1), be a The words of C = [C1C:2]A considered in[[5, Theorem
word in C, with weight D,,. If ¢, = r;c; then 1] arec; = (fih1,0) and c; = (fahary, f2hora), Where
r1R1 + ro Ry, wWith 71,79 € Fo[z]/(z™ — 1) , is a codeword
P P with minimum weight inCr,, namely it has weight.
[Cll .o C;] A= Cc1 Za-j’lrj’ ey Z a;ir; | = CpT. We have thatclA = (flhlgla flhlgg) and CQA =
j=1 j=1 (faharig1, foha(riga + 1294)). The words with minimum
weight in Cr, are generated byR, and g4R; — g2Rs.
Therefore, the words with possible minimum weight frdrh [5]
are: (.flhlgla flhng), (O, f2h294) and (thgglg4, O) Hence,

0 g4

Although, for a cyclic code&” and a unitg in Fy[z]/(z™ —
1), C = {cg | ¢ € C}, the weight ofc is different from the

one ofcg, in general. Hence, the weight efr is greater than we want to getfy 1, g, o fihigs With weight greater thar,

or equal tod, D,,. We remgr_k that this phenomenon aIIow%lnd fohoga and fahagrgs With weight greater thas.
us to obtain codes with minimum distance beyond the IowerWe shall assume also thal > 2d,, therefore we only

bound. . .
. . . should havefihig1 or fihige with weight greather thaa;
We can consider the algorithrl[5, Algorithm 1] to deCOdﬁ] order to have a chance to improve the lower bound for
extended cyclic matrix-product codes up[t%Q;lj errors, for matrix-product code

5= 2andl > 2. AIgor|thrT_1 n 5] assumes thaA IS a non- Summarizing, we have performed a sifted search following
singular by columns matrix, in this setting, it just meanatth the criteria: we consider extended cyclic matrix-produdes
the first row ofA has non-zero elements and théimensional C = [C1Cs]A, whereCy, Cs are cyclic nested codes, with
minors of A are full rank inf¥, [?]/(Im B b, . . same length and; “much larger” than2d;, and a matrix
For s > 3, we cannot use this algorithm since the units of
F,[z]/(z™ — 1) are not an additive group, that is the sum of A= (91 92) 7
two units is not a unit in general. For instandeand = are 0 1
units inFy[z]/(2™ — 1) andz — 1 is not a unit, for any finite with ¢, ¢, units inF5[z]/(z™ —1) such thatwt(f1h1g1) > ds
field F, andm > 1. Hence, we can only perform the GaussiaBr ¢ ( f,hyg,) > dj.
elimination (i.e., lines 10 and 11 df[5, Algorithm 1]) for&wv  we have compared the minimum distance of these binary
rows. linear codes with the ones ifal[6] usingl [7]. We pre-compute
a table containing all the cyclic codes up to lengti, their
IV. NEW LINEAR CODES parameters and their words of minimum weight. We obtained

Obtaining a sharper bound than the one in the previothse following linear codes whose parameters are better than

oo L e ones previously known:
section is a very tough problem, actually it is the same
question as the computation of the minimum distance of a| From [6] New codes
quasi-cyclic code. However, by analyzing the lower bound| [94,25,26] | C; = [94,25,27]
d* we have performed a search to find codes with good| [102,28,27] | C; = [102, 28, 28]
parameters. An exhaustive search in this family is onlyifdas [102,29,26] | C5 = [102,29, 28]
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C1 = [C1,C3]A, whereCy = (f1) andCy = (f2) with:

° f1:x23+x22+x21+x20+x18+x17+x16+x14+
x13+x11+x10+x9+x5+x4+17
o o=@ -1/(z+1),

° 91:1,

g2 = $20+$19+$13+$12+$11+l’9+$7+l’4+(£3+(£2+1.

Co = [C1,C3]A, whereCy = (f1) andCy = (f2) with:

o fi=a? 422 1?2 g2l 420 4 18 4 p16 4 g1l g
0+ " S bt 41,

° 9121,

fa= (" =1)/(@* +z+1),

Cs = [Cl, CQ]A, WhereCl = (fl) and Cy = (fg) with:

o fL=a? o a2l g 19 o pl8 415 4 14 4 a8
212 4ot 2% + 28 2 42t 4+ 1,

fo= (2% —1)/(2® + 2+ 1),

o g1 =22+ 2% +1,
° 92:I40+ZC24+1.

Moreover operating o’ we get four more codes.

From [€] | New codes Method

101,29, 26] | C4 = [101, 29, 27] | PunctureCod&l,102)
101,28, 26] | C5 = [101,28,28] | ShortenCodé]s;,101)
100, 28,26] | Cs = [100, 28,27] | PunctureCodék,101)
103,29,27] | C; = [103,29,28] | ExtendCod&(fs)

Also a good number of new quasi-cyclic codes reaching t
best known lower bound$§][8] are achieved with this methg
cyclic extended matrix-product codes are quasi-cyclicesod
The codes marked in bold already exist but with a differe
construction. The construction of the codes can be found

http://euclid.ucc.ie/pages/staff/Fernando/

n k d

4 |3 2 20 | 11 5
6 |4 2 20 | 12-13-14 4
8 |3 4 20 | 16-18-19 2
8 | 5-6-7 2 22 | 12 6
10 | 6 3 22 | 21 2
10 | 9 2 24 | 4 12
12 | 5-7 4 24 | 8 8
12 | 9-10-11 2 24 | 13 6
14 | 5 6 24 | 15-16-17 4
14 | 9 4 24 | 20-21-22-23| 2
14 | 11-13 2 26 | 14 6
16 | 3 8 26 | 25 2
16 | 4 8 28 | 6 12
16 | 9-10-11 4 28 | 15 6
16 | 12-13-14-15| 2 28 | 16 6
18 | 8 6 28 | 19-20-22 4
18 | 10-11 4 28 | 24-25-26-27| 2
18 | 15-16-17 2

30

6

—
N

30

7

[any
N

30

16

~

30

17

30

18 -19

30

20

30

21-22-23-24

30

26-27-28-29

32

4

32

18-19

32

23

32

27-28-29-30-31

34

24-25-26

34

33

36

19

36

26-27-28

36

31-32-33-34-35

36

37

40

18

40

21-22-23

40

30-31-32-33

40

35-36-37-38-39

42

18

42

22-23-24-25

42

27-28-29

42

32-33-34-35

42

37-38-39-40-41

a4

23

44

24

a4

42-43

46

24

o

helg

33

d46

45

48

4

ug

25

Of i~

g

27-28-29-30

48

32-33

48

37-38-39-40-41

48

43-44-45-46-47

50

28-29

QOIN PO ERINNOOENOOINROOORINROERNNRAOINEANPROIEINRAOIOOD

50

45-46-49

N

52

27

52

50-51

54

28-29

54

51-52-53

56

23

56

24-25-26-27

56

30

56

33-34-35-36-37

56

40-41

56

45-46-47-48-49

56

51-52-53-54-55

56

57

60 | 22 16
60 | 28-29 12
60 | 37-38-39-40 8
60 | 44-45 6
60 | 49-50-51-52-53 4
60 | 55-56-57-58-59 2
62 | 7 30
62 | 22 16
62 | 30 12
62 | 36 10
62 | 40-41 8
62 | 46 6
62 | 51-52-55-57 4
62 | 61 2
64 | 31-33 12
64 | 58-59-60-61-62 12
66 | 22 18
66 | 25 16
66 | 34-35 12
66 | 40 10
66 | 42-43-44-45 8
66 | 50-51-52 6
66 | 54-55 4
66 | 63-64-65 2
68 | 26 16
68 | 35 12
68 | 44 8
68 | 51 6
68 | 56-57-58 4
68 | 66-67 2
70 | 22 20
70 | 37 12
70 | 42 10
70 | 46-47-49 8
70 | 52-53-54 6
70 | 58-59-60-61-62 4
70 | 63 3
70 | 64-65-66-67-69 2
72 | 29-30 16
72 | 38-39 12
72 | 48 8
72 | 60-61-62-63 4
72 | 66-67-68-69-70 2
72 | 71 2
74 | 73 2
76 | 40 12
76 | 74-74 12
78 | 41-42 12
78 | 48-49 10
78 | 52-53-54 8
78 | 60-61-62-63 6
78 | 75-76-77 2
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80 | 41 14

92 | 24-25 26
80 | 43-44 12

92 | 47-48 14
80 | 68-69-70 4 |orTes -
80 | 74-75-76-77-79 2

92 | 66-67-68-69 | 8
80| 79 2

92 |79 4
82| 22 24

92 | 90-91 2
82| 60 8

94 | 25 26
82 81 2 |97 T48 15
84 | 23-24-25 24
54130 551194 [ 69-70 8

96 | 36-37-38 20
84 | 43-44 14 |96 505152 14
84 | 46-47-48-49 | 12

96 | 56-57 12
84 | 52-53 10

96 | 83-84-85 4
84 | 58-50-60-61 | 8

96 | 90-91-92-93-94 2
84 | 66-67-68 6 |osTo8 5
84 | 71-72-73-74-75 4
5176 71| 98 | 52:54 14

98 | 92-94-95-97 |2
84 | 78-79-80-81-82 2
81183 5| 100 | 53-54 14

100 | 94-95-96-98-99 2
86| 16 32

102 | 9 48
86 | 56-57 10

102 | 28 27
86 | 70-71 6

102 | 29 26
86| 72 5

102 | 34 24
86| 85 2

102 | 42 20
88| 32 20
88 | 46-47 14102 | 53 16

102 | 56-57 14
gg ;i 85-86-87 g 104 | 56 16

104 | 100-101-102 | 2
90 | 26 24 | 462 1103 2
90 | 46-47-48 14

106 | 105 2
90 | 52-53-54 12

108 | 46-47 20
90 | 57-58-59-60 | 10

108 | 56-57 16
90 | 64-65-66 8

110 | 58-59 16
90 | 71-72-73 6 | 1151 -
90| 77-78-79-80 |4 |15 8E 5
90 | 84-85-86-87-89 2

110 | 105-106-109 | 2
90 | 89 2

[5] F. Hernando, K. Lally, and D. Ruano, “Construction anctatting of
matrix-product codes from nested codeS{ibmitted to Appl. Algebra
Engrg. Comm. Compyt2008, 11 pages.

[6] M. Grassl, “Bounds on the minimum distance of linear cté®nline
available a: http://www.codetables/de, 2007, accesse2008-3-27.

[7] W. Bosma, J. Cannon, and C. Playoust, “The magma algeysters.
I. the user languageJ. Symbolic Compuytvol. 24(3-4), pp. 235-265,
1997.

[8] E. Z. Chen, “Web database of binary QC codes,” Online lab& at

http://www.tec.hkr.sef chen/research/codes/searchqc2 htm, accessed on

2009-3-27.

V. CONCLUSION

The new construction presented in this paper produces codes

with good parameters. We expect that one can find more new
codes with larger length and over other finite fields.
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