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On the structure of non-full-rank perfect codes

Olof Heden and Denis S. Krotov∗

Abstract

The Krotov combining construction of perfect 1-error-correcting binary codes
from 2000 and a theorem of Heden saying that every non-full-rank perfect 1-error-
correcting binary code can be constructed by this combining construction is gener-
alized to the q-ary case. Simply, every non-full-rank perfect code C is the union of
a well-defined family of µ̄-components Kµ̄, where µ̄ belongs to an “outer” perfect
code C⋆, and these components are at distance three from each other. Compo-
nents from distinct codes can thus freely be combined to obtain new perfect codes.
The Phelps general product construction of perfect binary code from 1984 is gen-
eralized to obtain µ̄-components, and new lower bounds on the number of perfect
1-error-correcting q-ary codes are presented.

1. Introduction

Let Fq denote the finite field with q elements. A perfect 1-error-correcting q-ary code of
length n, for short here a perfect code, is a subset C of the direct product F n

q , of n copies of
Fq, having the property that any element of F n

q differs in at most one coordinate position
from a unique element of C.

The family of all perfect codes is far from classified or enumerated. We will in this
short note say something about the structure of these codes. We need the concept of
rank.

We consider F n
q as a vector space of dimension n over the finite field Fq. The rank

of a q-ary code C, here denoted rank(C), is the dimension of the linear span < C > of
the elements of C. Trivial, and well known, counting arguments give that if there exists
a perfect code in F n

q then n = (qm − 1)/(q− 1), for some integer m, and |C| = qn−m. So,
for every perfect code C,

n−m ≤ rank(C) ≤ n .

If rank(C) = n we will say that C has full rank.
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We will show that every non-full-rank perfect code is a union of so called µ̄-components

Kµ̄, and that these components may be enumerated by some other perfect code C⋆, i.e,
µ̄ ∈ C⋆. Further, the distance between any two such components will be at least three.
This implies that we will be completely free to combine µ̄-components from different
perfect codes of same length, to obtain other perfect codes. Generalizing a construction by
Phelps of perfect 1-error correcting binary codes [8], we will obtain further µ̄-components.
As an application of our results we will be able to slightly improve the lower bound on
the number of perfect codes given in [6].

Our results generalize corresponding results for the binary case. In [3] it was shown
that a binary perfect code can be constructed as the union of different subcodes (µ̄-
components) satisfying some generalized parity-check property, each of them being con-
structed independently or taken from another perfect code. In [2] it was shown that every
non-full-rank perfect binary code can be obtained by this combining construction.

2. Every non-full-rank perfect code is the union of µ̄-

components

We start with some notation. Assume we have positive integers n, t, n1, . . . , nt such that
n1+. . .+nt ≤ n. Any q-ary word x̄ will be represented in the block form x̄ = (x̄1 | x̄2 | . . . |
x̄t | x̄0) = (x̄∗ | x̄0), where x̄i = (xi1, xi2, . . . , xini

), i = 0, 1, . . . , t, n0 = n − n1 − . . .− nt,
x̄∗ = (x̄1 | x̄2 | . . . | x̄t). For every block x̄i, i = 1, 2, . . . , t, we define σi(x̄i) by

σi(x̄i) =
ni
∑

j=1

xij ,

and, for x̄,
σ̄(x̄) = σ̄(x̄∗) = (σ1(x̄1), σ2(x̄2), . . . , σt(x̄t))

Recall that the Hamming distance d(x̄, ȳ) between two words x̄, ȳ of the same length
means the number of positions in which they differ.

A monomial transformation is a map of the space F n
q that can be composed by a

permutation of the set of coordinate positions and the multiplication in each coordinate
position with some non-zero element of the finite field Fq.

A q-ary code C is linear if C is a subspace of F n
q . A linear perfect code is called a

Hamming code.

Theorem 1. Let C be any non-full-rank perfect code C of length n = (qm − 1)/(q − 1).
To any integer r < m, satisfying

1 ≤ r ≤ n− rank(C) ,

there is a q-ary Hamming code C⋆ of length t = (qr − 1)/(q − 1), such that for some
monomial transformation ψ

ψ(C) =
⋃

µ̄∈C⋆

Kµ̄ ,
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where

Kµ̄ = {(x̄1 | x̄2 | . . . | x̄t | x̄0) : σ̄(x̄) = µ̄, x̄1, x̄2, . . . , x̄t ∈ F qs

q , x̄0 ∈ Cµ̄(x̄∗) } (1)

for some family of perfect codes Cµ̄(x̄), of length 1+ q+ q2+ . . .+ qs−1, where s = m− r,
and satisfying, for each µ̄ ∈ C⋆,

d(x̄∗, x̄
′
∗) ≤ 2 =⇒ Cµ̄(x̄∗) ∩ Cµ̄(x̄

′
∗) = ∅ . (2)

The code C⋆ will be called an outer code to ψ(C). The subcodes Kµ̄ will be called
µ̄-components of ψ(C). As the minimum distance of C is three, the distance between any
two distinct µ̄-components will be at least three.

Proof. Let D be any subspace of F n
q containing < C >, and of dimension n− r. By

using a monomial transformation ψ of space we may achieve that the dual space of ψ(D)
is the nullspace of a r × n-matrix

H =







| | | | | | | |
ᾱ11 · · · ᾱ1n1 ᾱ21 · · · ᾱ2n2 · · · ᾱt1 · · · ᾱtnt 0̄ · · · 0̄
| | | | | | | |







where ᾱij = ᾱi, for i = 1, 2, . . . , t, the first non-zero coordinate in each vector ᾱi equals
1, ᾱi 6= ᾱi′ , for i 6= i′, and where the columns of H are in lexicographic order, according
to some given ordering of Fq.

To avoid too much notation we assume that C was such that ψ = id.
Let C⋆ be the null space of the matrix

H⋆ =







| | |
ᾱ1 ᾱ2 · · · ᾱt

| | |







Define, for µ̄ ∈ C⋆,

Kµ̄ = { (x̄1 | x̄2 | . . . | x̄t | x̄0) ∈ C : (σ1(x̄1), σ2(x̄2), . . . , σ(x̄t)) = µ̄ } .

Then,
C =

⋃

µ̄∈C⋆

Kµ̄.

Further, since any two columns of H⋆ are linearly independent, for any two distinct words
µ̄ and µ̄′ of C⋆

d(Kµ̄, Kµ̄′) ≥ 3. (3)

We will show that Kµ̄ has the properties given in Equation (1).
Any word x̄ = (x̄1 | x̄2 | . . . | x̄t | x̄0) must be at distance at most one from a word of

C, and hence, the word (σ1(x̄1), σ2(x̄2), . . . , σt(x̄t)) is at distance at most one from some
word of C⋆. It follows that C⋆ is a perfect code, and as a consequence, as C⋆ is linear, it
is a Hamming code with parity-check matrix H⋆. As the number of rows of H⋆ is r, we
then get that the number t of columns of H⋆ is equal to

t =
qr − 1

q − 1
= 1 + q + q2 + . . .+ qr−1 .
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For any word x̄∗ of F n1+n2+...+nt
q with σ̄(x̄∗) = µ̄ ∈ C⋆, we now define the code Cµ̄(x̄∗)

of length n0 by
Cµ̄(x̄∗) = { c̄ ∈ F n0

q : (x̄∗ | c̄) ∈ C } .

Again, using the fact that C is a perfect code, we may deduce that for any x̄∗ such
that the set Cµ̄(x̄∗) is non empty, the set Cµ̄(x̄∗) must be a perfect code of length n0 =
(qs − 1)/(q − 1), for some integer s.

From the fact that the minimum distance of C equals three, we get the property in
Equation (2).

Let ēi denote a word of weight one with the entry 1 in the coordinate position i. It
then follows that the two perfect codes Cµ̄(x̄∗) and Cµ̄(x̄∗ + ē1 − ēi), for i = 2, 3, . . . , n1,
must be mutually disjoint. Hence, n1 is at most equal to the number of perfect codes in
a partition of F n0

q into perfect codes, i.e.,

n1 ≤ (q − 1)n0 + 1 = qs .

Similarly, ni ≤ qs, for i = 2, 3, . . . , t.
Reversing these arguments, using Equation (3) and the fact that C is a perfect code,

we find that ni, for each i = 1, 2, . . . , t, is at least equal to the number of words in an
1-ball of F n0

q .
We conclude that ni = qs, for i = 1, 2, . . . , t, and finally

n = qs(1 + q + q2 + . . .+ qr−1) + 1 + q + q2 + . . .+ qs−1 = 1 + q + q2 + . . .+ qr+s−1 .

Given r, we can then find s from the equality

n = 1 + q + q2 + . . .+ qm−1 .

△

3. Combining construction of perfect codes

In the previous section, it was shown that a perfect code, depending on its rank, can
be divided onto small or large number of so-called µ̄-components, which satisfy some
equation with σ̄. The construction described in the following theorem realizes the idea
of combining independent µ̄-components, differently constructed or taken from different
perfect codes, in one perfect code.

A function f : Σn → Σ, where Σ is some set, is called an n-ary (or multary) quasigroup
of order |Σ| if in the equality z0 = f(z1, . . . , zn) knowledge of any n elements of z0, z1,
. . . , zn uniquely specifies the remaining one.

Theorem 2. Let m and r be integers, m > r, q be a prime power, n = (qm − 1)/(q − 1)
and t = (qr − 1)/(q − 1). Assume that C∗ is a perfect code in F t

q and for every µ̄ ∈ C∗

we have a distance-3 code Kµ̄ ⊂ F n
q of cardinality qn−m−(t−r) that satisfies the following

generalized parity-check law:

σ̄(x̄) = (σ1(x1, . . . , xl), . . . , σt(xlt−l+1, . . . , xlt)) = µ̄
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for every x̄ = (x1, . . . , xn) ∈ Kµ̄, where l = qm−r and σ̄ = (σ1, . . . , σt) is a collections of
l-ary quasigroups of order q. Then the union

C =
⋃

µ̄∈C∗

Kµ̄

is a perfect code in F n
q .

Proof. It is easy to check that C has the cardinality of a perfect code. The distance
at least 3 between different words x̄, ȳ from C follows from the code distances of Kµ̄ (if
x̄, ȳ belong to the same Kµ̄) and C

∗ (if x̄, ȳ belong to different Kµ̄′ , Kµ̄′′ , µ̄′, µ̄′′ ∈ C∗). △
The µ̄-components Kµ̄ can be constructed independently or taken from different perfect

codes. In the important case when all σi are linear quasigroups (e.g., σi(y1, . . . , yl) =
y1+ . . .+yl) the components can be taken from any perfect code of rank at most n−r, as
follows from the previous section (it should be noted that if σ̄ is linear, then a µ̄-component
can be obtained from any µ̄′-component by adding a vector z̄ such that σ̄(z̄) = µ̄− µ̄′).

In general, the existence of µ̄-components that satisfy the generalized parity-check law
for arbitrary σ̄ is questionable. But for some class of σ̄ such components exist, as we will
see from the following two subsections.

Remark. It is worth mentioning that µ̄-components can exist for arbitrary length t of
µ̄ (for example, in the next two subsections there are no restrictions on t), if we do not
require the possibility to combine them into a perfect code. This is especially important
for the study of perfect codes of small ranks (close to the rank of a linear perfect code):
once we realize that the code is the union of µ̄-components of some special form, we may
forget about the code length and consider µ̄-components for arbitrary length of µ̄, which
allows to use recursive approaches.

3.1. Mollard-Phelps construction

Here we describe the way to construct µ̄-components derived from the product construc-
tion discovered independently in [7] and [9]. In terms of µ̄-components, the construction
in [9] is more general; it allows substitution of arbitrary multary quasigroups, and we will
use this possibility in Section 4.

Lemma 1. Let µ̄ ∈ F t
q and let C# be a perfect code in F k

q . Let v and h be (q − 1)-ary
quasigroups of order q such that the code {(ȳ | v(ȳ) | h(ȳ)) : ȳ ∈ F q−1

q } is perfect. Let
V1, . . . , Vt and H1, . . . , Hk be respectively (k+1)-ary and (t+1)-ary quasigroups of order
q. Then the set

Kµ̄ =
{

(x̄11 | ... | x̄1k | y1 | x̄21 | ... | x̄2k | y2 | . . . | x̄t1 | ... | x̄tk | yt | z1 | z2 | ... | zk) :

x̄ij ∈ F q−1
q ,

(V1(v(x̄11), ..., v(x̄1k), y1), . . . , Vt(v(x̄t1), ..., v(x̄tk), yt)) = µ̄,

(H1(h(x̄11), ..., h(x̄t1), z1), . . . , Hk(h(x̄1k), ..., h(x̄tk), zk)) ∈ C#
}

is a µ̄-component that satisfies the generalized parity-check law with

σi(·, . . . , ·, ·) = Vi(v(·), ..., v(·), ·).
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(The elements of F (q−1)kt+k+t
q in this construction may be thought of as three-dimensional

arrays where the elements of x̄ij are z-lined, every underlined block is y-lined, and the
tuple of blocks is x-lined. Naturally, the multary quasigroups Vi may be named “vertical”
and Hi, “horizontal”.)

The proof of the code distance is similar to that in [9], and the other properties of a
µ̄-component are straightforward. The existence of admissible (q − 1)-ary quasigroups v
and h is the only restriction on the q (this concerns the next subsection as well). If Fq is
a finite field, there are linear examples: v(y1, . . . , yq−1) = y1+ . . .+yq−1, v(y1, . . . , yq−1) =
α1y1 + . . . + αq−1yq−1 where α1, . . . , αq−1 are all the non-zero elements of Fq. If q is not
a prime power, the existence of a q-ary perfect code of length q + 1 is an open problem
(with the only exception q = 6, when the nonexistence follows from the nonexistence of
two orthogonal 6× 6 Latin squares [1, Th. 6]).

3.2. Generalized Phelps construction

Here we describe another way to construct µ̄-components, which generalizes the construc-
tion of binary perfect codes from [8].

Lemma 2. Let µ̄ ∈ F t
q . Let for every i from 1 to t+1 the codes Ci,j, j = 0, 1, . . . , qk− k

form a partition of F k
q into perfect codes and γi : F

k
q → {0, 1, . . . , qk−k} be the corre-

sponding partition function:

γi(ȳ) = j ⇐⇒ ȳ ∈ Ci,j.

Let v and h be (q − 1)-ary quasigroups of order q such that the code {(ȳ | v(ȳ) | h(ȳ)) :
ȳ ∈ F q−1

q } is perfect. Let V1, . . . , Vt be (k + 1)-ary quasigroups of order q and Q be a
t-ary quasigroup of order qk − k + 1.

Kµ̄ =
{

(x̄11 | ... | x̄1k | y1 | x̄21 | ... | x̄2k | y2 | . . . | x̄t1 | ... | x̄tk | yt | z1 | z2 | ... | zk) :

x̄ij ∈ F q−1
q ,

(V1(v(x̄11), ..., v(x̄1k), y1), . . . , Vt(v(x̄t1), ..., v(x̄tk), yt)) = µ̄,

Q(γ1(h(x̄11), ..., h(x̄1k)), . . . , γt(h(x̄t1), ..., h(x̄tk))) = γt+1(z1, ..., zk)
}

is a µ̄-component that satisfies the generalized parity-check law with

σi(·, . . . , ·, ·) = Vi(v(·), ..., v(·), ·).

The proof consists of trivial verifications.

4. On the number of perfect codes

In this section we discuss some observations, which result in the best known lower bound
on the number of q-ary perfect codes, q ≥ 3. The basic facts are already contained in
other known results: lower bounds on the number of multary quasigroups of order q, the
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construction [9] of perfect codes from multary quasigroups of order q, and the possibility
to choose the quasigroup independently for every vector of the outer code (this possibility
was not explicitly mentioned in [9], but used in the previous paper [8]).

A general lower bound, in terms of the number of multary quasigroups, is given by
Lemma 3. In combination with Lemma 4, it gives explicit numbers.

Lemma 3. The number of q-ary perfect codes of length n is not less than

Q

(

n− 1

q
, q

)Rn−1
q

where Q(m, q) is the number of m-ary quasigroups of order q and where Rn′ = qn
′

/(n′q−
q + 1) is the cardinality of a perfect code of length n′.

Proof. Constructing a perfect code like in Theorem 2 with t = n−1
q
, we combine

Rn−1
q

different µ̄-components.

Constructing every such a component as in Lemma 2, k = 1, t = n−1
q
, we are free

to choose the t-ary quasigroup Q of order q in Q(t, q) ways. Clearly, different t-ary
quasigroups give different components. (Equivalently, we can use Lemma 1 and choose
the (t+1)-ary quasigroup H1, but should note that the value of H1 in the construction is
always fixed when k = 1, because C# consists of only one vertex; so we again have Q(t, q)
different choices, not Q(t+ 1, q)). △

Lemma 4. The number Q(m, q) of m-ary quasigroups of order q satisfies:

(a) [5] Q(m, 3) = 3 · 2m;

(b) [11] Q(m, 4) = 3m+1 · 22
m+1(1 + o(1));

(c) [4] Q(m, 5) ≥ 23
n/3−0.072

;

(d) [10] Q(m, q) ≥ 2((q
2−4q+3)/4)n/2

for odd q (the previous bound [4] was Q(m, q) ≥
2⌊q/3⌋

n
);

(e) [4] Q(m, q1q2) ≥ Q(m, q1) ·Q(m, q2)
qm1 .

For odd q ≥ 5, the number of codes given by Lemmas 3 and 4(c,d) improves the

constant c in the lower estimation of form ee
cn(1+o(1))

for the number of perfect codes, in
comparison with the last known lower bound [6]. Informally, this can be explained in the
following way: the construction in [6] can be described in terms of mutually independent
small modifications of the linear multary quasigroup of order q, while the lower bounds
in Lemma 4(c,d) are based on a specially-constructed nonlinear multary quasigroup that
allows a lager number of independent modifications. For q = 3 and q = 2s, the number
of codes given by Lemmas 3 and 4(a,b,e) also slightly improves the bound in [6], but do
not affect on the constant c.
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