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Abstract: An iterative decoding algorithm for convolutional codes is presented. It succes-
sively processes N consecutive blocks of the received word in order to decode the first block. A
bound is presented showing which error configurations can be corrected. The algorithm can be
efficiently used on a particular class of convolutional codes, known as doubly cyclic convolutional
codes. Due to their highly algebraic structure those codes are well suited for the algorithm and
the main step of the procedure can be carried out using Reed-Solomon decoding. Examples
illustrate the decoding and a comparison with existing algorithms is being made.
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1 Introduction

The main task of coding theory can be described as designing codes with good error-correcting
performance along with an efficient decoding algorithm. For block codes two types of answers
are known to this quest. On the one hand, there are algebraic decoding algorithms for the special
class of BCH codes, see, e.g., [6, Sec. 5.4], including the more recent list decoding procedures as
developed in [21, 5], see also [20]. On the other hand, there are graph-based decoding algorithms
as introduced by [26]. These are iterative methods and work particularly well for LDPC codes;
for an overview see for instance the thesis [25].

For convolutional codes the most prominent decoding algorithms are the Viterbi algorithm [23]
and variants thereof. They are all trellis-based algorithms and mainly applicable to codes over
small alphabets and not too large degree in order to keep the underlying graph at a manageable
size; for an overview see the monographs [9, 12]. In the 1970’s the first attempts were made in
order to construct convolutional codes with some additional underlying algebraic structure in
the hope of decoding them algebraically [10, 15, 16]. Later constructions included BCH convo-
lutional codes [19] as well as specific constructions of cyclic convolutional codes [3, 4] and Goppa
convolutional codes [14]. In the paper [17], a first step toward an algebraic decoding algorithm
for convolutional codes has been made. It is based on an input/state/output description of the
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‡Universidad de Salamanca, Departamento de Matemáticas, Plaza de la Merced 1–4, 37008 Salamanca, Spain;
joseig@usal.es

Research by U.H. has been partially supported by grant HE 1858/12-1 within the DFG SPP 1305. Research
by J.I.I.C. has been partially supported by Junta de Castilla y León through research project SA029A08

1

http://arxiv.org/abs/0908.0753v1


code and relies on the controllability matrix being the parity check matrix of an algebraically
decodable block code. This makes the algorithm particularly suitable for the BCH codes devel-
oped in [19]. In the thesis [22, Sec. 4.2] it is shown that the algorithm also applies to a certain
class of 1-dimensional cyclic convolutional codes appearing as a special case in [4]. Finally, in
the thesis [24, Sec. 4.3] a decoding algorithm for unit memory convolutional codes is developed
which may be turned into an algebraic algorithm if the underlying block codes can be decoded
algebraically. We will return to these algorithms at the end of Section 4 when comparing the
performance of our algorithm with theirs.

In this paper we will present an algebraic decoding algorithm for a particular class of con-
volutional codes. It will depend on a chosen parameter N and a certain weight bound d and
can correct up to ⌊d/2⌋ errors appearing on any time window of length N . The algorithm is a
special version of a decoding algorithm appearing first in [7, Sec. 4.4] and [8]. As opposed to our
presentation, the algorithm is cast completely in the setting of input/state/output descriptions
in [7, 8]. The procedure works sequentially in the sense that N consecutive blocks of the received
word are processed in order to decode the first of those blocks. This decoding step is based on
the partial decoding of a certain block code. Thereafter the algorithm moves one block further.
The details, in a slightly more general version, will be presented in the next section. In Section 3
we will show that the class of doubly cyclic convolutional codes, introduced in [4], is particularly
well suited for this algorithm. Indeed, first of all the error parameter d can be made quite large
(compared to the length, dimension, and degree of the code), and secondly the partial decoding
of the underlying block code can be achieved by the well-known and efficient Reed-Solomon
decoding. It should be mentioned that due to the large field size and degree of doubly cyclic
codes, Viterbi decoding is not feasible for this particular class of convolutional codes. In the
final section we will run some detailed examples and will compare our algorithm to the decoding
algorithms mentioned above with respect to error-correcting performance and time complexity.

Let us close the introduction with recalling the basic notions of convolutional coding theory
as needed throughout the paper. Let F be a finite field and let F[z] and F[[z]] denote the rings of
polynomials and formal power series in z, respectively. Throughout this paper we regard vectors
as row vectors, so that in every vector-matrix multiplication the matrix appears on the right. A
convolutional code of length n is an F[[z]]-submodule C of F[[z]]n of the form

C = imG := {uG
∣

∣ u ∈ F[[z]]k}

where G is a basic matrix in F[z]k×n, i. e. rkG(λ) = k for all λ ∈ F, with F being an algebraic
closure of F. We call such a matrix G an encoder, and the number deg(C) := deg(G) :=
max{deg(M) | M is a k-minor of G} is said to be the degree of the encoder G or of the code C.
For each basic matrix the sum of its row degrees is at least deg(G), where the degree of a
polynomial row vector is defined as the maximal degree of its entries. A matrix G ∈ F[z]k×n is
said to be reduced if the sum of its row degrees equals deg(G); for the many characterizations
of reducedness see, e. g., [1, Main Thm.] or [13, Thm. A.2]. It is well known [1, p. 495] that
each convolutional code admits a reduced encoder. The row degrees of a reduced encoder are,
up to ordering, uniquely determined by the code and are called the Forney indices of the code
or of the encoder, and the maximal Forney index is called the memory of the code. The main
example class of convolutional codes in this paper, so called doubly-cyclic convolutional codes,
will be introduced in Theorem 3.1.

Besides these algebraic notions the main concept in error-control coding is the weight. The
well-known Hamming weight of a vector v = (v1, . . . , vn) ∈ F

n is given as wt(v) = #{i | vi 6= 0}
and d(v, w) := wt(v − w) denotes the associated Hamming distance. For a polynomial vector
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v =
∑N

t=0 vtz
t ∈ F[z]n, vt ∈ F

n, we define its overall Hamming weight as wt(v) =
∑N

t=0 wt(vt).
The distance min{wt(v) | v ∈ C, v 6= 0} of a block code C is denoted by dist(C), while for a
convolutional code it is written as dfree(C).

2 A General Decoding Algorithm

We consider a convolutional code C = imG := {uG | u ∈ F[[z]]k} ⊆ F[[z]]n having a basic
generator matrix

G =

m
∑

j=0

Gjz
j ∈ F[z]k×n, Gj ∈ F

k×n. (2.1)

For the decoding algorithm we need to fix a processing depth N ∈ N and define the block code

B := im Ĝ ⊆ F
Nn, where Ĝ :=











G0 G1 . . . GN−1

G0 . . . GN−2

. . .
...
G0











∈ F
Nk×Nn, (2.2)

where, as usual, Gj = 0 for j > m and the empty triangular part is filled with zero entries.
Notice that due to the basicness of the encoder G, the matrix G0, and hence Ĝ, has full row
rank.

Besides the processing depth N , the decoding algorithm will also depend on the choice of a
step size parameter L ∈ {1, . . . , N} and a weight parameter d := d(L) ≥ dist(B)− 1 satisfying

v := (v0, . . . , vN−1) ∈ B, wt(v) ≤ d =⇒ (v0, . . . , vL−1) = 0. (2.3)

It is clear that, d = dist(B)−1 = dist(imG0)−1 satisfies (2.3), regardless of the value of L. Later
on we will see that the error-correcting bound of our decoding algorithm will be given by ⌊d/2⌋
and therefore we will be interested in choosing d as large as possible. However, Algorithm 2.3
below will not depend on choosing d optimal. In the next section, we will present a class of
codes along with a specific large weight parameters d satisfying (2.3), and we will show how to
carry out the main step of the algorithm for those codes efficiently.

Example 2.1 Let G = (1, 1, z, . . . , z) ∈ F2[z]
1×n. Choose N = 2 and L = 1. Then

B = im

(

1 1 0 . . . 0 0 0 1 . . . 1

0 0 0 . . . 0 1 1 0 . . . 0

)

.

Notice that dist(B) = dist(imG0) = 2. By inspecting all 4 codewords in B we see that d = n− 1
is the largest value for which (2.3) is true (actually, wt(v) ≤ n − 1 implies wt(v) ≤ 2). One
should also observe that in this case d = dfree(C)−1, which is the maximum possible value for d,
see Remark 2.2(b).

We will also need the matrix G̃ ∈ F
mk×Nn defined as

G̃ :=





















Gm

Gm−1 Gm

...
...

. . .

Gm−N+1 Gm−N+2 . . . Gm

...
...

...
G1 G2 . . . GN





















if N ≤ m and G̃ :=











Gm 0
Gm−1 Gm 0
...

...
. . .

...
G1 G2 . . . Gm 0











if N > m,
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where in the second case the zero matrices on the very right consist of (N−m)n columns. Notice

that the matrix
(

G̃
Ĝ

)

∈ F
(N+m)k×Nn is a typical block in the sliding generator matrix of the

code C. In particular, if v =
∑

t≥0 vtz
t = (

∑

t≥0 utz
t)G is a codeword in C, then

(vj , vj+1, . . . , vj+N−1) = (uj, uj+1, . . . , uj+N−1)Ĝ+ (uj−m, uj−m+1, . . . , uj−1)G̃

= (uj−m, uj−m+1, . . . , uj+N−1)

(

G̃

Ĝ

)











(2.4)

for all j ≥ 0. For a power series v =
∑

t≥0 vtz
t and M ∈ N we denote by v[0,M ] the truncation

∑M
t=0 vtz

t of v at time M .

Remark 2.2 Let L and d satisfy (2.3).

(a) From the previous discussion it follows that if v ∈ C is such that wt(v[jL,jL+N−1]) ≤ d for all
j ≥ 0, then v = 0. Indeed, suppose v =

∑

t≥0 vtz
t = (

∑

t≥0 utz
t)G. Then (v0, . . . , vN−1) =

(u0, . . . , uN−1)Ĝ ∈ B and thus (2.3) implies vj = 0 for j = 0, . . . , L − 1. Hence uj = 0 for
j = 0, . . . , L − 1 due to the full row rank of G0 (delay-freeness of G) and Equation (2.4)
shows that (vL, . . . , vL+N−1) = (uL, uL+1, . . . , uL+N−1)Ĝ ∈ B and (2.3) implies vj = 0 for
j = L, . . . , 2L − 1. Proceeding this way leads to v = 0. This also shows that if d is the
largest value satisfying (2.3) for L = 1, then d+ 1 is the (N − 1)-th column distance of the
convolutional code C in the sense of [9, Sec. 3.1].

(b) The free distance of the code is at least d + 1. Indeed, suppose v ∈ C\{0} and j ∈ N0 is
minimal such that vj 6= 0. Then (vj , . . . , vj+N−1) ∈ B and wt(v) ≥ wt(vj , . . . , vj+N−1) ≥
d+ 1 by (2.3).

Now we are ready to formulate the general steps of the decoding algorithm. The algorithm
has been presented first in [7, Sec. 4.4] and [8], where it is given in a more general form and
within the context of the tracking problem of control theory. In those papers it is given in terms
of an input/state/output representation of the convolutional code.

Let us fix N ∈ N and L, d satisfying (2.3). The following algorithm will, in each cycle, process
strings of N consecutive received blocks in order to decode the first L of those blocks with respect
to the convolutional code C = imG. In the next cycle the algorithm will move L steps further
down the time axis.

Algorithm 2.3 Let
∑

t≥0 ṽtz
t ∈ F[[z]]n be a received word.

Suppose that for some j ≥ 0 we have computed ût ∈ F
k, v̂t ∈ F

n, t = 0, . . . , jL− 1. We assume
that v̂ is the decoding of ṽ on the time interval [0, jL− 1] and that û is the associated message
string. In the initial step where j = 0 this condition is empty and in Step 1 the vector S is set
to zero.

Step 1: Put Ṽ := (ṽjL, . . . , ṽjL+N−1) and Ŝ := (ûjL−m, ûjL−m+1, . . . , ûjL−1)G̃ (where ûi = 0

for i < 0). Decode the word w̃ := Ṽ − Ŝ with respect to the code B in such a way that if
d(w̃,B) ≤ ⌊d/2⌋ then the decoded word ŵ ∈ B satisfies d(w̃, ŵ) ≤ ⌊d/2⌋ (if d(w̃,B) > ⌊d/2⌋, no
specification is made for the decoded word ŵ ∈ B). Let û := (ûjL, . . . , ûjL+N−1) ∈ F

Nk be the

message associated to ŵ, that is, ŵ = ûĜ. Put

ŵ + Ŝ =: (v̂jL, v̂jL+1, . . . , v̂jL+N−1) ∈ F
Nn (2.5)

Return the data ût, v̂t, t = jL, . . . , (j + 1)L − 1 as the decoding of ṽt on the time interval
[jL, (j + 1)L− 1] and discard the remaining entries of ŵ + Ŝ and û.
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Step 2: Replace j by j + 1 and return to Step 1.

Theorem 2.4 Suppose the codeword v =
∑

t≥0 vtz
t = (

∑

t≥0 utz
t)G ∈ C has been sent and the

word
∑

t≥0 ṽtz
t ∈ F[[z]]n has been received.

(1) The data returned by Algorithm 2.3 satisfy v̂ :=
∑

t≥0 v̂tz
t = (

∑

t≥0 ûtz
t)G, thus v̂ is a

codeword in C with associated message
∑

t≥0 ûtz
t.

(2) Let L and d satisfy (2.3). If the transmission errors satisfy

d
(

(vjL, vjL+1, . . . , vjL+N−1), (ṽjL, ṽjL+1, . . . , ṽjL+N−1)
)

≤
⌊d

2

⌋

for all j ≥ 0, (2.6)

then v̂ = v, that is, Algorithm 2.3 will return the sent codeword v. In particular, d(w̃,B) ≤
⌊d2⌋ in each cycle of Step 1).

Notice that, due to Remark 2.2(a), for any received word ṽ ∈ F[[z]]n there exists at most one
codeword v ∈ C satisfying (2.6).

Proof: (1) Assume that for some j ≥ 0 we have already computed the data ût, v̂t, t =
0, . . . , jL− 1 and that

jL−1
∑

t=0

v̂tz
t =

(

(

jL−1
∑

t=0

ûtz
t)G

)

[0,jL−1]
, (2.7)

which, for j = 0, is an empty assumption. The next step of the algorithm produces

(v̂jL, . . . , v̂jL+N−1) = (ûjL, . . . , ûjL+N−1)Ĝ+ (ûjL−m, ûjL−m+1 . . . , ûjL−1)G̃,

see (2.5). Hence v̂jL+t =
∑t

i=0 ûjL+iGt−i +
∑m−t−1

i=0 ûjL−1−iGt+1+i, where the second sum is
zero if t ≥ m. In either case, we derive v̂jL+t =

∑m
i=0 ûjL+t−iGi for t = 0, . . . , N−1 and together

with (2.7) this shows that
∑jL+N−1

t=0 v̂tz
t =

(

(
∑jL+N−1

t=0 ûtz
t)G

)

[0,jL+N−1]
. In particular, (2.7)

is true for j + 1 instead of j (recall that the algorithm only returns vjL, . . . , v(j+1)L−1). This
completes the proof of (1).
(2) Suppose that for some fixed j ≥ 0 the algorithm correctly returned v̂t = vt and ût = ut for
all t ≤ jL−1. Put V := (vjL, . . . , vjL+N−1). Write w̃ = (w̃0, . . . , w̃N−1) and Ŝ = (Ŝ0, . . . , ŜN−1)
for the data in Step 1 of the algorithm. By (2.4) we have

V = (ujL, . . . , ujL+N−1)Ĝ+ (ujL−m, . . . , ujL−1)G̃ = (ujL, . . . , ujL+N−1)Ĝ+ Ŝ,

where the second identity follows from ut = ût for t ≤ jL − 1. Hence V − Ŝ ∈ B. The error
assumption (2.6) implies d

(

(Ṽ − Ŝ), (V − Ŝ)
)

= d(Ṽ , V ) ≤ ⌊d/2⌋. Thus, d(w̃,B) ≤ ⌊d/2⌋ for

w̃ = Ṽ−Ŝ and the decoding requirement made in Step 1) implies d(ŵ, w̃) ≤ ⌊d/2⌋ for the decoded
word ŵ = (ŵ0, . . . , ŵN−1) = (ûjL, . . . , ûjL+N−1)Ĝ ∈ B. As a consequence, d(ŵ, V − Ŝ) ≤ d

and (2.3) implies ŵt = vjL+t − Ŝt for t = 0, . . . , L− 1. But then (2.5) yields that vjL+t = v̂jL+t

for t = 0, . . . , L− 1. Finally, the uniqueness of the associated message sequence (or the full row
rank of Ĝ) implies ujL+t = ûjL+t for t = 0, . . . , L− 1. ✷

Notice that the algorithm will, in each cycle, decode a string of L consecutive codeword blocks.
The most interesting case will be L = 1, which will lead to a possibly larger d satisfying (2.3) and
thus to a larger amount of errors that can be corrected. In the next section we will concentrate
on that case.
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3 Partial Decoding of the Block Code B

The main step of Algorithm 2.3 is the partial decoding with respect to the block code B
from (2.2). In this section we will show how to carry out this step efficiently for a particu-
lar class of convolutional codes, which were designed in [4]. For those codes the decoding step
essentially amounts to decoding certain Reed-Solomon block codes. The codes can be defined
as follows.

Let F = Fq be a field with q elements and primitive element α. Put A = F[x]/(xn−1), where

n := q − 1, and let v : A −→ F
n,

∑n−1
i=0 fix

i 7−→ (f0, . . . , fn−1) be the canonical vector space
isomorphism between A and F

n. Fix k ∈ {0, . . . , n−1} and consider the F-algebra automorphism
σ : A −→ A defined by σ(x) = αkx. It is easy to see that this does indeed define an F-algebra
automorphism on A. The following has been shown in [4, Exa. 3.2, Thm. 3.3, Thm. 4.3, Lem. 3.5
and its proof].

Theorem 3.1 Put n := q−1 and let k ≤ ⌊n/2⌋ and m ≤ ⌊n/k⌋−1. Put f :=
∏n−k−1

i=0 (x−αi) ∈
A and define

Gj =











v

(

σj(f)
)

v

(

σj(xf)
)

...
v

(

σj(xk−1f)
)











∈ F
k×n.

Then

(1) The matrix G =
∑m

j=0Gjz
j ∈ F[z]k×n is basic and reduced with all Forney indices equal

to m. In particular, m is the memory of the code.

(2) The free distance of the convolutional code C = imG ⊆ F[z]n is dfree(C) = (m+1)(n−k+1).

(3) For j = 0, . . . ,m the block code Bj := imGj,0 ⊆ F
n, where

Gj,0 :=











Gj

Gj−1
...
G0











∈ F
(j+1)k×n, (3.1)

is a Reed-Solomon code of dimension (j+1)k with generator polynomial
∏n−(j+1)k−1

i=0 (x−αi).
In particular, Bj has distance dj := n − (j + 1)k + 1. Notice that dj ≥ 1 for all j due to
j ≤ m ≤ ⌊n/k⌋ − 1.

The code C = imG ⊆ F[[z]]n is called a doubly cyclic convolutional code.

Let us briefly comment on the notion of cyclicity. The convolutional code C is a cyclic
convolutional code in the sense of [3]. Indeed, it can be shown that C may be identified with the
left ideal generated by the polynomial g :=

∑m
j=0 z

jσj(f) in the skew-polynomial ring A[z;σ],
see also [4, p. 165]. Due to the additional cyclic structure of the block codes Bj these codes have
been named doubly cyclic in [4]. The description as left ideals in A[z;σ], however, is not needed
for this paper. It is worth mentioning that for k = 1, part (2) of the theorem above shows
that the codes satisfy the generalized Singleton bound for convolutional codes [18] and thus are
MDS codes. In [4, p. 162] it has been shown that for k = 2 the codes attain the Griesmer
bound. Thus, the codes have the best possible distance among all codes of the same length,
dimension, degree, and field size; for the Griesmer bound see [9, Sec. 3.5] for the binary case
and [2, Thm. 3.4] for the general case.
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We will consider the decoding algorithm of the previous section with processing depth N :=
m+ 1. Thus,

B := im Ĝ, where Ĝ :=











G0 G1 . . . Gm

G0 . . . Gm−1

. . .
...
G0











∈ F
(m+1)k×(m+1)n. (3.2)

Due to the full row rank of the matrices in (3.1) this code has the following property. If
v = (v0, . . . , vm) ∈ B such that v0 = . . . = vL−1 = 0 6= vL for some L, then vj 6= 0 for

j = L, . . . ,m and wt(v) ≥
∑m−L

j=0 dj , where dj is as in Theorem 3.1(3). As a consequence, (2.3)
turns into the following property.

Remark 3.2 Let L ∈ {1, . . . ,m+ 1} and v := (v0, . . . , vm) ∈ B. Then wt(v) ≤
∑m−L+1

j=0 dj − 1
implies (v0, . . . , vL−1) = 0. In particular, for L = 1 we have

wt(v) ≤ d =⇒ v0 = 0, (3.3)

where

d :=

m
∑

j=0

dj − 1. (3.4)

It is worth mentioning that in concrete examples, d as in (3.4) might not be the largest value
satisfying (3.3). Indeed, for F = F7, n = 6, k = 2, and m = 2 one has d0 + d1 + d2 − 1 = 8,
but using some weight-computing routines one can show that the largest d satisfying (3.3) is 10.
However, Algorithm 3.3 presented below will be able to correct ⌊d/2⌋ errors, where d is as
in (3.4). Therefore we will not be concerned with optimizing the value of d. Notice also that

d = (m+ 1)(n − k + 1)− k
(m+ 1)m

2
− 1 = dfree(C)− k

m(m+ 1)

2
− 1. (3.5)

Let us now turn to Algorithm 2.3. The main part in Step 1) consists of achieving the following
task: given a received vector ṽ := (ṽ0, . . . , ṽm) ∈ F

(m+1)n satisfying d(ṽ,B) ≤ ⌊d/2⌋, return
a vector (v̂0, . . . , v̂L−1) for which there exists an extension v̂ := (v̂0, . . . , v̂m) ∈ B satisfying
d(v̂, ṽ) ≤ ⌊d/2⌋. In the following algorithm we will carry this out for step size L = 1. Recall
from Remark 3.2 that the parameter d from (2.3) can be made largest for L = 1 and therefore
this will allow us to correct the largest amount of errors.

Throughout the rest of the paper, the phrase Reed-Solomon decoding will refer to any of the
algebraic decoding algorithms for Reed-Solomon codes that correct up to t errors, where t is the
error-correcting bound of the code. If such decoding is not possible, the algorithm returns an
error message.

Algorithm 3.3 Let the data be as in Theorem 3.1 and (3.2) and let ṽ := (ṽ0, . . . , ṽm) ∈ F
(m+1)n.

Put l = m+ 1.
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Step 1: l := l − 1.

Step 2: Use Reed-Solomon decoding to decode ṽl with respect to the block code Bl. If
d(ṽl, imGl,0) > ⌊(dl − 1)/2⌋, that is, Reed-Solomon decoding is not possible, go to Step 1.

Else denote the resulting codeword by w
(l)
l ∈ Bl = imGl,0 and let w

(l)
l = (x̂0, . . . , x̂l)Gl,0.

Compute

w(l) = (w
(l)
0 , w

(l)
1 , . . . , w

(l)
l ) := (x̂0, . . . , x̂l)











G0 G1 . . . Gl

G0 . . . Gl−1

. . .
...
G0











. (3.6)

Step 3: If d
(

w(l), (ṽ0, . . . , ṽl)
)

≤ ⌊(
∑l

i=0 di−1)/2⌋, then return w
(l)
0 and x̂0. Else go to Step 1.

If none of these steps yields a return, that is, l = 0 and d(w(0), ṽ0) > ⌊(d0 − 1)/2⌋, then do the
following:

Case a): Suppose Step 2 has been executed at least once. Then, for each of the partial codewords

w(l) in (3.6) produced in the various cycles of Step 2 use list decoding with respect to the code
imG0 in order to find a codeword yl+1 = x̂l+1G0 ∈ imG0 that is closest to ṽl+1−

∑l
i=0 x̂iGl+1−i.

Set l to l + 1 and proceed the same way until l = m. Put w̄(l) = (x̂0, . . . , x̂m)Ĝ ∈ B. Among
all the codeword w̄(l) ∈ B produced this way choose one closest to ṽ, say w′ = (w′

0, . . . , w
′
m) =

(x′0, . . . , x
′
m)Ĝ, and return w′

0 and x′0.
Case b): Suppose Step 2 has never been executed. In this case, d(ṽl, imGl,0) > ⌊(dl − 1)/2⌋ for

all l = 0, . . . ,m. Use list decoding to produce a codeword w(0) = x̂0G0 ∈ imG0 closest to ṽ0.
Set l = 0 and proceed as in Case a).

In the next theorem we will see that Case a) or b) will only be invoked if no codeword v ∈ B
satisfies d(ṽ, v) ≤ ⌊d/2⌋. When calling Algorithm 3.3 in Step 1) of Algorithm 2.3 this amounts
to the fact that no convolutional codeword v ∈ C satisfies the familiar error assumption (2.6). Of
course, if d(ṽ, B) > ⌊d/2⌋, there are various options of how to proceed. The easiest and cheapest
solution would be to simply return any codeword w0 = x̂0G0 along with its message x̂0. The
strategy outlined in Algorithm 3.3 requires more effort and is designed to result in a codeword
that is more likely to be close (or even closest) to ṽ. Indeed, notice that, by construction, the
words

w̄(l) = (w
(l)
0 , w

(l)
1 , . . . , w

(l)
l , yl+1 +

∑l
i=0 x̂iGl+1−i, . . . , ym +

∑m−1
i=0 x̂iGm−i)

are codewords in B for which the last m − l + 1 blocks w̄
(l)
i are codewords in Bi close to the

corresponding block ṽi. However, this does not guarantee that the chosen codeword will be
closest to ṽ. We would also like to point out that for the list decoding, see [21, 5, 20], used in
Cases a) and b) one might have to increase successively the list size in order to have a nonempty
return. If more than one codeword yl+1 is returned one could even use all of them and extend
them in the described way. Finally it is worth mentioning that in Step 2) of the algorithm one
could also replace Reed-Solomon decoding by list decoding in order to produce a bigger pool of
codewords and enhance the chances of early success in Step 3.

Theorem 3.4 Let d be as in (3.4). Suppose v = (v0, . . . , vm) ∈ B has been sent and ṽ :=
(ṽ0, . . . , ṽm) ∈ F

(m+1)n has been received. If d(v, ṽ) ≤ ⌊d/2⌋, then there exists l ∈ {m,m −
1, . . . , 0} such that Step 2 of Algorithm 3.3 will be carried out and d

(

w(l), (ṽ0, . . . , ṽl)
)

≤

⌊(
∑l

i=0 di − 1)/2⌋. In this case, Step 3 will return the correct data, that is, w
(l)
0 = v0.
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As a consequence, if Algorithm 3.3 has to turn to Case a) or b), it has detected an error in the
sense that d(ṽ,B) > ⌊d/2⌋.

Proof: Put d(l) :=
∑l

i=0 di − 1 for l = 0, . . . ,m. Then d(m) = d and by assumption
d(v, ṽ) ≤ ⌊d(m)/2⌋.

Consider l = m. There are two cases in which Algorithm 3.3 will have to proceed to l−1: either
Step 2 is not executed at all or the inequality in Step 3 is not satisfied. In Part 1) and 2) below
we will show that in both cases we obtain

d
(

(v0, . . . , vm−1), (ṽ0, . . . , ṽm−1)
)

≤ ⌊d(m−1)/2⌋, (3.7)

that is, the sent codeword and the received word satisfy the analogous error assumption on the
time interval [0,m − 1]. This will allow us to argue inductively. In Part 3) we will show that

there exists l for which the algorithm will return a result w
(l)
0 and that w

(l)
0 = v0.

1) Assume first that Step 2 has not been executed, hence d(ṽm, Bm) ≥ ⌊(dm−1)/2⌋+1. Then
we have in particular,

d(vm, ṽm) ≥ ⌊(dm − 1)/2⌋ + 1. (3.8)

Since d(v, ṽ) ≤ ⌊d(m)/2⌋ this yields

d
(

v0, . . . , vm−1), (ṽ0, . . . , ṽm−1)
)

≤ ⌊d(m)/2⌋ − ⌊(dm − 1)/2⌋ − 1. (3.9)

Notice that d(m) =
∑m

i=0 di − 1 =
∑m−1

i=0 di + dm − 1 = d(m−1) + dm. Going through all four
cases of d(m) and dm being even or odd shows that

⌊d(m)/2⌋ − ⌊(dm − 1)/2⌋ − 1 ≤ ⌊d(m−1)/2⌋.

Hence (3.9) implies (3.7).

2) Assume now that d(ṽm, Bm) ≤ ⌊(dm − 1)/2⌋, hence Step 2 has been carried out, and that

d(w(m), ṽ) > ⌊d(m)/2⌋, (3.10)

so that the assumption in Step 3 is not satisfied. But then we may conclude (3.8) again. Indeed,
if (3.8) were not true, Reed-Solomon decoding of ṽm with respect to Bm would have returned
the correct codeword vm because ⌊(dm − 1)/2⌋ is the error-correcting bound of the code Bm. In
that case the associated message û ∈ F

(m+1)k satisfying ûGm,0 = vm is unique and would have
resulted in ûĜ = v. Hence w(m) = v, contradicting (3.10). Hence (3.8) is true and as in 1), we
arrive at (3.7).

3) Suppose now that the algorithm proceeded to Step 2 for the value l. By the preceding
discussion, see (3.7), we then have

d
(

(v0, . . . , vl), (ṽ0, . . . , ṽl)
)

≤ ⌊d(l)/2⌋. (3.11)

Assume furthermore that Step 2 has been executed and resulted in a word w(l) such that
d
(

w(l), (ṽ0, . . . , ṽl)
)

≤ ⌊d(l)/2⌋. Then (3.11) implies d
(

w(l), (v0, . . . , vl)
)

≤ d(l) and Remark 3.2

(applied to the code B in (3.2) with l instead of m) shows that w
(l)
0 = v0 as desired.

Finally, if, in the worst case, the algorithm has to proceed until l = 0 we have, by (3.11),

d(v0, ṽ0) ≤ ⌊d(0)/2⌋ = ⌊(d0 − 1)/2⌋.
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Since this is the error-correcting bound of the code B0, decoding of ṽ0 will take place and will

result in w
(0)
0 = v0. This word will indeed be returned in Step 3 of the algorithm. This completes

the proof. ✷

Observe that Algorithm 3.3 might return a codeword w
(l)
0 in some cycle of Step 3) even if

d(ṽ,B) > ⌊d/2⌋. The way the algorithm is formulated this potential decoding error will not be
detected. However, the overall Algorithm 2.3 might detect this situation by checking whether
the received word ṽ and the decoded word v̂ ∈ C satisfy d

(

(v̂j , . . . , v̂j+m), (ṽj , . . . , ṽj+m)
)

≤ ⌊d/2⌋
for all j ∈ N0, see (2.6). One could, of course, extend Algorithm 3.3 by using the strategy of
Case a) in order to extend a partial codeword w(l) to full codewords and checking whether one
of those is within ⌊d/2⌋ of ṽ. But, as mentioned earlier, there is no guarantee that this strategy
will find the closest codeword.

4 Examples and Comparison to Other Decoding Algorithms

We will first give some examples illustrating the algorithm. Thereafter, we will compare the
algorithm to other existing algorithms with respect to error-correcting capability and complexity.

Recall the data from Theorem 3.1.

Example 4.1 Let F = F5 and choose the primitive element α = 2. Then n = 4 and we
choose k = 1 and m = 2. Then f = (x − 1)(x − 2)(x − 4) = x3 + 3x2 + 4x + 2. The
F-algebra automorphism σ is given by σ(x) = 2x. Thus, σ(f) = 3x3 + 2x2 + 3x + 2 and
σ2(f) = 4x3 + 3x2 + x+ 2 and we obtain G = G0 +G1z +G2z

2 ∈ F[z]1×4, where

G0 =
(

2 4 3 1
)

, G1 =
(

2 3 2 3
)

, G2 =
(

2 1 3 4
)

.

We have to consider the block codes

B0 = imG0 = im
(

2 4 3 1
)

, B1 = imG1,0 = im

(

2 3 2 3
2 4 3 1

)

,

and

B2 = imG2,0 = im





2 1 3 4
2 3 2 3
2 4 3 1



 = ker









1
1
1
1









.

They have distance d0 = 4, d1 = 3, and d2 = 2, respectively. Hence d = 8. This is indeed
the largest possible value for d satisfying (3.3); check, e.g., the codeword (1, 1, 3)Ĝ, where Ĝ is
as in (4.1). Thus, the algorithms 2.3/3.3 will reconstruct the sent codeword if no more than 4
errors have happened on any string of 3 consecutive coefficients (vj , vj+1, vj+2). Both the codes
B0 and B1 can correct one error and B2 cannot correct any errors. The code B is given by

B = im Ĝ, where Ĝ =





2 4 3 1 2 3 2 3 2 1 3 4
0 0 0 0 2 4 3 1 2 3 2 3
0 0 0 0 0 0 0 0 2 4 3 1



 . (4.1)

Put

G̃ =

(

G2 0 0
G1 G2 0

)

=

(

2 1 3 4 0 0 0 0 0 0 0 0
2 3 2 3 2 1 3 4 0 0 0 0

)
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and for convenience write

Ĝ1 =

(

G0 G1

0 G0

)

=

(

2 4 3 1 2 3 2 3
0 0 0 0 2 4 3 1

)

.

Let us consider the received word ṽ = (4031) + z(1130) + z2(3210) + z3(3213) + z4(0100) and
apply Algorithm 2.3 step by step.

• j = 0: Then Ṽ = (ṽ0, ṽ1, ṽ2) = (403111303210) and Ŝ = 0. Hence w̃ = Ṽ . Use of Algo-
rithm 3.3:
⋄ l = 2. We have w̃2 6∈ B2. Since B2 cannot correct any errors, we go to

⋄ l = 1. Decoding w̃1 = (1130) with respect to B1 yields w
(1)
1 = (12)G10 ∈ B1. Hence no errors

need to be corrected. We compute w(1) = (12)Ĝ1 = (24311130) and d
(

w(1), (w̃0, w̃1)
)

= 2 ≤

⌊(d0 + d1 − 1)/2⌋. Thus Alg. 3.3 returns w
(1)
0 = (2431) and x̂0 = 1.

Alg. 2.3 returns v̂0 = (2431) and û0 = 1.

• j = 1: Ṽ = (ṽ1, ṽ2, ṽ3) = (113032103213), Ŝ = (01)G̃ = (232321340000), w̃ = (431311313213).
Use of Algorithm 3.3:
⋄ l = 2. w̃2 6∈ B2.

⋄ l = 1. Decoding w̃1 = (1131) w.r.t. B1 yields w
(1)
1 = (12)G10 = (1130) ∈ B1. We compute

w(1) = (12)Ĝ1 = (24311130) and d
(

w(1), (w̃0, w̃1)
)

= 5 ≥ ⌊(d0 + d1 − 1)/2⌋. Hence we go to

⋄ l = 0. Decoding w̃0 = (4313) w.r.t. B0 results in w
(0)
0 = 2G0 = (4312) ∈ B0. Since

d(w
(0)
0 , w̃0) = 1 ≤ ⌊(d0 − 1)/1⌋, Alg. 3.3 returns w

(0)
0 = (4312) and x̂0 = 2.

Alg. 2.3 returns v̂1 = (4312) + (2323) = (1130) and û1 = 2.

• j = 2: Ṽ = (ṽ2, ṽ3, ṽ4) = (321032130100), Ŝ = (12)G̃ = (122042130000), w̃ = Ṽ − Ŝ =
(204040000100). Use of Algorithm 3.3:
⋄ l = 2. w̃2 6∈ B2.

⋄ l = 1. Decoding w̃1 = (4000) w.r.t. B1 yields w
(1)
1 = (00)G10 = (0000) ∈ B1. We compute

w(1) = (00)Ĝ1 = (00000000) and d
(

w(1), (w̃0, w̃1)
)

= 3 ≤ ⌊(d0 + d1 − 1)/2⌋. Alg. 3.3 returns

w
(1)
0 = (0000) and x̂0 = 0.

Alg. 2.3 returns v̂2 = (0000) + (1220) = (1220) and û2 = 0.

• j = 3: Ṽ = (ṽ3, ṽ4, ṽ5) = (321301000000), Ŝ = (20)G̃ = (421300000000), w̃ = Ṽ − Ŝ =
(400001000000). Use of Algorithm 3.3:
⋄ l = 2. w̃2 = (0000) = (000)G2,0 ∈ B2. Hence w(2) = 0 ∈ F

12 and d(w(2), w̃) = 2 ≤

⌊(d0 + d1 + d2 − 1)/2⌋. Alg. 3.3 returns w
(2)
0 = (0000) and x̂0 = 0.

Alg. 2.3 returns v̂3 = (0000) + (4213) = (4213) and û3 = 0.

• j = 4: Ŝ = (00)G̃ = 0 and w̃ = Ṽ = (ṽ4, ṽ5, ṽ6) = (010000000000). Use of Algorithm 3.3:
⋄ l = 2. w̃2 = (0000) = (000)G2,0 ∈ B2. Hence w(2) = 0 ∈ F

12 and d(w(2), w̃) = 1 ≤

⌊(d0 + d1 + d2 − 1)/2⌋. Alg. 3.3 returns w
(2)
0 = (0000) and x̂0 = 0.

Alg. 2.3 returns v̂4 = (0000) and û4 = 0.

• Thereafter, w̃ is always zero and the Algorithm returns only zeros.

Thus, we found û = û0+û1z = 1+2z and v̂ =
∑3

i=0 z
iv̂i = (2431)+z(1130)+z2(1220)+z3(4213).

As to be expected v̂ = ûG is a codeword. Moreover, d(ṽ[j,j+2], v̂[j,j+2]) ≤ 4 for all j ≥ 0. Notice
also that d(ṽ, v̂) = 6 for the overall Hamming distance of the polynomial codewords. Since,
due to Theorem 3.1(2), dfree(C) = 12 this shows that v̂ is a closest codeword in C and by some
straightforward considerations one can show that it is the unique closest codeword.

The previous example resulted in a codeword v ∈ C that is no more than ⌊d/2⌋ errors apart
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from the received word ṽ on any window of length N = m + 1, thus, v and ṽ satisfy (2.6).
This is, of course, due to the fact that there does indeed exist such a codeword v. But even if
no codeword satisfying (2.6) exists the algorithm might return a codeword without having to
invoke Case a) or b) of Algorithm 3.3. This is illustrated in parts (a) and (b) of the following
example. Part (c) shows that the algorithm does not necessarily return a codeword closest to ṽ
with respect to the overall Hamming distance.

Example 4.2 Consider again the code from Example 4.1.

(a) Let the received word be ṽ = (2000) + z(4004) + z2(4000) + z3(0431). Then the algo-
rithms 2.3/3.3 will return the codeword v̂ = 0 because of the following:
• The word (ṽ0, ṽ1, ṽ2) has weight 4 and thus v = 0 ∈ B satisfies the error assumption in
Theorem 3.4 and the algorithm returns v̂0 = 0, û0 = 0.

• The word (ṽ1, ṽ2, ṽ3) is 4 errors apart from the codeword (0, 0, 1)Ĝ ∈ B and the algorithm
returns v̂1 = 0 and û1 = 0.

• For j ≥ 2 the words (ṽj , ṽj+1, ṽj+2) have weight at most 4 and thus the algorithm returns
zero.

Hence the algorithm returns the codeword v̂ = 0 and due to d
(

(ṽ1, ṽ2, ṽ3), (v̂1, v̂2, v̂3)
)

= 6 >
⌊d/2⌋ one detects that the error assumption (2.6) was not satisfied. Of course, this result
implies that no codeword v ∈ C satisfies (2.6). Again, by some straightforward computations
one can show that v̂ = 0 is the closest codeword in C with respect to the overall Hamming
distance.

(b) Let the received word be ṽ = (2431)+z(1130)+z2(0000)+z3(0200)+z4(4100)+z5(0004)+
z6(0003) + z7(0020) + z8(0004) + z9(3400). Then wt(ṽj , ṽj+1, ṽj+2) ≤ 4 for all j ≥ 1
and wt(ṽ0, ṽ1, ṽ2) = 7. Thus, assuming the zero word has been sent the error assump-
tion (2.6) is satisfied for all j except for j = 0. The algorithm will return the codeword
v̂ = (2431) + z(1130) + z2(0032) + z3(0230) + z4(4100) + z5(1004) + z6(0023) + z7(0320) +
z8(4024) + z9(3421) = (1 + 2z + 2z2 + z3 + 4z4 + 3z5 + 3z6 + 4z7)G, and may compute
the values d

(

(v̂j , v̂j+1, v̂j+2), (ṽj , ṽj+1, ṽj+2)
)

= 2, 3, 3, 2, 2, 3, 4, 5, 4, 2 for j = 0, . . . , 9. By
checking those distances, the algorithm detects that no codeword in C satisfies the error
assumption (2.6). Notice also that d(ṽ, 0) = 16 while d(ṽ, v̂) = 10. Again, by some lengthy,
but straightforward computations one can show that v̂ is the unique closest codeword in C.

(c) Unfortunately, in general the error assumption (2.6) does not imply that v ∈ C is a codeword
closest to ṽ with respect to the overall Hamming distance. For instance, for ṽ = (2400) +
z(1100)+z2(0000)+z3(0230)+z4(4100)+z5(0000)+z6(0023)+z7(0320)+z8(0000)+z9(3400)
we have wt(ṽj , ṽj+1, ṽj+2) ≤ 4 for all j ≥ 0 and therefore the error assumption is satisfied
for v = 0 and the algorithm will return the zero word. However, in this case the codeword
v̂ from (b) satisfies d(ṽ, v̂) = 12 < d(0, ṽ). Again, one can show that v̂ is the unique closest
codeword in C.

We will close the paper with comparing the error-correcting capability and time complexity of
our algorithm with existing algorithms handling codes of comparable size. In order to do so, let
us first summarize the performance of our algorithm. It is known [20, p. 247] that Reed-Solomon
decoding of an [n, k] code has a time complexity of O

(

n(log2 n)
2
)

, counting operations in the
field Fq, where q ≥ n+ 1. Using list decoding this complexity will grow by the factor l, where l
is the size of the list of codewords produced by the algorithm [20, p. 255]. At each cycle of
Step 1) Algorithm 2.3 essentially consists of invoking at most m + 1 ≤ n times Reed-Solomon
(or list) decoding of a Reed-Solomon code of length n (and dimension jk, j = 1, . . . ,m+1) and
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thus has a time complexity of O
(

(m+1)n(log2 n)
2
)

of operations in the field Fq = Fn+1. It can
correct up to ⌊d/2⌋ errors occurring on any string vj(m+1), . . . , v(j+1)(m+1)−1, j ∈ N0, of m+ 1
consecutive codeword blocks, and where d is as in (3.5).

Let us now turn to the decoding algorithms mentioned in the introduction.

1) First of all, since Algorithm 2.3/3.3 applies to a convolutional code C ⊆ Fq[z]
n of degree

km, see Theorem 3.1, and where the field size is q = n+ 1, Viterbi decoding for this particular
convolutional code is, in general, not feasible due to the high state space cardinality (n+ 1)km.

2) Let us consider an [n, k] Reed-Solomon block code, like B0, for the encoding/decoding of
the data stream v0, v1, v2, . . .. Hence, each block vj is encoded/decoded independently. This
requires a time complexity of O

(

n(log2 n)
2
)

for the decoding of each block and can correct up
to ⌊(n− k)/2⌋ errors on any block, which means up to (m+ 1)⌊(n− k)/2⌋ errors on a string of
m+1 consecutive blocks. While this is, in general, larger than ⌊d/2⌋, it only applies if no more
than ⌊(n − k)/2⌋ errors appear on a single block. For instance, none of the coefficients of the
received word ṽ in Example 4.1 could have been correctly decoded because each ṽj is more than
one error apart from the block code B0.

3) Suppose now that we use a (generalized) Reed-Solomon code of the size of B, that is, an
[(m+1)n, (m+1)k] RS code, in order to encode/decode every string of m+1 consecutive blocks
vj(m+1), . . . , v(j+1)(m+1)−1, j ∈ N0 independently. This way we could correct up to ⌊(m+1)(n−
k)/2⌋ errors on any such string. But this enhanced error-correcting capability comes with a
significantly higher time complexity. Indeed, the complexity goes up to O

(

(m+ 1)n, (log2(m+
1)n)2

)

, and this is counting operations in a much larger field with at least (m+ 1)n elements.

4) In this part, we will compare our algorithm with a decoding algorithm designed for unit
memory convolutional codes in the thesis [24, Sec. 4.3]. Consider a code with generator matrix
G0+G1z, where G0, G1 ∈ F

k×n. Suppose G0, G1 generate block codes with distances δ0, δ1, re-
spectively. Then the algorithm in [24, Sec. 4.3] can correctly recover the sent codeword provided
that a) no more than a total of t := ⌊(δ0+ δ1−1)/2⌋ errors occurred during the transmission, b)
the degree of the sent codeword (or an upper bound thereof) is known, and c) the block codes
generated by G0, G1 can be decoded effectively. Applying this to the code in Theorem 3.1 with
memory m = 1, we obtain δ0 = δ1 = n−k+1, and therefore the algorithm in [24] can correct up
to a total of t = n− k errors occurring during the whole transmission. It is based on decoding
the Reed-Solomon codes generated by G0, G1 and thus has a running time of O

(

n(log2 n)
2
)

for the decoding of each codeword block. In contrast, Algorithm 2.3/3.3 can correct up to
t′ = ⌊n − k − k−1

2 ⌋ errors occurring on each string of 2 consecutive codeword blocks, see (3.5),
and the running time is essentially the same. Notice that for k = 1 we have t′ = t, making our
algorithm significantly more suitable for this class of codes than the algorithm proposed in [24].
As for general dimension k, it is easy to see that 2t′ ≥ t (due to k ≤ n/2, see Theorem 3.1) and
therefore our algorithm corrects, on each string of 4 consecutive blocks, at least as many errors
as the total amount corrected by [24] – as long as no more than t′ errors happened on each
half of that string. We would also like to point out that the algorithm in [24] needs the whole
received word in order to perform decoding, while our algorithm is iterative in the sense that it
starts decoding as soon as the first 2 blocks have been received. Of course, the algorithm in [24]
is applicable to any convolutional code as long as it has unit memory, whereas our algorithm
depends on the weight property described in (3.3), (3.4) and is specifically designed for the codes
of Theorem 3.1, but requires a weaker assumption on the memory.

5) Finally, it remains to compare Algorithm 2.3/3.3 with an algebraic decoding algorithm
developed for convolutional codes in [17]. That algorithm is based on an input/state/output
description of the code in question, and its performance may be summarized as follows (after
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adjusting to row vector notation): Suppose the k-dimensional code C = imG ⊆ F[z]n of degree δ
has i/s/o description

xt+1 = xtA+ utB, yt = xtC + utD,

where (ut, yt) ∈ F
k+(n−k) is the sequence of codeword coefficients, xt ∈ F

δ is the state sequence,
and (A,B,C,D) ∈ F

δ×δ × F
k×δ × F

δ×(n−k) × F
k×(n−k). Suppose Θ ∈ N is such that the matrix

(C, AC, . . . , AΘ−1C) has full row rank and that T > Θ and d1 ∈ N are such that the matrix

M :=











B
BA
...

BAT−1











∈ F
Tk×δ (4.2)

has full column rank and kerM := {v ∈ F
Tk | vM = 0} is a block code of distance at least d1.

Then the decoding algorithm in [17] will return the sent codeword if at most

λ := min
{

⌊(d1 − 1)/2⌋, ⌊T/(2Θ)⌋
}

(4.3)

errors occurred on any time window [j, j+T − 1], j ∈ N0, that is, if any string of T consecutive
codeword blocks does not contain more than λ errors.

In the sequel we will show that Algorithm 2.3/3.3 is better suited for decoding our particular
class of codes than the algorithm in [17]. Indeed, we will show that for our class of codes
λ ≤ ⌊m/2⌋ and T ≤ m+ 1. Comparing this to (3.5) shows that Algorithm 2.3/3.3 can correct
significantly more errors on intervals of length m+ 1. Indeed, using that m ≤ n/k − 1 it is not
hard to see that ⌊d/2⌋ ≥ m, so that our algorithm can correct at least twice as many errors.

Let us now turn to the details. Recall the data given right before Theorem 3.1 and fix the
parameters and the encoder G as in that theorem. Then the code C = imG has degree δ = mk
and therefore, in order for M in (4.2) to have full column rank we need T ≥ m and for kerM to
be a nontrivial code we even need T ≥ m+1. Write G = [Q,P ], where Q ∈ F[z]k×k. We first note
that the matrix Q is upper triangular. Indeed, the polynomial f ∈ F[x] given in Theorem 3.1
has degree n − k and thus deg(xlf) ≤ n − 1 for all l = 0, . . . , k − 1. As a consequence, we do
not have to reduce modulo xn − 1 when computing in the quotient ring A. Since xl | (xlf), we
see that the first l entries of the vector v(xlf) ∈ F

n are zero while the (l+1)-st entry is nonzero
(since f has nonzero constant term). But then the same is true for v

(

σj(xlf)
)

because for any
polynomial g ∈ A we have σ(g) = g(αkx) and no reduction modulo xn − 1 is needed. All this
shows that the matrix Q is upper triangular and that the diagonal entries have degree m. With
the aid of Theorem 3.1(1) this yields that Q−1P is a proper rational matrix. Now we may use
the controller canonical form of Q−1P in order to get an i/s/o representation of the code. Using
the method outlined in [11, Sec. 6.4.1] (and transposing everything for row vector notation)
shows that the matrix A ∈ F

mk×mk is upper block triangular with diagonal blocks of size m×m
and B ∈ F

k×mk is upper block triangular with diagonal blocks of size 1 ×m. Thus, collecting
the last rows of each block in the matrix M in (4.2) results in a submatrix M ′ ∈ F

T×mk in
which the first (k − 1)m columns are zero and thus rkM ′ ≤ m. As a consequence, since
T ≥ m + 1 there exists a nonzero vector v ∈ F

Tk of weight at most m + 1 such that vM = 0.
Thus, d1 ≤ dist(kerM) ≤ m + 1 and the error correcting bound in (4.3) satisfies λ ≤ ⌊m/2⌋.
Using some more detailed considerations one can show that, likewise, every other input/output
partition of the codewords (that is, permuting the columns of G before splitting the matrix into
[Q,P ]) along with an according i/s/o representation leads to the same error-correcting bound
λ ≤ ⌊m/2⌋. Summarizing, we may conclude that Algorithm 2.3/3.3 is better suited for decoding
the class of codes defined in Theorem 3.1 than the algorithm in [17].
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