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New Linear Codes from Matrix-Product Codes with
Polynomial Units

Fernando Hernando and Diego Ruano

Abstract—A new construction of codes from old ones is
considered, it is an extension of the matrix-product construction.
Several linear codes that improve the parameters of the known
ones are presented.

Index Terms—Linear Code, Bounds on the minimum distance,
Matrix-Product Code, Quasi-Cyclic Code.

I. I NTRODUCTION

M ATRIX-PRODUCT codes were initially considered in
[1], [2]. They are an extension of several classic con-

structions of codes from old ones. In this article we consider
this construction with cyclic codes, extended cyclic matrix-
product codes,where the elements of the matrix used to define
the codes are polynomials instead of elements of the finite
field. The codes obtained with this construction are quasi-
cyclic codes [3]. These codes became important after it was
shown that some codes in this class meet a modified Gilbert-
Varshamov bound [4].

An extension of the lower bound from [2] is obtained.
This bound is sharp for a matrix-product code of nested
codes, however it is not sharp in this new setting, that is we
obtain codes with minimum distance beyond this bound. The
decoding algorithm from [5] can be used for the extended
cyclic matrix-product code of two nested codes. Finally, by
investigating the construction of the words with possible
minimum weight of a matrix-product code, we are able to
sift an exhaustive search and to obtain three extended matrix-
product codes, by extending theu|u + v-construction, that
improve the parameters of the codes in [6]. Another four linear
codes, improving the parameters of the known linear codes,
are obtained from the previous ones. Finally, we present a list
of new quasi-cyclic codes with good parameters obtained with
this construction.

II. M ATRIX -PRODUCT CODES

Let Fq be the finite field withq elements,C1, . . . , Cs ⊂ F
m
q

linear codes of lengthm andA = (ai,j) ∈ M(Fq, s × l) a
matrix withs ≤ l. The matrix-product codeC = [C1 · · ·Cs]·A
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is the set of all matrix-products[c1 · · · cs] ·A whereci ∈ Ci is
anm×1 column vectorci = (c1,i, . . . , cm,i)

T for i = 1, . . . , s.
The i-th column of any codeword is an element of the form

∑s

j=1
aj,icj ∈ F

m
q , hence reading the entries of them × l-

matrix above in column-major order, the codewords can be
viewed as vectors of lengthml,

c =





s
∑

j=1

aj,1cj , . . . ,

s
∑

j=1

aj,lcj



 ∈ F
ml
q .

A generator matrix ofC is of the form:

G =











a1,1G1 a1,2G1 · · · a1,sG1 · · · a1,lG1

a2,1G2 a2,2G2 · · · a2,sG2 · · · a2,lG2

...
... · · ·

... · · ·
...

as,1Gs as,2Gs · · · as,sGs · · · as,lGs











,

whereGi is a generator matrix ofCi, i = 1, . . . , s. Moreover,
if Ci is a [m, ki, di] code then one has that[C1 · · ·Cs] · A
is a linear code overFq with length lm and dimensionk =
k1+ · · ·+ks if the matrixA is full rank andk < k1+ · · ·+ks
otherwise.

We denote byRi = (ai,1, . . . , ai,l) the element ofFl
q

consisting of thei-th row of A, for i = 1, . . . , s. We
set Di the minimum distance of the codeCRi

generated
by 〈R1, . . . , Ri〉 in F

l
q. In [2] the following lower bound

for the minimum distance of the matrix-product codeC is
obtained,d(C) ≥ min{d1D1, d2D2, . . . , dsDs}, wheredi is
the minimum distance ofCi. Furthermore this bound is sharp
if C1 ⊃ · · · ⊃ Cs [5].

III. E XTENDED CYCLIC MATRIX -PRODUCT CODES

In this article we consider the case whenC1, . . . , Cs are
cyclic codes. A cyclic code is an ideal inFq[x]/(x

m − 1).
The matrix-product codeC = [C1 · · ·Cs] · A, for a matrixA
is a quasi-cyclic code.

The new approach of this article consists in considering the
following construction: we consider the matrix-product code
of s cyclic codes of lengthm with respect as × l-matrix A
whose entries are units inFq[x]/(x

m − 1), an element with a
inverse, instead of elements inFq. A unit in Fq[X ]/(xm−1) is
a polynomial of degree lower thanm whose greatest common
divisor with xm−1 is 1 (they are co-primes). We remark, that
the cyclic codes generated byf and byfu, with f | xm − 1
andgcd(u, xm − 1) = 1, are the same code.

Hence, we have the so-called extended cyclic matrix-
product codes: letC1 = (f1), . . . , Cs = (fs) ⊂ Fq[x]/(x

m −
1) be cyclic codes of lengthm and a matrixA = (ai,j) ∈

http://arxiv.org/abs/0903.4826v1
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M((Fq[X ]/(xm−1)∗, s× l), with s ≤ l. The extended cyclic
matrix-product codeC = [C1 · · ·Cs] · A is the set of all
matrix-products[c1 · · · cs] ·A whereci ∈ Fq[x]. As for matrix-
product codes, if the matrixA is full-rank the dimension of
C is the sum of the dimensions ofC1, . . . , Cs. An extended
cyclic matrix-product code is a quasi-cyclic code.

We denote byRi = (ai,1, . . . , ai,l) the element of
(Fq[x]/(x

m − 1))l consisting of thei-th row of A, for
i = 1, . . . , s. We considerCRi

, theFq[x]/(x
m−1)-submodule

of (Fq[x]/(x
m − 1))l generated byR1, . . . , Ri. In other

words,CRi
is a linear code over a ring, and we denote by

Di the minimum Hamming weight of the words ofCRi
,

Di = min{wt(x) | x ∈ CRi
}.

Then we have a lower bound for the minimum distance of
a extended cyclic matrix-product code similar to the one in
[2], d(C) ≥ d∗ = min{d1D1, d2D2, . . . , dsDs}. The proof is
the same as the one for matrix-product codes.

If we considerC1, . . . , Cs nested codes, the previous bound
is sharp for matrix-product codes. However, if we consider a
extended cyclic matrix-product code, then it is not sharp in
general, as one can see in the examples. Let us consider the
same approach as that of [5] to construct a codeword with
minimum weight in this more general setting: setc1, . . . , cp
such thatc1 = · · · = cp, with wt(cp) = dp, andcp+1 = . . . =
cs = 0. Let r =

∑p

i=1
riRi, with ri ∈ Fq[x]/(x

m − 1), be a
word in CRp

with weightDp. If c′i = rici then

[c′1 · · · c
′

s] · A = c1





p
∑

j=1

aj,1rj , . . . ,

p
∑

j=1

aj,lrj



 = cpr.

Although, for a cyclic codeC and a unitg in Fq[x]/(x
m −

1), C = {cg | c ∈ C}, the weight ofc is different from the
one ofcg, in general. Hence, the weight ofcpr is greater than
or equal todpDp. We remark that this phenomenon allows
us to obtain codes with minimum distance beyond the lower
bound.

We can consider the algorithm [5, Algorithm 1] to decode
extended cyclic matrix-product codes up to⌊d∗

−1

2
⌋ errors, for

s = 2 and l ≥ 2. Algorithm in [5] assumes thatA is a non-
singular by columns matrix, in this setting, it just means that
the first row ofA has non-zero elements and the2-dimensional
minors ofA are full rank inFq[x]/(x

m − 1),
For s ≥ 3, we cannot use this algorithm since the units of

Fq[x]/(x
m − 1) are not an additive group, that is the sum of

two units is not a unit in general. For instance,1 andx are
units inFq[x]/(x

m − 1) andx− 1 is not a unit, for any finite
field Fq andm > 1. Hence, we can only perform the Gaussian
elimination (i.e., lines 10 and 11 of [5, Algorithm 1]) for two
rows.

IV. N EW LINEAR CODES

Obtaining a sharper bound than the one in the previous
section is a very tough problem, actually it is the same
question as the computation of the minimum distance of a
quasi-cyclic code. However, by analyzing the lower bound
d∗ we have performed a search to find codes with good
parameters. An exhaustive search in this family is only feasible

if one considers some extra conditions, this conditions are
necessary for having good parameters, but not sufficient. We
will assume further particular conditions that allowed us to
achieve successfully a search, discarding a significant amount
of cases. We have used the structure obtained in the previous
section for extended matrix-product codes from nested codes
and we have obtained some binary linear codes improving the
parameters of the codes previously known.

Let s = l = 2, andA the matrix

A =

(

g1 g2
0 g4

)

,

whereg1, g2, g4 are units inF2[x]/(x
m − 1), in this wayA is

full rank overF2[x]/(x
m − 1) with D1 = 2 andD2 = 1. We

may also consider this family of codes as an extension of the
u | u+ v-construction.

For nested matrix-product codes, the lower bound for the
minimum distanced∗ = min{d1D1, . . . , dsDs} is sharp.
Furthermore, by theorem [5, Theorem 1] we have some words
with weightdiDi for i = 1, . . . , s. We follow the construction
of these words and consider a matrixA in a such a way
that they have weight larger thandiDi. Let C1 = (f1) and
C2 = (f2), with f1 | f2 (that is, C1 ⊃ C2). We consider
h1, h2 ∈ F2[x] such thatwt(f1h1) = d1 andwt(f2h2) = d2.
The words ofC = [C1C2]A considered in [5, Theorem
1] are c1 = (f1h1, 0) and c2 = (f2h2r1, f2h2r2), where
r1R1 + r2R2, with r1, r2 ∈ F2[x]/(x

m − 1) , is a codeword
with minimum weight inCR2

, namely it has weight1.
We have that c1A = (f1h1g1, f1h1g2) and c2A =

(f2h2r1g1, f2h2(r1g2 + r2g4)). The words with minimum
weight in CR2

are generated byR2 and g4R1 − g2R2.
Therefore, the words with possible minimum weight from [5]
are: (f1h1g1, f1h1g2), (0, f2h2g4) and (f2h2g1g4, 0). Hence,
we want to getf1h1g1 or f1h1g2 with weight greater thand1
andf2h2g4 andf2h2g1g4 with weight greater thand2.

We shall assume also thatd2 > 2d1, therefore we only
should havef1h1g1 or f1h1g2 with weight greather thand1
in order to have a chance to improve the lower bound for
matrix-product code.

Summarizing, we have performed a sifted search following
the criteria: we consider extended cyclic matrix-product codes
C = [C1C2]A, whereC1, C2 are cyclic nested codes, with
same length andd2 “much larger” than2d1, and a matrix

A =

(

g1 g2
0 1

)

,

with g1, g2 units inF2[x]/(x
m−1) such thatwt(f1h1g1) > d1

or wt(f1h1g2) > d1.
We have compared the minimum distance of these binary

linear codes with the ones in [6] using [7]. We pre-compute
a table containing all the cyclic codes up to length110, their
parameters and their words of minimum weight. We obtained
the following linear codes whose parameters are better than
the ones previously known:

From [6] New codes
[94, 25, 26] C1 = [94, 25, 27]
[102, 28, 27] C2 = [102, 28, 28]
[102, 29, 26] C3 = [102, 29, 28]
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C1 = [C1, C2]A, whereC1 = (f1) andC2 = (f2) with:

• f1 = x23 + x22 + x21 + x20 + x18 + x17 + x16 + x14 +
x13 + x11 + x10 + x9 + x5 + x4 + 1,

• f2 = (x47 − 1)/(x+ 1),
• g1 = 1,
• g2 = x20+x19+x13+x12+x11+x9+x7+x4+x3+x2+1.

C2 = [C1, C2]A, whereC1 = (f1) andC2 = (f2) with:

• f1 = x25 + x23 + x22 + x21 + x20 + x18 + x16 + x11 +
x10 + x8 + x7 + x6 + x5 + x4 + x+ 1,

• f2 = (x51 − 1)/(x2 + x+ 1),
• g1 = 1,
• g2 = x20 + x15 + x14 + x10 + x9 + x7 + 1.

C3 = [C1, C2]A, whereC1 = (f1) andC2 = (f2) with:

• f1 = x24 + x23 + x21 + x19 + x18 + x15 + x14 + x13 +
x12 + x11 + x9 + x8 + x6 + x4 + 1,

• f2 = (x51 − 1)/(x2 + x+ 1),
• g1 = x12 + x6 + 1,
• g2 = x40 + x24 + 1.

Moreover operating onC3 we get four more codes.

From [6] New codes Method
[101, 29, 26] C4 = [101, 29, 27] PunctureCode(C3,102)
[101, 28, 26] C5 = [101, 28, 28] ShortenCode(C3,101)
[100, 28, 26] C6 = [100, 28, 27] PunctureCode(C5,101)
[103, 29, 27] C7 = [103, 29, 28] ExtendCode(C3)

Also a good number of new quasi-cyclic codes reaching the
best known lower bounds [8] are achieved with this method,
cyclic extended matrix-product codes are quasi-cyclic codes.
The codes marked in bold already exist but with a different
construction. The construction of the codes can be found in
http://euclid.ucc.ie/pages/staff/Fernando/.

n k d
4 3 2
6 4 2
8 3 4
8 5-6-7 2
10 6 3
10 9 2
12 5-7 4
12 9-10-11 2
14 5 6
14 9 4
14 11-13 2
16 3 8
16 4 8

16 9-10-11 4
16 12-13-14-15 2
18 8 6
18 10-11 4
18 15-16-17 2

20 11 5
20 12-13-14 4
20 16-18-19 2
22 12 6
22 21 2
24 4 12

24 8 8

24 13 6
24 15-16-17 4
24 20-21-22-23 2
26 14 6
26 25 2
28 6 12

28 15 6
28 16 6

28 19-20-22 4
28 24-25-26-27 2

30 6 14

30 7 12
30 16 7
30 17 6
30 18− 19 6

30 20 5
30 21-22-23-24 4
30 26-27-28-29 2
32 4 16

32 18-19 6
32 23 4
32 27-28-29-30-31 2
34 24-25-26 4
34 33 2
36 19 8
36 26-27-28 4
36 31-32-33-34-35 2
36 37 2
40 18 10
40 21-22-23 8
40 30-31-32-33 4
40 35-36-37-38-39 2
42 18 12
42 22-23-24-25 8
42 27-28-29 6
42 32-33-34-35 4
42 37-38-39-40-41 2
44 23 9
44 24 8
44 42-43 2
46 24 10
46 33 6
46 45 2
48 4 24

48 25 10
48 27-28-29-30 8
48 32-33 6
48 37-38-39-40-41 4
48 43-44-45-46-47 2
50 28-29 8
50 45-46-49 2
52 27 10
52 50-51 10
54 28-29 10
54 51-52-53 2
56 23 14
56 24-25-26-27 12
56 30 10
56 33-34-35-36-37 8
56 40-41 6
56 45-46-47-48-49 4
56 51-52-53-54-55 2
56 57 2

60 22 16
60 28-29 12
60 37-38-39-40 8
60 44-45 6
60 49-50-51-52-53 4
60 55-56-57-58-59 2
62 7 30
62 22 16
62 30 12
62 36 10
62 40-41 8
62 46 6
62 51-52-55-57 4
62 61 2
64 31-33 12
64 58-59-60-61-62 12
66 22 18

66 25 16
66 34-35 12
66 40 10
66 42-43-44-45 8
66 50-51-52 6
66 54-55 4
66 63-64-65 2
68 26 16
68 35 12
68 44 8
68 51 6
68 56-57-58 4
68 66-67 2
70 22 20
70 37 12
70 42 10
70 46-47-49 8
70 52-53-54 6
70 58-59-60-61-62 4
70 63 3
70 64-65-66-67-69 2
72 29-30 16
72 38-39 12
72 48 8
72 60-61-62-63 4
72 66-67-68-69-70 2
72 71 2
74 73 2
76 40 12
76 74-74 12
78 41-42 12
78 48-49 10
78 52-53-54 8
78 60-61-62-63 6
78 75-76-77 2
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80 41 14
80 43-44 12
80 68-69-70 4
80 74-75-76-77-78 2
80 79 2
82 22 24
82 60 8
82 81 2
84 23-24-25 24
84 30 20
84 43-44 14
84 46-47-48-49 12
84 52-53 10
84 58-59-60-61 8
84 66-67-68 6
84 71-72-73-74-75 4
84 76 4
84 78-79-80-81-82 2
84 83 2
86 16 32
86 56-57 10
86 70-71 6
86 72 5
86 85 2
88 32 20
88 46-47 14
88 75 4
88 84-85-86-87 2
90 26 24
90 46-47-48 14
90 52-53-54 12
90 57-58-59-60 10
90 64-65-66 8
90 71-72-73 6
90 77-78-79-80 4
90 84-85-86-87-88 2
90 89 2

92 24-25 26
92 47-48 14
92 55 12
92 66-67-68-69 8
92 79 4
92 90-91 2
94 25 26
94 48 15
94 69-70 8
96 36-37-38 20
96 50-51-52 14
96 56-57 12
96 83-84-85 4
96 90-91-92-93-94 2
96 95 2
98 52-54 14
98 92-94-95-97 2
100 53-54 14
100 94-95-96-98-99 2
102 9 48

102 28 27
102 29 26
102 34 24

102 42 20
102 53 16
102 56-57 14
104 56 16
104 100-101-102 2
104 103 2
106 105 2
108 46-47 20
108 56-57 16
110 58-59 16
110 71 12
110 85 8
110 105-106-109 2

V. CONCLUSION

The new construction presented in this paper produces codes
with good parameters. We expect that one can find more new
codes with larger length and over other finite fields.
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