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Introduction

The problem addressed in the design of space-time codes in the coherent case (that
is, in the case where the receiver knows the properties of the channel) can be sum-
marized as follows: find a set C of complex n×n matrices such that the minimum
determinant

δmin(C) = inf
X 6=X′∈C

|det(X −X ′)|2

is maximal. Of course, the first step is to ensure that δmin(C) is not zero. When this
is the case, we will say that C is fully diverse. One natural way to achieve this is
to use division algebras. Indeed, any division algebra D whose center k is a subfield
of C may be identified to a subring of a matrix algebra Mn(C). In particular, D×

may be identified to a subgroup of GLn(C), and taking C to be a subset of D yields
a fully diverse algebraic space-time code.

The use of division algebras for space-time coding started with the seminal work by
B. A. Sethuraman and B. Sundar Rajan [12]. Number fields and cyclic algebras were
discussed, which have been a favourite tool for space-time design. Some surveys are
by now available [8, 11], and we let the interested refer to them for further details.
Other algebras have also been explored, such as crossed product algebras [1] or non-
associative algebras [10]. Recently, the optimality of algebraic codes obtained by
Oggier et al. on cyclic algebras or crossed product algebras has been established ([2];
see also [14]). Notice that the two surveys mentioned above focus on the coherent
case.
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In the non-coherent case, the problem has a different flavour: the minimum deter-
minant still needs to be maximized, but the elements of the code C must be complex
unitary matrices [3, 4]. We will say that C is a unitary code.

The question of designing good unitary codes is far from being solved. The two
main difficulties arising in the non-coherent case are the following:

(a) fully diverse families of unitary matrices are hard to find;

(b) contrary to the coherent case, no systematic way to compute or even estimate
δmin(C) is known.

Question (a) has been addressed in [13] using unitary representations of finite fixed-
point free groups. Later on, Oggier proposed somme approach using cyclic algebras
with a unitary involution ([9, 6]). We let the reader refer to [7] for a survey of
known results.

In this paper, we will give a method to construct unitary codes using division
algebras carrying a unitary involution, generalizing in particular the work done
by Oggier and Lequeu, and how to compute the minimum determinant of such
codes. The advantage of this approach compared to the group-theoretic approach
is that division algebras allow to obtain higher rates (the rate corresponds, roughly
speaking, to the cardinality of the code).

Notice that in the literature, the quantity which is asked to be maximal is not the
minimum determinant, but the so-called diversity product ζ(C), defined by

ζ(C) =
1

2
inf

X 6=X′∈C
|det(X −X ′)|n,

where n is the size of the matrices. In other words, we have

ζ(C) =
1

2
δmin(C) 1

2n .

The two optimization problems being obviously equivalent, we will focus essentially
of the computation of the minimum determinant.

The structure of this paper is as follows. In Section 1, we recall some basic definitions
on central simple algebras with unitary involutions, and provide some examples. In
Section 2, we will provide a systematic way to construct unitary space-time codes
using algebras with unitary involutions. Finally, in Section 3, we will explain how
to compute the minimum determinant of these codes and provide examples.

1. Algebras with unitary involutions: definitions and examples

In this section, k is a field, and A is a central simple k-algebra. To simplify the
exposition, we will assume that char(k) 6= 2. We will collect here some basic
definitions and results on unitary involutions. We will assume that the reader is
familiar with the theory of central simple algebras. We let the reader refer to [5] for
the missing details and proofs concerning central simple k-algebras with involutions.

Definition 1.1. An involution on A is a ring anti-automorphism of A of order at
most 2.

In other words, an involution is a map σ : A −→ A satisfying for all x, y ∈ A:
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(1) σ(x+ y) = σ(x) + σ(y);
(2) σ(1) = 1;
(3) σ(xy) = σ(y)σ(x);
(4) σ(σ(x)) = x.

For example, the transposition is an involution on Mn(k). Notice that IdA is never
an involution unless A is commutative, which implies that A = k. Therefore, if
A 6= k, an involution on A has order 2.

It is easy to check that for every λ ∈ k, we have σ(λ) ∈ k. Hence σ|k is an
automorphism of order at most 2 of k.

We set
k0 = {λ ∈ k|σ(λ) = λ}.

We say that σ is an involution of the first kind if σ|k = Idk, that is if k =
k0, and an involution of the second kind (or unitary) otherwise. In the
latter case, k/k0 is a quadratic field extension, and σ|k is the unique non-trivial
k0-automorphism of k/k0. Conversely, if k/k0 is a quadratic field extension, we will
say that a unitary involution σ on a central simple k-algebra A is a k/k0-involution
if σ|k is the unique non-trivial k0-automorphism of k.

An element x ∈ A is called symmetric if σ(x) = x, and skew-symmetric if
σ(x) = −x. We denote by Sym(A, σ) the set of symmetric elements of A, and by
Skew(A, σ) the set of skew-symmetric elements of A. Both have a natural structure
of a k0-vector space. We also set

Sym(A, σ)× = Sym(A, σ) ∩A× and Skew(A, σ)× = Skew(A, σ) ∩A×.

We say that two central simple k-algebras with involutions (A, σ) and (A′, σ′) are

isomorphic if there exists an isomorphism of k-algebras f : A
∼−→ A′ such that

σ′ ◦ f = f ◦ σ.

In this case, one may verify that σ and σ′ are involutions of the same kind. Moreover,
f then induces isomorphisms of k0-vector spaces

Sym(A, σ) ' Sym(A′, σ′) and Skew(A, σ) ' Skew(A′, σ′).

One may show that, if σ, σ′ are two k/k0-involutions of the second kind, there exists
u ∈ A× ∩ Sym(A, σ), which is unique up to multiplication by an element of k×0 .

Example 1.2. Let k/k0 be a quadratic field extension, and let be its non-trivial
k0-automorphism. If n ≥ 1, the map

Mn(k) −→ Mn(k)

M = (aij) 7−→M∗ = (aji)

is a unitary involution on Mn(k). The result mentioned above then shows that
every k/k0-involution on Mn(k) has the form

σH = Int(H)◦∗,
where H ∈ GLn(k) satisfies H∗ = H.

We now would like to give a family of examples which will be useful in the sequel.
First, we recall the notion of a crossed-product algebra.
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Definition 1.3. Let L/k be a finite Galois extension, with Galois group G. The
group G acts by k-algebra automorphisms on L by

L×G −→ L

(λ, σ) 7−→ λσ = σ−1(λ).

Let us consider a 2-cocycle of G with values in L, that is a map

ξ :
G×G −→ L×

(σ, ρ) 7−→ ξσ,ρ

satisfying

ξσ,Id = ξId,ρ = 1 for all σ, ρ ∈ G,
and

ξσ,ρνξρ,ν = ξσρ,νξ
ν
σ,ρ for all σ, ρ, ν ∈ G.

The crossed-product algebra (ξ, L/k,G) is the k-algebra with generators (fσ)σ∈G
satisfying

(ξ, L/k,G) =
⊕
σ∈G

Lfσ

and subject to the relations

fIdfσ = fσfId = fσ, λfσ = fσλ
σ, fσfρ = fσρξσ,ρ

for all σ, ρ ∈ G,λ ∈ L.
This is a central simple k-algebra of degree n.

Example 1.4. Let γ ∈ k×, let L/k be a cyclic extension of degree n, and let σ be
a generator of its Galois group. Setting

ξγσi,σj =

{
1 if i+ j < n
γ if i+ j ≥ n

defines a 2-cocycle, and the corresponding crossed-product is simply the k-algebra

(γ, L/k, σ) =

n−1⊕
i=0

eiL generated by one element e subject to the relations

en = a, λe = eλσ for all λ ∈ L.

Example 1.5. Let L/k be a biquadratic extension, with Galois group G = 〈σ, τ〉,
let a, b, u ∈ L× satisfying

aσ = a, bτ = b, uuσ =
a

aτ
, uuτ =

bσ

b
,

and let ξa,b,u : G×G −→ L× defined by

ξa,b,uId,Id = 1, ξa,b,uId,σ = 1, ξa,b,uId,τ = 1, ξa,b,uId,στ = 1,

ξa,b,uσ,Id = 1, ξa,b,uσ,σ = a, ξa,b,uσ,τ = 1, ξa,b,uσ,στ = aτ ,

ξa,b,uτ,Id = 1, ξa,b,uτ,σ = u, ξa,b,uτ,τ = b, ξa,b,uτ,στ =
bσ

u
,

ξa,b,uστ,Id = 1, ξa,b,uστ,σ =
a

uσ
, ξa,b,uστ,τ = b, ξa,b,uστ,στ = abuτ .
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A lengthy case-by-case verification shows that ξa,b,u is a 2-cocycle. It is easy to
check that the corresponding crossed-product algebra is nothing but the k-algebra
generated by two elements e and f satisfying

(a, b, u, L/k) = L⊕ eL⊕ fL⊕ efL
and subject to the relations

λe = eλσ, λf = fλτ , e2 = a, f2 = b, fe = efu.

The following result provides the familly of examples we are aiming for, and gen-
eralizes the construction of a unitary involution of a cyclic algebra proposed in
[9].

Lemma 1.6. Let L/k be a finite Galois extension with Galois group G. Assume that
there exists a ring automorphism α : L −→ L satisfying the following conditions:

(1) α2 = IdL;
(2) α ◦ σ = σ ◦ α for all σ ∈ G;
(3) α(λ) = λ for all λ ∈ k.

Let ξ ∈ Z2(G,L×) be a 2-cocycle satisfying (α ◦ ξ)ξ = 1, and let B = (ξ, L/k,G) be
the corresponding crossed-product algebra. Then there is a unique unitary involution
τ on B satisfying

τ(fσ) = f−1
σ for all σ ∈ G and τ|L = α.

Moreover, if Mb is the matrix of left multiplication by b in the L-basis (fσ)σ∈G, then
we have

Mτ(b) = M ]
b for all b ∈ B,

where ] is the unitary involution on Mn(L) defined by

Mn(L) −→ Mn(L)

M = (mσρ)σ,ρ∈G 7−→M ] = (α(mρσ)σ,ρ∈G).

Proof. Assume that an involution τ satisfying the properties of the lemma exists.
Using the fact that τ is an anti-automorphism, we get that

τ
(∑
σ∈G

fσλσ
)

=
∑
σ∈G

α(λσ)f−1
σ for all λσ ∈ L, σ ∈ G.

This proves the uniqueness of τ . We now have to prove that the map τ defined by
the formula above is indeed a unitary involution on B. Clearly, τ is additive, and
for all x ∈ k, we have

τ(x) = α(x) = x.

We now check that we have

τ(xy) = τ(y)τ(x) for all x, y ∈ B.
The usual distributivity argument shows that it is enough to prove it for x =
fσλ, y = fρµ, σ, ρ ∈ G,λ, µ ∈ L. We have

τ(fσλfρµ) = τ(fστξσ,ρλ
ρµ) = α(ξσ,ρ)α(λρ)α(µ)f−1

σρ .

On the other hand, we have

τ(fρµ)τ(fσλ) = α(µ)f−1
ρ α(λ)f−1

σ .
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From the relation λfσ = fσλ
σ, we get

f−1
σ λ = λσf−1

σ .

Therefore, we get

τ(fρµ)τ(fσλ) = α(µ)(α(λ))ρf−1
ρ f−1

σ

= α(µ)(α(λ))ρ(fσfρ)
−1

= α(µ)(α(λ))ρ(fσρξσ,ρ)
−1

= α(µ)(α(λ))ρξ−1
σ,ρf

−1
σρ .

Since α commutes with the elements of G and α(ξσ,ρ) = ξ−1
σ,ρ by assumption, we

get the desired equality. It remains to prove that τ2 = IdB . Since τ is an antiau-
tomorphism of rings, τ2 is an automorphism of rings. Hence to prove that τ2 is
the identity map, it is enough to check that τ2(fσ) = fσ for all σ ∈ G and that
τ2
|L = IdL, which is clear from the definition of τ .

We finally prove the last assertion. We will index the entries of a matrix with
coefficients in L with the elements of G. Let b ∈ B. If Mb = (mσ,ρ)σ,ρ∈G, we have
to check that Mτ(b) = (α(mρ,σ))σ,ρ∈G. Let us write

b =
∑
σ∈G

fσλσ.

For all ρ ∈ G, we have

bfρ =
∑
σ∈G

fσbσfρ

=
∑
σ∈G

fσfρb
ρ
σ

=
∑
σ∈G

fσρξσ,ρb
ρ
σ

=
∑
σ∈G

fσξσρ−1,ρb
ρ
σρ−1 ,

so we have

Mb = (ξσρ−1,ρλ
ρ
σρ−1)σ,ρ∈G.

Now from the equality fσfσ−1ρ = fρξσ,σ−1ρ, we get

f−1
σ fρ = fσ−1ρξ

−1
σ,σ−1ρ.

Therefore, we have

τ(b)fρ =
∑
σ∈G

α(λσ)f−1
σ fρ

=
∑
σ∈G

α(λσ)fσ−1ρξ
−1
σ,σ−1ρ

=
∑
σ∈G

fσ−1ρ(α(λσ))σ
−1ρξ−1

σ,σ−1ρ

=
∑
σ∈G

fσα(λρσ−1)σξ−1
ρσ−1,σ,

the last equality being obtained by performing the change of variables σ ↔ σ−1ρ.
Using again that α commutes with the elements of G and α(ξρσ−1,σ) = ξ−1

ρσ−1,σ, we
get
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τ(b)fρ =
∑
σ∈G

fσα(λρσ−1ξρσ−1,σ).

Thus we get

Mτ(b) = (α(λρσ−1ξρσ−1,σ))σ,ρ∈G = M ]
b ,

and this concludes the proof. �

Remark 1.7. The description of the involution τ in the lemma above may be made
more explicit. As explained in the proof, we have

τ
(∑
σ∈G

fσλσ
)

=
∑
σ∈G

α(λσ)f−1
σ for all λσ ∈ L, σ ∈ G.

Now we have fσfσ−1 = ξσ,σ−1 , and therefore

f−1
σ = fσ−1ξ−1

σ,σ−1 for all σ ∈ G.

Thus, we get

α(λσ)f−1
σ = fσ−1α(λσ)σ

−1

ξ−1
σ,σ−1 for all σ ∈ G,

and performing the change of variables σ ↔ σ−1 yields

τ
(∑
σ∈G

fσλσ
)

=
∑
σ∈G

fσα(λσ−1)σξ−1
σ−1,σ for all λσ ∈ L, σ ∈ G.

Since α commutes with σ and α(ξσ−1,σ)ξσ−1,σ = 1 by assumption, we finally get
that

τ
(∑
σ∈G

fσλσ
)

=
∑
σ∈G

fσα(λσσ−1ξσ−1,σ) for all λσ ∈ L, σ ∈ G.

Example 1.8. Assume that k0 is a number field. Let L/k be a finite Galois ex-
tension of k with Galois group G, and assume that complex conjugation induces a
k0-automorphism α of L which commutes with elements of Gal(L/k). This auto-
morphism satisfies the conditions of Lemma 1.6. In particular, if ξ : G×G −→ L×

is a 2-cocycle satisfying

|ξρ,ρ′ |2 = 1 for all ρ, ρ′ ∈ G,

then B = (ξ, L/k, σ) carries a unitary involution τ such that τ restricts to complex
conjugation on L and τ(fσ) = f−1

σ for all σ ∈ G.

For example, if B = (γ, L/k, σ) is a cyclic k-algebra of degree n such that |γ|2 = 1,
then the unitary involution τ on B given by the previous lemma is defined by

τ :

B −→ B

n−1∑
i=0

eiλi 7−→ λ0 +

n−1∑
i=0

ei γλσ
i

n−i,
,

as it may easily be seen by direct computations, or by using the remark above.

We recover this way the involution obtained by Oggier and Lequeu [9].
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2. Algebras with involutions and space-time coding

As briefly explained in the introduction, we would like to find a set C of n × n
unitary matrices such that the minimum determinant

δmin(C) = inf
U 6=U′∈C

|det(U−U′)|2

is maximal.

As it has been done for the coherent case, we are going to use the theory of division
algebras to construct unitary codes.

We now explain how we are going to proceed. First, we need a definition. Let k/k0

be a quadratic field extension of number fields, whose non-trivial automorphism is
given by the complex conjugation. Let (B, τ) be a central simple k-algebra with a
unitary k/k0-involution.

Notice that, if L is any subfield of C containing k and denotes the complex
conjugation, the map τ ⊗ is a unitary involution on B ⊗k L. Thus the following
definition makes sense.

Definition 2.1. We say that (B, τ) is positive definite if there exists a subfield
L of C such that there exists an isomorphism of L-algebras with involutions

ϕ : (B ⊗k L, τ ⊗ )
∼−→ (Mn(L),∗ ),

that is, if there exists an isomorphism of L-algebras ϕ : B ⊗k L
∼−→ Mn(L) such

that

ϕ ◦ (τ ⊗ ) = ∗ ◦ ϕ.

Example 2.2. The standard transpose conjugate involution on Mn(C) is positive
definite.

Remark 2.3. Notice that since the elements b⊗1, b ∈ B span B⊗kL as an L-vector
space, the elements ϕ(b ⊗ 1), b ∈ B span Mn(L) as an L-vector space. Hence, an

isomorphism ϕ : B ⊗k L
∼−→ Mn(L) induces an isomorphism

ϕ : (B ⊗k L, τ ⊗ )
∼−→ (Mn(L),∗ )

if and only if

ϕ(τ(b)⊗ 1) = ϕ(b⊗ 1)∗ for all b ∈ B.

In view of this definition, it does not seem to be very easy to check whether or not a
given unitary involution is positive definite. In fact, one may show that τ is positive
definite if and only if a certain hermitian form attached to (B, τ) is positive definite.
Since we will not need this criterion for our purpose, we postpone the statement
and the proof of this criterion in the appendix.

Assume that τ is positive definite, and set Ub = ϕ(b ⊗ 1) for all b ∈ B. Then the
equality above may be rewritten as

U∗b = Uτ(b) for all b ∈ B.

We may now prove an easy lemma.
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Lemma 2.4. The map
B −→ Mn(C)

b 7−→ Ub

is an injective morphism of k-algebras. Moreover, the induced group morphism

B× −→ GLn(C)

b 7−→ Ub

is injective.

Proof. Clearly, U1 = In. Let b, b′ ∈ B. Since ϕ is a morphism of L-algebras, we
have

UbUb′ = ϕ(b⊗ 1)ϕ(b′ ⊗ 1) = ϕ(bb′ ⊗ 1) = Ubb′ .

Similarly, one shows that Ub + Ub′ = Ub+b′ , and λUb = Uλb for all λ ∈ k.

Moreover, Ub = In if and only if b = 1, since ϕ and the canonical map B −→ B⊗kL
are injective. This concludes the proof. �

Let us come back to the previous considerations. For all b ∈ B, we have

UbU
∗
b = UbUτ(b) = Ubτ(b).

In particular, Ub is unitary if and only if bτ(b) = 1. This motivates the following
definition.

Definition 2.5. Let k/k0 be any quadratic field extension, and let (B, τ) be a
central simple k-algebra with an arbitrary unitary k/k0-involution. We say that
b ∈ B is unitary (with respect to τ) if bτ(b) = 1.

The set of unitary elements is easily seen to be a subgroup of B×, that we denote
by U(B, τ).

Example 2.6. If k is a number field, B = Mn(k) and τ is the transpose conjugate
of matrices, a unitary element with respect to τ is nothing but a unitary matrix.

The previous results may then be summarized as follows.

Lemma 2.7. Let k/k0 be a quadratic extension of number fields, whose non-trivial
automorphism is the complex conjugation, and let (B, τ) be a central simple k-
algebra with a positive definite unitary k/k0-involution. The map

B −→ Mn(C)

b 7−→ Ub

induces an injective group morphism

U(B, τ) −→ Un(C)

b 7−→ Ub.

Let (B, τ) be a central simple k-algebra with a positive definite unitary k/k0-
involution. Keeping the previous notation, for any subgroup G of U(B, τ), we
get a unitary space-time code

CG = {Ub = ϕ(b⊗ 1) | b ∈ G}.
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Hence, the main idea here is to take our unitary code C to be a finite subset of some
CG , where G is a subgroup of U(B, τ). In this case, if B is division, we will have
δmin(C) > 0 (i.e. the code is fully diverse), and

δmin(C) ≥ δmin(CG).

Of course, we still need to find a way to estimate δmin(CG). This problem will be
examined in the next section.

Example 2.8. Assume that B has a maximal subfield L ⊂ C, and that τ is
positive definite. In this case, it is well-known that we have a unique isomorphism
of L-algebras ϕ : B ⊗k L

∼−→ Mn(L) satisfying

ϕ(b⊗ 1) = Mb for all b ∈ B,

where Mb is the matrix of left multiplication by b with respect to a fixed L-basis of
B ⊗k L. In this case, for every b ∈ U(B, τ), we will have Ub = Mb, and thus, for
any subgroup G of U(B, τ), we will get

CG = {Ub = Mb | b ∈ G}.

Thus, the difficulty now is to find examples of division algebras B carrying a positive
definite unitary involution τ . Lemma 1.6 provides such examples.

Example 2.9. Let k/k0 be a quadratic extension of number fields, and L/k be
a Galois extension of number fields with Galois group G, such that complex con-
jugation induces a k0-automorphism of L which commutes with the elements of
G.

Let B = (ξ, L/k,G) be a crossed-product algebra of degree n, where ξ is a 2-cocycle
satisfying |ξσ,ρ|2 = 1 for all σ, ρ ∈ G.

By Lemma 1.6, there exists a unique unitary involution τ on B such that

Mτ(b) = M∗b for all b ∈ B,

where Mb is the matrix of left multiplication by b in the L-basis (fσ)σ∈G. By
Remark 2.3 and the previous example, τ is positive definite.

Hence, for any subgroup G of U(B, τ), we have

CG = {Ub = Mb | b ∈ G}.

It is about time to show how to find classes of unitary elements in a division algebra
with a unitary involution (B, τ) by looking at elements of norm 1 in some subfields
of B. The following result has been proven is [9].

Lemma 2.10. Let k be an arbitrary field, and let (B, τ) be a division k-algebra with
a k/k0-involution. Then for every x ∈ B, the following conditions are equivalent:

(1) x is unitary with respect to τ ;
(2) there exists a subfield M of B containing x, such that τ restricts to a non-

trivial k0-automorphism of M and NM/M〈τ〉(x) = 1;

(3) there exist a subfield M of B containing x and u ∈M×, such that τ restricts
to a non-trivial k0-automorphism of M and x = uτ(u)−1.



CODES AND ALGEBRAS WITH UNITARY INVOLUTIONS 11

Example 2.11. Let k = Q(j) and L = Q(j)(ζ7+ζ−1
7 ). We have Gal(L/Q(j)) = 〈σ〉,

where

σ :
L −→ L

ζ7 + ζ−1
7 7−→ ζ2

7 + ζ−2
7 .

Consider the cyclic division algebra B = (j, L/Q(j), σ). Since |j|2 = 1, by Example
1.8, there exists a positive definite unitary involution τ on B given by

τ :
B −→ B

λ0 + eλ1 + e2λ2 7−→ λ0 + ej2λσ2 + e2j2λσ
2

1 .

Example 2.9 shows that the left multiplication matrix of any unitary element is a
unitary matrix. Following the method explained above, we look for subfields M
of B which are stable by τ . The first obvious subfield of B one can think of is L.
The restriction of τ on L is the complex conjugation. In this case, unitary elements
contained in L are elements of the form zz−1, z ∈ L×.

Let us consider now the subfield generated by e. Since 1, e, e2 are linearly indepen-
dent over L, they are also linearly independent over k. Therefore [k(e) : k] ≥ 3, and
since e3 = γ, we have [k(e) : k] ≤ 3. Thus k(e) is a subfield of B of degree 3 over k,
and the minimal polynomial of e over k is X3 − j. Thus we have an isomorphism

k(e) ∼=Q Q(ζ9),

where ζ9 is a primitive 9th-root of 1, this isomorphism mapping e onto ζ9. Since
τ(e) = e−1, the previous isomorphism maps τ(e) onto ζ−1

9 = ζ9. In other words,
we have an isomorphism of k-algebras with involution

(k(e), τ|k(e)) ∼=k (Q(ζ9), ).

It follows that unitary elements in k(e) are mapped onto elements of the form
uu−1, u ∈ Q(ζ9)× by this isomorphism.

Take for example the element u = 1+j+ζ9+ζ2
9 j ∈ Q(ζ9). This element corresponds

to the element y = (1 + j) + e + e2j ∈ k(e), and the element u corresponds to the
element τ(y). Set Y = My. Then we have

Y =

 1 + j j2 j
1 1 + j j2

j 1 1 + j

 .

Now we also have

Mτ(y) =

 −j 1 j2

j −j 1
j2 j −j

 ,

which can be checked to be Y∗. Then the element b = yτ(y)−1 is unitary, and its
multiplication matrix Ub = Y(Y∗)−1 is a unitary matrix, as we may check directly
by computation.
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3. The minimum determinant of a unitary code

Let us summarize what we have done in the previous section. Let k/k0 be a qua-
dratic extension of number fields, whose non-trivial automorphism is given by com-
plex conjugation. Let (B, τ) be a central simple k-algebra of degree n with a positive
definite unitary k/k0-involution, let L/k be a splitting field of B (L ⊂ C) and let

ϕ : B ⊗k L
∼−→ Mn(L)

be an isomorphism of L-algebras such that

ϕ(τ(b)⊗ 1) = ϕ(b⊗ 1)∗ for all b ∈ B.

For any subgroup G of U(B, τ), the set

CG = {Ub = ϕ(b⊗ 1) | b ∈ G}

is a unitary algebraic code, which is fully diverse as soon as B is a division algebra.

As explained in a previous section, we would like to find a good estimation of the
minimum determinant of our unitary code CG . The first step is, as in the coherent
case, to find a more tractable expression of it. This is given by the next lemma.

Lemma 3.1. Let k be a number field, let (B, τ) be a central simple k-algebra with
a positive definite unitary involution, and let G be a subgroup of U(B, τ). Then we
have

δmin(CG) = inf
b∈G\{1}

|NrdB(1− b)|2.

Proof. For all b, b′ ∈ U(B, τ), b 6= b′, using Lemma 2.7, we get

Ub −Ub′ = Ub(In −U−1
b Ub′) = Ub(In −Ub−1b′).

Now, if b and b′ run through all elements of G, b−1b′ runs through all elements of
G \{1}. Since the determinant of a unitary matrix is a complex number of modulus
1, we finally get that

δmin(CG) = inf
b∈G\{1}

|det(In −Ub)|2.

Now we have

In −Ub = In − ϕ(b⊗ 1) = ϕ((1− b)⊗ 1),

and therefore

det(In −Ub) = det(ϕ((1− b)⊗ 1)) for all b ∈ G \ {1}.

Thus, this equality may be rewritten as

det(In −Ub) = NrdB(1− b) for all b ∈ G \ {1},

and therefore

δmin(CG) = inf
b∈G\{1}

|NrdB(1− b)|2.

This concludes the proof. �
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Example 3.2. Let us keep the notation of Example 2.11. One may take the
subgroup G = 〈b〉 of U(B, τ) generated by b, and consider the unitary code CG.
We then get an infinite unitary code. One way to see this is as follows: after
computations, we get

det(Ub) =
11

38
− i21

√
3

38
.

Hence, we have det(Ub) = eiθ, with cos(θ) =
11

38
. But one may show by induction

that cos(2mθ) 6= 1 for all m ≥ 1. In particular, mθ is never a rational multiple of
2π. It follows that Um

b 6= I3 for all m ≥ 1, which is equivalent to saying that G is
infinite. However, the minimum determinant of such a code is 0, as shown in the
next proposition.

Proposition 3.3. If G is a subgroup of U(B, τ) containing an element of infinite
order, then δmin(CG) = 0.

Proof. Let b ∈ G be an element of infinite order. Since H = 〈b〉 ⊂ G, we have

0 ≤ δmin(CG) ≤ δmin(CH).

Hence, it is enough to prove that δmin(CH) = 0. Notice that, by assumption on b,
the corresponding matrix Ub has infinite order, since the map

U(B, τ) −→ Un(C)

b 7−→ Ub

is an injective group morphism by Lemma 2.7. Since Ub is unitary, it can be
diagonalized and all its eigenvalues have modulus 1.

Let eiθj , j = 1, . . . , n be the (not necessarily distinct) eigenvalues of Ub. For all
m ∈ Z, the matrix In−Um

b is similar to the diagonal matrix whose diagonal entries
are

1− eimθj = −2i sin(
mθj

2
)ei

mθj
2 , j = 1, . . . , n.

It follows easily that

δmin(CH) = 4n inf
m≥1

n∏
j=1

sin2(
mθj

2
).

Now, since Ub has infinite order, at least one θj is not a rational multiple of 2π.

For this θj , the sequence (sin(
mθj

2 ))m≥1 is dense in [−1, 1], so we may find an

increasing sequence of integers (αm)m≥1 such that lim
m

sin(
αmθj

2
) = 0. This implies

that δmin(CH) = 0, and this concludes the proof. �

We now prove a result which will allows us to compute the minimum determinant
in terms of norms of cyclotomic extensions.

If n ≥ 1 is an integer, we denote by φn the nth cyclotomic polynomial.

Proposition 3.4. Let k be a number field, and let D be an arbitrary central division
k-algebra of degree n. If D× has an element d of order m, the following properties
hold:

(1) we have µd,Q = φm and k(d) ∼=k k(ζm), where ζm ∈ C is some primitive
mth-root of 1;
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(2) [k(ζm) : k] | n and either ζm ∈ k or D ⊗k k(ζm) is not a division algebra;

(3)
ϕ(m)

gcd(ϕ(m), [k : Q])
| n. In particular, ϕ(m) | n[k : Q];

(4) we have the equalities

NrdD(1− d) = Nk(ζm)/k(1− ζm)
n

[k(ζm):k]

= (µζm,k(1))
n

[k(ζm):k] .

Moreover, if D has prime degree and property (2) holds, then D× has an element
of order m.

Proof. Let d ∈ D× be an element of order m, so we have dm = 1. Hence µd,Q
divides Xm − 1, and therefore µd,Q is a cyclotomic polynomial φr, for some r | m.
Since φr | Xr − 1, we have dr − 1 = 0, and therefore m | r. Hence r = m and
µd,Q = φm. Now µd,k | µd,Q, so there exists ζm ∈ C, a primitive mth-root of 1,
such that µd,k(ζm) = 0. Elementary Galois theory then shows that we have an
isomorphism of k-algebras

k(d) ∼=k k(ζm),

which maps d onto ζm. This proves (1). Notice for later use that such an isomor-
phism preserves degrees and norms. Therefore, k(ζm) is isomorphic to a subfield of
D. In particular, [k(ζm) : k] | n. If ζm /∈ k, k(ζm)/k has degree at least 2, and it
is well-known that D ⊗k k(ζm) is not a division algebra. Now assume that D has
prime degree, and that [k(ζm) : k] | n. If ζm ∈ k, then ζm ∈ D× has order m. If
D⊗k k(ζm) is not a division algebra, then k(ζm)/k is an extension of degree at least
2 dividing n. Since D has prime degree, this implies that k(ζm) is isomorphic to a
subfield of D. Such an isomorphism maps ζm onto an element d ∈ D× of order m.
This proves (2) and the last part of the proposition.

Now let t = gcd(ϕ(m), [k : Q]), and write [k : Q] = rt and ϕ(m) = st, with
gcd(r, s) = 1. We have to prove that s | n. From the equalities

[k(ζm) : Q] = [k(ζm) : k][k : Q] = [k(ζm) : Q(ζm)][Q(ζm) : Q],

we get that [k(ζm) : k]r = [k(ζm) : Q(ζm)]s. In particular, we have s | [k(ζm) : k].
Since [k(ζm) : k] = [k(d) : k], and [k(d) : k] | n, we get (3).

It remains to prove (4). Let M be a maximal subfield of D containing d. Then it
contains 1− d, and we have

NrdD(1− d) = NM/k(1− d) = Nk(d)/k(1− d)
n

[k(d):k] .

Thus, we have

NrdD(1− d) = Nk(ζm)/k(1− ζm)
n

[k(ζm):k] .

Now notice that k(ζm) = k(1− ζm), and that

µ1−ζm,k = (−1)[k(ζm):k]µζm,k(1−X).

It follows immediately that Nk(ζm)/k(1− ζm) = µζm,k(1), and this proves (4). This
concludes the proof. �

Corollary 3.5. Let k be a number field, and let D be a central division k-algebra
of degree n. Then any subgroup of D× is either finite or has an element of infinite
order.
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Proof. Let G be a subgroup of D×. Assume that every element of G has finite
order. By the previous proposition, if g ∈ G has order m, then ϕ(m) | n[k : Q].
This implies that m may take only finitely many values. In particular, the least
common multiple of the orders of the elements of G is finite, that is G has finite
exponent. Now if L is a maximal subfield of D, the injective k-algebra morphism

ϕD,L : D ↪→ Mn(L)

induces an injective group morphism D× ↪→ GLn(L). It follows that G is isomorphic
to a subgroup of GLn(C) of finite exponent. By a celebrated theorem of Burnside,
this implies that G is finite. �

We now summarize our results on the minimum determinant of unitary codes in
the following theorem.

Theorem 3.6. Let G be a subgroup of U(B, τ), and assume that B is a division
k-algebra of degree n. Then G is either finite or has an element of infinite order.
Moreover, the following properties hold:

(1) If G has an element of infinite order, then δmin(CG) = 0;
(2) If G is finite, we have

δmin(CG) = inf
b∈G\{1}

|Nk(ζmb )/k(1− ζmb)|
2n

[k(ζmb
):k]

= inf
b∈G\{1}

|µζmb ,k(1)|
2n

[k(ζmb
):k] ,

where mb is the order of b.

Proof. This follows from Proposition 3.3, Proposition 3.4 and Corollary 3.5, since
a subgroup of U(B, τ) is a subgroup of B×. �

Remark 3.7. If b ∈ G has finite order mb, Proposition 3.4 shows that that NrdB(1−
b) only depends on mb. In particular, δmin(CG) only depends on the orders of the
elements of G, and not on the group itself. Therefore, to compute the minimum
determinant, one may proceed as follows:

(1) compute the set of values S = {mb | b ∈ G \ {1}};
(2) choose a subset S of G such that each element of S is obtained by a unique

element of S;
(3) the observation above shows that we have

δmin(CG) = inf
b∈S
|NrdB(1− b)|2

= inf
b∈S
|det(In −Ub)|2

= inf
b∈S
|Nk(ζmb )/k(1− ζmb)|

2n
[k(ζmb

):k]

= inf
b∈S
|µζmb ,k(1)|

2n
[k(ζmb

):k] .

As a first application, we compute the exact value of the minimum determinant of
a code presented in [6].

Example 3.8. LetB = (j,Q(ζ21)/K, σ), whereK = Q(j,
√
−7) and σ : ζ21 7−→ ζ4

21.
One may show that B is a division algebra. Then Oggier considers the unitary code

C = {ErDs | r = 0, . . . , 8, s = 0, . . . , 6},
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where E and D be the left multiplication matrix of e and ζ21 respectively.

In fact, C is simply the unitary code CG , where G is the group of order 63, generated
by e and ζ21. The possible values for the order of an element of G are 1, 3, 7, 9, 21, 63.
Notice that G is not abelian, hence not cyclic, so G has no elements of order 63. We
also look only at non-trivial elements of G, so we may also discard 1. One may also
check that G has no element of order 9. By considering ζ7

21, ζ
3
21 and ζ21, we see that

the other possible values are obtained.

The remark above shows that it is enough to compute |det(I3−Dm)|2 form = 1, 3, 7.
Here, the minimum is obtained for m = 1, so

δmin(CG) = |det(I3 −D)|2 ≈ 0.21.

Computing µζ21,K shows that the exact value is
5−
√

21

2
.

Notice that we may extend this code by considering the group

G′ = 〈e, ζ21,−j〉 = 〈e, ζ21,−1〉.
It is easy to check that G′ ' G × {±1}, so that

CG′ = {±U | U ∈ CG}.
Hence the orders of non-trivial elements of G are now

2, 3, 6, 7, 14, 21, 42,

and −1,−ζ7
21,−ζ3

21 and −ζ21 are elements of order 2, 6, 14 and 42 respectively. One
may compute that

δmin(CG′) = |det(I3 +D2)|2 =
23− 5

√
21

2
≈ 0.04.

Remark 3.9. Let G be a finite subgroup of U(B, τ). One way to get a group G
whose cardinality is as large as possible is to ensure that G contains all the roots of
unity lying in k. However, we will often get a small minimum determinant, as we
proceed to show now.

Indeed, Theorem 3.6 shows in particular that, if ζm ∈ k, then we have

δmin(CG) ≤ |1− ζm|2n,
for any finite subgroup G of U(B, τ) (where n is the degree of B over k), that is

δmin(CG) ≤ (2 sin(
π

m
))2n.

This may be rewritten as

ζ(CG) ≤ sin(
π

m
).

Now, if m ≥ 7, this shows that

ζ(CG) ≤ sin(
π

7
) < 0.44.

The upper bound above also shows that ζ(CG) will tend to be very small if the base
field k contains roots of 1 of large order.

The next lemma, used together with the previous proposition, allows to compute
the minimum determinant of a unitary code CG when k/Q is a purely imaginary
quadratic extension.
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Lemma 3.10. Let k/Q be a purely imaginary quadratic extension, and let m ≥ 2.
Then we have

|Nk(ζm)/k(1− ζm)|2 =

 p if m = pr, r ≥ 1 and k ⊂ Q(ζm)
p2 if m = pr, r ≥ 1 and k 6⊂ Q(ζm)
1 otherwise .

Proof. Since k/Q is a purely quadratic imaginary extension, we have

|Nk(ζm)/k(1− ζm)|2 = Nk(ζm)/Q(1− ζm) = NQ(ζm)/Q(1− ζm)[k(ζm):Q(ζm)].

Therefore, we have

|Nk(ζm)/k(1− ζm)|2 =

{
NQ(ζm)/Q(1− ζm) if k ⊂ Q(ζm)
NQ(ζm)/Q(1− ζm)2 if k 6⊂ Q(ζm).

Notice now that µ1−ζm,Q = (−1)ϕ(m)φm(1−X). It follows that we have

NQ(ζm)/Q(1− ζm) = φm(1).

If p is a prime number, we have the well-known relations

φm(Xp) =

{
φmp if p | m
φmpφm otherwise.

It follows easily that φm(1) = p if m = pr, r ≥ 1 and φm(1) = 1 otherwise. This
concludes the proof. �

Remarks 3.11. Assume that k/Q is a purely imaginary quadratic extension. Let
G be a subgroup of U(B, τ), and assume that B is a division k-algebra of degree n.

(1) It follows from Theorem 3.6 that, if G contains an element of order m, we
have

ϕ(m) | 2n if k ⊂ Q(ζm)

and

ϕ(m) | n if k 6⊂ Q(ζm).

(2) If G is finite, and contains an element whose order is not a prime power,
then we have

δmin(CG) = 1,

that is

ζ(CG) =
1

2
.

Indeed, this is an immediate consequence of Theorem 3.6 and Lemma 3.10.

If we want to find subgroups G of U(B, τ) such that δmin(CG) > 0, Theorem 3.6
says that all elements of G need to have finite (multiplicative) order. Such elements
may be found as follows: choose a subfield M of B which is stable by τ , and look
for unitary elements among ‘roots of 1 in M ’, that is elements b ∈ M such that
µb,Q = φm for some m ≥ 1. Moreover, a list of possible values for m may be found
using points (2) and (3) of Proposition 3.4.

However, the product of elements of finite order is not necessarily an element of
finite order. Hence, once we found several unitary elements of finite order, we are
not still ensured that the group they generate only have elements of finite order.
The next lemma shows how to avoid this problem.
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Lemma 3.12. Let Λ be a subring of B which is finitely generated as an abelian
group. Then U(B, τ) ∩ Λ× is finite.

Proof. Let n = deg(B). By Lemma 2.7, the map

ψ :
U(B, τ) −→ Un(C)

b 7−→ Ub

identifies U(B, τ)∩Λ× to a subgroup of Un(C). Since Λ is a finitely generated group,
it is countable, and therefore so is ψ(U(B, τ) ∩ Λ×). Since Un(C) is compact, any
countable subset of Un(C) is finite. In particular, ψ(U(B, τ) ∩ Λ×) is finite, and
thus U(B, τ) ∩ Λ× is also finite. This concludes the proof. �

Remark 3.13. Such a subring Λ always exists. One may even assume that Λ
contains a k-basis of B. For example, let e1, . . . , en2 be a k-basis of B. For all
1 ≤ i, j ≤ n2, there exists mij ∈ Z such that

mijeiej ∈
n2∑
i=1

eiOk.

Let m be the least common multiple of the m′ijs. Then we have

meiej ∈
n2∑
i=1

eiOk for 1 ≤ i, j ≤ n2.

Let Λ be the Ok-module generated by 1,me1, . . . ,men2 . By construction, Λ is a
subring of B, which contains a k-basis of B, and which is finitely generated as an
abelian group (since it is finitely generated as an Ok-module).

Example 3.14. Let k = Q(i), and consider the central simple k-algebra

B = (ζ8,
1 + 2i√

5
, i, k(

√
2,
√

5)/k, σ, ρ),

where σ and ρ are defined in a unique way by

σ(
√

2) =
√

2, σ(
√

5) = −
√

5 and ρ(
√

2) = −
√

2, ρ(
√

5) =
√

5.

As shown in [1], this is a division k-algebra. By Example 1.5, the values of the
cocycle corresponding to the algebra (a, b, u, L/k, σ, ρ) will have modulus 1 if and
only if a, b and u have modulus 1. All these conditions are fulfilled here, so by
Lemma 1.6, there is an involution τ on B such that τ|L is the complex conjugation,

τ(e) = e−1, and τ(f) = f−1, where e, f are the generators of B.

The elements e and f are unitary and e has finite order. However, f has infinite
order. Since

√
5 and f commute, M = k(f,

√
5) is a subfield of B which is stable

by τ . Let α ∈ C such that α2 =
1 + 2i√

5
. Notice that (αα)2 = 1, and thus αα = 1.

We then have an isomorphism of k-algebras

M ∼=k k(α,
√

5)

which maps f onto α and
√

5 onto
√

5. Since τ(f) = f−1 is mapped onto α−1 = α,
it easily implies that we have an isomorphism of k-algebras with involution

(M, τ|M ) ∼=k (k(α,
√

5), ).
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Set θ =
1 +
√

5

2
. One may check that the element

ζ = −θ
2

+ α(
1

2
+ i

1− θ
2

)

satisfies ζ5 = i, that is ζ is a primitive 20th-root of 1. In particular, ζζ = 1. Using
the isomorphism above, this yields an element

z = −θ
2

+ f(
1

2
+ i

1− θ
2

) ∈ B,

which is unitary and which has order 20.

Straightforward computations show that

e16 = 1, z20 = 1 and ze = ez−3.

It follows easily that the ring Λ = Ok[e, z] is finitely generated as an Ok-module,
hence as an abelian group. One may show that

G = U(B, τ) ∩ Λ× = {e`zm | ` = 0, . . . , 3,m = 0, . . . , 19},

is a group of order 80. Therefore, the unitary code CG consists of 80 matrices. If
E = Ue, Z = Uz, we have

E =


0 ζ8 0 0
1 0 0 0
0 0 0 −ζ8
0 0 1 0

 ,

and

Z =


−i θ2 0 1

2 + i θ−1
2 0

0 i θ−1
2 0 − θ2 −

i
2

1
2 − i

θ−1
2 0 −i θ2 0

0 − θ2 + i
2 0 i θ−1

2

 .

In other words,

CG = {E`Zm | ` = 0, . . . , 3,m = 0, . . . , 19}.

By Remark 3.11 (2), ζ(CG) =
1

2
.

Let us give another example.

Example 3.15. Let k = Q(j), and let L = k(ζ7). Then L/k is a cyclic extension
of degree 6, a generator σ of Gal(L/k) being given by

σ :
L −→ L

ζ7 7−→ ζ3
7 .

Let B = (−j, k(ζ7)/k, σ). One may show that B is a division k-algebra. Since B
fulfills all the assumptions of Lemma 1.6, we may consider the unitary involution τ
described in this lemma.

If e is the canonical generator ofB, then e is a unitary element of order 36. Moreover,
z = ζ7 is a unitary element of order 7. It follows from the equality ze = ezσ = ez−2

that the subgroup G of U(B, τ) generated by e and z is a finite group of order

36·7 = 252. Theorem 3.6 and Lemma 3.10 then show that ζ(CG) =
1

2
.
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In other words, the unitary code

CG = {E`Zm | ` = 0, . . . , 35,m = 0, . . . , 6}
consists of 252 unitary matrices and satisfies δmin(CG) = 1, where

E =


0 0 0 0 0 −j
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 and Z =


ζ−2
7 0 0 0 0 0
0 ζ4

7 0 0 0 0
0 0 ζ7 0 0 0
0 0 0 ζ2

7 0 0
0 0 0 0 ζ−4

7 0
0 0 0 0 0 ζ−1

7

 .

One may also obtain a code with a better diversity product by considering a re-
stricted number of matrices. Indeed, let us consider the subgroup H of U(B, τ)
generated by e4 and z. Then H is a semidirect product of the cyclic group 〈e4〉
of order 9 and of the cyclic group 〈z〉 of order 7. Straightforward arguments then
show that the orders of non-trivial elements of H are 3, 7 or 9. By Lemma 3.10, the
unitary code

CH = {E4`Zm | ` = 0, . . . , 8,m = 0, . . . , 6}
has 63 elements and satisfies δmin(CH) = 3, that is ζ(CH) ≈ 0.55.

Notice that the method using fixed-point free groups in [13] does not provide an
example of group constellations for n = 6, and provide a non-group constellation C
of 72 matrices with diversity product equal to

1

2
.

In this section, we mainly focused on the computation of infinite unitary codes built
using G of U(B, τ). Theorem 3.6 thus tells us that we have to exclude elements
of infinite order to ensure that δmin(CG) > 0. However, in practice, we only need
finite subsets C of CG . Therefore, we may use these elements to extend further the
codes obtained using the techniques developed above, and we are not restricted to
consider only finite groups.

Example 3.16. Let us keep the notation of Example 3.14, and consider the code

Cr = {E`ZmF t | ` = 0, . . . , 3,m = 0, . . . , 19, t = 0, . . . , r},
where F is the multiplication matrix of the element f . Notice F is a unitary matrix
of infinite order, since f is a unitary element of infinite order. The unitary code Cr
has 80(r + 1) elements, and one may compute that

ζ(C1) ≈ 0.41, ζ(C2) ≈ 0.33, ζ(C3) ≈ 0.27, ζ(C4) ≈ 0.22.

Notice that the method using fixed-point free groups in [13] yields a non-group
constellation C of 289 matrices with diversity product approximatively equal to
0.31.
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Appendix: positive definite unitary involutions.

As promised, we give in this appendix an explicit criterion to decide whether or
not a given unitary involution is positive definite. First, we need a lemma. All the
fields here have characteristic different from 2.

Lemma 3.17. Let k/k0 be a quadratic extension of arbitrary fields, let its non-
trivial k0-automorphism, and let (B, τ) be a central simple k-algebra with a unitary
k/k0 involution. Then we have

TrdB(τ(b)) = TrdB(b) for all b ∈ B,

where TrdB is the reduced trace.

Proof. Let L/k be a splitting field of B, so we have an isomorphism of L-algebras

ϕ : B ⊗k L
∼−→ Mn(L).

Set τ ′ = ϕ ◦ (τ ⊗ ) ◦ ϕ−1. It is easy to check that τ ′ is a unitary involution of
Mn(L). By Example 1.2, there exists an invertible hermitian matrix H ∈ Mn(L)
such that τ ′ = Int(H)◦∗. In other words, we have

(Int(H)◦∗) ◦ ϕ = ϕ ◦ (τ ⊗ ).

Thus, for all b ∈ B, we get

Hϕ(b⊗ 1)∗H−1 = ϕ(τ(b)⊗ 1).

By definition of the reduced trace, we have TrdB(τ(b)) = tr(ϕ(τ(b)⊗1)). Therefore,
we get

TrdB(τ(b)) = tr(Hϕ(b⊗ 1)∗H−1) = tr(ϕ(b⊗ 1)∗) = tr(ϕ(b⊗ 1)) = TrdB(b).

This concludes the proof. �

Notice now that for all b ∈ B, τ(b)b is τ -symmetric. In view of this lemma, the map

T(B, τ) :
B ×B −→ k0

(b, b′) 7−→ TrdB(τ(b)b′).

is a hermitian form on B with respect to (a, ).

Let L/k be a field extension, and let α : L −→ L be a ring automorphism of L
extending . In particular, α 6= IdL. If L0 denotes the subfield of L fixed by α,
then L0 contains k0 and L/L0 is a quadratic extension.

If h : V × V −→ k is a hermitian form on a finite dimensional k-vector space V
with respect to (k, ) , we denote by h(L,α) the unique hermitian form on V ⊗k L
with respect to (L,α) satisfying

h(L,α)(v1 ⊗ λ1, v2 ⊗ λ2) = α(λ1)λ2h(v1, v2) for all v1, v2 ∈ V, λ1, λ2 ∈ L.

We then have the following lemma.

Lemma 3.18. Let (B, τ) and (B′, τ ′) be two central simple k-algebras with a uni-
tary k/k0 involution, let L/k be a field extension, and let α : L −→ L be a ring
automorphism of L extending . Then the following properties hold :

(1) if (B, τ) ∼=k (B′, τ ′), then T(B,τ)
∼=k T(B′,τ ′);
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(2) the map τ ⊗ α is a unitary L/L0-involution on B ⊗k L, and we have

T(B⊗kL,τ⊗α)
∼=L (T(B,τ))(L,α)

(3) Let B = Mn(k) and let τ = Int(H)◦∗, for some invertible hermitian matrix
H ∈ Mn(k). Finally, let hH the hermitian form on kn defined by

hH :
kn × kn −→ k

(X,Y ) 7−→ X∗HY

If hH ∼=k 〈λ1, . . . , λn〉, λi ∈ k×0 , then

T(B,τ)
∼=k 〈1, λ1λ

−1
2 , . . . , λjλ

−1
i , . . .〉.

Proof.

(1) Let ϕ : B
∼−→ B′ be an isomorphism of k-algebras such that ϕ ◦ τ = τ ′ ◦ ϕ.

Then for all b1, b2 ∈ B, we have

T(B′,τ ′)(ϕ(b1), ϕ(b2)) = TrdB′(τ
′(ϕ(b1))ϕ(b2))

= TrdB′(ϕ(τ(b1))ϕ(b2))
= TrdB′(ϕ(τ(b1)b2))
= TrdB(τ(b1))b2)
= T(B,τ)(b1, b2).

In other words, ϕ induces an isomorphism of hermitian forms

T(B,τ)
∼=k T(B′,τ ′).

(2) The first part is clear. For all b1, b2 ∈ B, we have

T(B⊗kL,τ⊗α)(b1 ⊗ 1, b2 ⊗ 1) = TrdB⊗kL((τ(b1)⊗ 1)(b2 ⊗ 1))
= TrdB⊗kL(τ(b1)b2 ⊗ 1)
= TrdB(τ(b1)b2)
= (T(B,τ))(L,α)(b1 ⊗ 1, b2 ⊗ 1)

.

Since the elements b ⊗ 1, b ∈ B, span B ⊗k L as an L-vector space, this yields the
desired result.

(3) Let (X1, . . . , Xn) be an hH -orthogonal basis of Xn, and let P ∈ GLn(k) the
matrix whose columns are X1, . . . , Xn. By definition, the matrix D = P ∗HP is
a diagonal invertible matrix (with diagonal entries lying in k×0 ). Notice that by
definition, hH ∼=k 〈λ1, . . . , λn〉. For all M ∈ Mn(k), easy computations show that
we have

T(B,τ)(Int((P ∗)−1)(M)) = TrdB(DM∗D−1M) = T(B,Int(D)◦∗)(M).

Hence, we have an isomorphism of hermitian forms T(B,τ)
∼=k T(B,Int(D)◦∗), and we

thus may assume that H = D. Now if λ1, . . . , λn ∈ k×0 are the diagonal entries of
D and M = (aij), we have

T(B,Int(D)◦∗)(M) = tr(DM∗D−1M) =
∑
i,j

λiλ
−1
j ajiaji =

∑
i,j

λjλ
−1
i aijaij .

Therefore, the canonical isomorphism kn
2 ∼=k Mn(k) induces an isomorphism of

hermitian forms

T(B,Int(D)◦∗) ∼=k 〈1, λ1λ
−1
2 , . . . λjλ

−1
i , . . .〉.

This concludes the proof. �
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We are now ready to state and prove the desired criterion.

Theorem 3.19. Assume that k/k0 is a quadratic extension of number fields, whose
non-trivial k0-automorphism is the complex conjugation. In particular, k0 ⊂ R. Let
(B, τ) be a central simple k0-algebra with a unitary k/k0-involution. Then τ is
positive definite if and only if Tτ is a positive definite hermitian form, that is if and
only if

TrdB(τ(b)b) > 0 for all b ∈ B \ {0}.

Proof. Assume first that τ is positive definite, so that there exists L/k (L ⊂ C)
such that

(B ⊗k L, τ ⊗ ) ∼=L (Mn(L),∗ ).

By Lemma 3.18, we have

(T(B,τ))(L, )
∼=L T(B⊗kL,τ⊗ )

∼=L T(Mn(L),∗)
∼=L 〈1, . . . , 1〉.

It follows that for all non-zero x ∈ B ⊗k L, we have

(T(B,τ))(L, )(x, x) > 0.

In particular, for all non-zero b ∈ B, we get

(T(B,τ))(L, )(b⊗ 1, b⊗ 1) = T(B,τ)(b, b) = TrdB(τ(b)b) > 0.

Conversely, assume that TrdB(τ(b)b) > 0 for all b ∈ B \ {0} and take L = C.
The assumption means that T(B,τ) is a positive definite hermitian form. Then
(T(B,τ))(C, ) is also positive definite, and thus T(B⊗kL,τ⊗ ) is positive definite by
the second point of the previous lemma.

Now, let us fix an isomorphism of C-algebras ϕ : B ⊗k C ∼−→ Mn(C). The map
τ ′ = ϕ ◦ (τ ⊗ ) ◦ ϕ−1 is easily seen to be a unitary C/R-involution on Mn(C),
so τ ′ = Int(H)◦∗ for some invertible hermitian matrix H by Example 1.2. By
definition of τ ′, we have

(B ⊗k C, τ ⊗ ) ∼=C (Mn(C), Int(H)◦∗).

By Lemma 3.18, we get that

T(B⊗kC,τ⊗ )
∼=C 〈1, λ1λ

−1
2 , . . . λjλ

−1
i , . . .〉,

where 〈λ1, . . . , λn〉 is a diagonalization of the hermitian form over Cn represented
by H. Now, since T(B⊗kC,τ⊗ ) is positive definite, it easily implies that λ1, . . . , λn
have same sign. Replacing H by −H if necessary, one may assume that λi > 0
for all i. In this case, it follows that H is a positive hermitian matrix, and thus
H = PP ∗ for some P ∈ GLn(C). Now, for all M ∈ Mn(C), we get

(Int(P−1) ◦ τ ′)(M) = P−1PP ∗M∗(P ∗)−1P−1P = (P−1MP )∗ = (Int(P−1)(M))∗.

This means that Int(P−1) induces an isomorphism (Mn(C), Int(H)◦∗) ∼=C (Mn(C),∗ ),
and therefore

(B ⊗k L, τ ⊗ ) ∼=C (Mn(C), Int(H)◦∗) ∼=C (Mn(C),∗ ).

Hence τ is positive definite, and this concludes the proof. �
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