
Advances in Mathematics of Communications doi goes here.
Volume X, No. 0X, 200X, X–XX

SOME REMARKS ON PRIMALITY PROVING AND ELLIPTIC

CURVES

Alice Silverberg

Department of Mathematics
University of California, Irvine

Irvine, CA 92697-3875

USA

Abstract. We give an overview of a method for using elliptic curves with

complex multiplication to give efficient deterministic polynomial time primal-

ity tests for the integers in sequences of a special form. This technique has
been used to find the largest proven primes N for which there was no known

significant partial factorization of N − 1 or N + 1.

1. Introduction

In this article we will make some remarks on a technique for using elliptic curves
to give efficient deterministic primality tests for integers in very special sequences.
The goal is to explain, and put in context, some recent uses of this method [3, 30, 5,
1] that were inspired by papers of Benedict Gross (2005) [17] and Robert Denomme
and Gordan Savin (2008) [11]. The implementations run in quasi-quadratic time,
and are useful for proving the primality of large primes in certain sequences to which
classical p± 1 tests do not apply.

In §2 we give a very brief history of some of the more relevant aspects of primality
testing. We state Gross’s result in §4, and give a proof of it that runs parallel to
the proof of Pépin’s primality test for Fermat numbers. We continue in §5 with
results of Denomme and Savin that use similar techniques. In §7 we give highlights
of a general framework for using CM elliptic curves to obtain fast deterministic
primality tests, for which proofs will be given in [5]. In §6 and §8 we state concrete
applications of the general framework (with proofs, details, and implementations
given in [3, 30, 5, 1]). The primality testing theorems have been phrased in parallel
ways to try to make clear how they are all related.

2. Brief History

Primality proving has a long and illustrious history. We will only touch on some
very special aspects, and refer the reader to [24] for a nice short article by Carl
Pomerance on primality testing, the book [10] for an excellent detailed exposition
by Richard Crandall and Pomerance, and Hendrik Lenstra’s ICM article [22] for
historical remarks on elliptic curve primality testing.

To test an integer n for primality using trial division takes time O(
√
n). Fast

primality tests used in practice are probabilistic; they make use of randomly cho-
sen input, output “prime” on all prime inputs, and might (rarely) give the wrong
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answer for composite inputs. The Miller-Rabin (probabilistic) primality test runs

in (polynomial) time Õ(log2 n).
The “AKS” deterministic primality test of Manindra Agrawal, Neeraj Kayal, and

Nitin Saxena (2002) [6] showed for the first time that the primality or compositeness
of any integer can be determined in deterministic polynomial time. With improve-
ments to AKS due to Lenstra and Pomerance [23], the time to test an integer n is

Õ(log6 n).

Fast deterministic algorithms (that run in time Õ(log2 n)) have long been known
for numbers in special sequences, such as:

• Fermat numbers 22
k

+ 1 using Pépin’s criterion (1877),
• Mersenne numbers 2k − 1 using the Lucas-Lehmer test (1930).

As Pomerance points out in [24], the following idea of Lucas “has been the basis
of essentially all of primality testing”.

Theorem 1 (Lucas, 1876). If a ∈ Z, an−1 ≡ 1 (mod n), and a(n−1)/p 6≡ 1 (mod n)
for all primes p|(n− 1), then n is prime.

In other words, if a has order n− 1 in (Z/nZ)× then n is prime. As Pomerance
puts it in [24], “The Lucas idea may be summed up as follows: build up a group so
large that n must be prime.”

Since the mid-1980’s, elliptic curves have been used in algorithmic number the-
ory to give deterministic algorithms that are faster than earlier algorithms that did
not use elliptic curves, beginning with Réne Schoof’s algorithm (1985) [26] for com-
puting square roots modulo primes, and followed shortly thereafter by Lenstra’s
algorithm for factoring integers using elliptic curves (1987) [21].

In his 1985 Masters thesis “Primality testing using elliptic curves” [8], Wieb
Bosma gave sufficient conditions for primality of numbers of special forms, using
elliptic curve analogues of Lucas’ test, where arithmetic in the group (Z/nZ)× is
replaced by arithmetic in the reduction mod n of an elliptic curve with complex
multiplication (CM) by Q(i) or Q(

√
−3). This gives a probabilistic primality test.

David Chudnovsky and Gregory Chudnovsky (1986) [9] also used CM elliptic
curves to give sufficient conditions for the primality of integers in certain sequences,
and thereby gave a probabilistic primality test. They also proposed using higher
dimensional varieties, including abelian varieties with complex multiplication.

Shafi Goldwasser and Joe Kilian (1986) [12, 13] gave the first general purpose
elliptic curve primality proving algorithm, using randomly generated elliptic curves.
It runs in expected polynomial time. Daniel Gordon (1989) [14] proposed a general
purpose compositeness test using CM elliptic curves over Q with supersingular
reduction. Oliver Atkin and François Morain (1993) [7] developed an improved
version of the Goldwasser-Kilian algorithm that is faster in practice, but its expected
polynomial runtime of Õ(log4 n) is only heuristic.

3. Complex Multiplication (CM)

We give some very brief remarks about elliptic curves with complex multiplica-
tion.

If E is an elliptic curve over a number field, p is a prime of good reduction, and
E has CM (i.e., End(E) is an order in an imaginary quadratic field), then one can
write down a formula for the number of points on E modulo p, in terms of E and
p (see [15, 16, 28, 25, 27]). An example that goes back to Gauss is the following.

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



Primality proving and elliptic curves 3

If E is y2 = x3 − x, then End(E) ∼= Z[i], where i =
√
−1 can be viewed as an

endomorphism of E via (x, y) 7→ (−x, iy). If p is an odd prime, then

|E(Fp)| =

{
p+ 1 if p ≡ 3 (mod 4),

p+ 1− 2u if p ≡ 1 (mod 4),

where u is obtained by factoring p = ππ̄ in Z[i] in such a way that π = u+ vi ≡ 1
(mod 2 + 2i). The two cases are the cases of supersingular and ordinary reduction,
respectively.

4. Primality tests for Fermat and Mersenne numbers

We next present two proofs in parallel, in order to show the relationship between
a classical primality test and the elliptic curve tests we are concerned with in this
paper. The classical result is Pépin’s test for primality of Fermat numbers, while the
elliptic curve result is Gross’s test for primality of Mersenne numbers. We present
proofs designed to highlight the parallel structure, with arithmetic in the group of
points on an elliptic curve over a finite field taking the place of arithmetic in the
group (Z/nZ)×.

Let Fk := 22
k

+1, the k-th Fermat number. It is known that the first five Fermat
numbers F0, . . . , F4 are prime, while F5, . . . , F32 and many others are composite.
The largest that is currently known to be composite is F2,543,548. Complete factor-
izations of Fk are only known for k ≤ 11. No factors of F24 are currently known.
Using the prime number theorem, one can obtain a heuristic argument that there
are only finitely many Fermat primes.

Let Mk := 2k − 1, the k-th Mersenne number. If Mk is prime then k is prime.
There are 48 Mersenne numbers that are known to be prime. The largest one,
M57,885,161, is also the largest known prime number. A heuristic argument using the
prime number theorem gives the conjecture that there are infinitely many Mersenne
primes.

Theorem 2 (Pépin, 1877). Let Fk = 22
k

+ 1. The following are equivalent:

(i) Fk is prime.
(ii) 3(Fk−1)/2 ≡ −1 (mod Fk).

(iii) 3 has order Fk − 1 in (Z/FkZ)×.

Sketch of proof: If Fk is prime, then the group (Z/FkZ)× is cyclic of order

Fk − 1 = 22
k

, and 3 is a generator (since 3 is not a square mod Fk). Thus, 3 has
order Fk − 1, and equivalently 3(Fk−1)/2 ≡ −1 (mod Fk) (the unique element of
order 2 in (Z/FkZ)×).

Conversely, if 3 has order Fk − 1 in (Z/FkZ)×, then the subgroup generated by
3 is, in a sense, too big to fail to have Fk prime. This is Lucas’ test with n = Fk,
a = 3, and p = 2.

Theorem 3 (Gross, 2005 [17]). Let Mk = 2k − 1, with odd k ≥ 3. Let E denote
the elliptic curve y2 = x3 − 12x and let P = (−2, 4) ∈ E(Q). The following are
equivalent:

(i) Mk is prime.
(ii) (Mk+1

2 )P ≡ (0, 0) (mod Mk).
(iii) P has order Mk + 1 in E(Z/MkZ).
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Sketch of proof: If Mk is prime, then (using the theory of elliptic curves
over finite fields) one can show that E mod Mk is supersingular, and E(Z/MkZ)
is a cyclic group of order Mk + 1 = 2k generated by P . Then (Mk+1

2 )P ≡ (0, 0)
(mod Mk), the unique element of order 2 in E(Z/MkZ).

Conversely, if P mod Mk has order Mk+1 = 2k, then P mod q has that order for
some prime divisor q of Mk. Thus, Mk + 1 ≤ |E(Fq)| ≤ q + 1 + 2

√
q using Hasse’s

bound, so q | Mk ≤ q + 2
√
q. It follows that q = Mk is prime. This is basically

an analogue for elliptic curves of Lucas’ test, with n = Mk, a = P , and p = 2, and
with Mk +1 serving the role played by n−1 in Lucas’ test. Here, it is the subgroup
generated by P that is too big for Mk to fail to be prime.

5. Examples with CM by Q(
√
−1) and Q(

√
−3)

Denomme and Savin [11], extending the work of Gross, gave an elliptic curve
analogue of the Pépin test for Fermat numbers, and also gave primality tests for
other sequences.

Theorem 4 (Denomme-Savin, 2008 [11]). Let E denote the elliptic curve 30y2 =
x3 − x, which has CM by Z[i], let P = (5, 2) ∈ E(Q), and for k ≥ 2 let fk :=

22
k−1

+ i ∈ Z[i] and Fk = fkf̄k = 22
k

+ 1. Then the following are equivalent:

(i) Fk is prime.

(ii) (1 + i)2
k−1P ≡ (0, 0) (mod fk).

The proof uses that whenever Fk is prime, then P generates the cyclic Z[i]-module

E(Z[i]/(fk)) ∼= Z[i]/((1 + i)2
k

).

Conversely, if Fk is composite and p <
√
Fk is a prime divisor of Fk, one applies

the Hasse bound to E(Z/pZ) = E(Z[i]/(π)) where p = ππ̄. If (ii) holds then the
point P mod π generates too large a Z[i]-submodule of E(Z[i]/(π)) for E mod π to
satisfy the Hasse bound.

Theorem 5 (Denomme-Savin, 2008 [11]). Let E denote the elliptic curve y2 =

30x3 + 1
4 , which has CM by Z[ρ] where ρ = −1+

√
−3

2 , let P = ( 1
2 , 2) ∈ E(Q), and

for ` ≥ 2 let k` := −1− 32
`−1

ρ ∈ Z[ρ] and K` := k`k` = 32
` − 32

`−1

+ 1. Then the
following are equivalent:

(i) K` is prime.

(ii) (
√
−3)2

`−1P ≡ (0,± 1
2 ) (mod k`).

Here, if K` is prime, then P generates the cyclic Z[ρ]-module

E(Z[ρ]/(k`)) ∼= Z[ρ]/((
√
−3)2

`

).

Theorem 6 (Denomme-Savin, 2008 [11]). Let E denote the elliptic curve 7y2 =
x3 + 1, which has CM by Z[ρ], let P = (3, 2) ∈ E(Q), and for k ≥ 2 let jk :=

ρ + 22
k−1

ρ̄ ∈ Z[ρ] and Jk := jk j̄k = 22
k − 22

k−1

+ 1. Then the following are
equivalent:

(i) Jk is prime.

(ii) 22
k−1−1P ≡ (−ρr, 0) (mod jk) with r ∈ {0, 1, 2}.

If Jk is prime, then the point P generates the cyclic Z[ρ]-module

E(Z[ρ]/(jk)) ∼= Z[ρ]/(22
k−1

).
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Using similar methods, Yu Tsumura (2011) [29] obtained similar results for the
sequence 2p ± 2(p+1)/2 + 1 using elliptic curves with CM by Q(i). Alexander Gure-
vich and Boris Kunyavskĭı (2009, 2012) [18, 19] extended the framework of Gross
and Denomme-Savin to give deterministic primality tests for numbers of the form
g222n−1−g2n+1 and g222n−g2n+1. They also considered other algebraic groups,
as did Masanari Kida (2004) [20]. The CM elliptic curves in all these tests have
CM by Q(i) or Q(

√
−3).

As pointed out by Pomerance (see [24]), the numbers considered by Gross,
Denomme-Savin, etc. can all be dealt with using classical p − 1 or p + 1 primality
tests à la Lucas and Pépin that are more efficient and do not involve elliptic curves.

6. CM elliptic curves over Q

In joint work with Alex Abatzoglou, Drew Sutherland, and Angela Wong, we
extend the above work to a general framework. We implement our results to test
primality even in sequences for which classical p± 1 primality tests do not apply.

Using CM elliptic curves defined over Q, the methods of Gross and Denomme-
Savin extend nicely only for elliptic curves with CM by Q(i), Q(

√
−2), Q(

√
−3), or

Q(
√
−7). The reason that this is so is briefly explained in §7.2 below (see [5] for

details). We also explain why CM by Q(
√
−7) is the only case not amenable to p±1

primality tests. In [3] we implement a primality testing algorithm that uses elliptic
curves with CM by Q(

√
−7), for a sequence that does not succumb to classical p±1

tests; in this section we state the theorem on which our algorithm relies.

Let α = 1+
√
−7

2 , jk = 1 + 2αk, and Jk = jk j̄k = 1 + 2(αk + αk) + 2k+2 ∈ N.
An equivalent definition of the sequence Jk is to let Jk = 2k+2 + 1 + Tk where
T0 = 4, T1 = 2, and Tk+1 = Tk − 2Tk−1. Heuristics using the prime number
theorem imply the conjecture that infinitely many Jk are prime. Theorem 8 below
gives primality/compositeness tests for the sequence Jk.

Remarks 7. (a) Jk is divisible by 3 if and only if k ≡ 0 (mod 8).
(b) Jk is divisible by 5 if and only if k ≡ 6 (mod 24).

For 0 6= a ∈ C, let Ea denote the elliptic curve y2 = x3 − 35a2x − 98a3. Given
k > 1 with k 6≡ 0 (mod 8) and k 6≡ 6 (mod 24), choose a and P ∈ Ea(Q) as follows:

k a P

k ≡ 0 or 2 (mod 3) −1 (1, 8)
k ≡ 4, 7, 13, 22 (mod 24) −5 (15, 50)
k ≡ 10 (mod 24) −6 (21, 63)
k ≡ 1, 19, 49, 67 (mod 72) −17 (81, 440)
k ≡ 25, 43 (mod 72) −111 (−633, 12384)

Theorem 8 (Abatzoglou-Silverberg-Sutherland-Wong, 2012). Suppose k ≥ 6, k 6≡
0 (mod 8), k 6≡ 6 (mod 24), and a and P are as in the table. Then the following
are equivalent:

(i) Jk is prime.

(ii) 2kP ≡
(

(−7+
√
−7)a

2 , 0
)

in Ea mod jk.

(iii) P has order 2k+1 in Ea(Z/JkZ).

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX
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If Jk is prime, then as Z[α]-modules we have

Ea(Z[α]/(jk)) ∼= Z[α]/(2αk)

∼= Z[α]/(α)× Z[α]/(αk+1).

Thus as groups we have Ea(Z/JkZ) = Ea(Z[α]/(jk)) ∼= Z/2Z× Z/2k+1Z.

7. A general framework

In [5] we give a general framework that extends the above results to arbitrary
CM elliptic curves. We state the main result in Theorem 11 below. We follow that
with a justification for why CM by Q(

√
−7) and Q(

√
−15) are the only cases of

elliptic curves with CM by fields of class number one or two that do not succumb to
p±1 tests and to which the methods of Gross and Denomme-Savin extend “nicely”.

If M is a number field, let OM denote its ring of integers.

7.1. General Result.

Definition 9. Suppose E is an elliptic curve over a number field M and J is an
ideal of OM that is prime to disc(E). We say that P ∈ E(M) is strongly nonzero
mod J if one can express P = (x : y : z) ∈ E(OM ) in such a way that the ideals (z)
and J are relatively prime. We say that P is nonzero mod J , and write P 6≡ OE
mod J , if one can express P = (x : y : z) ∈ E(OM ) in such a way that z 6∈ J ;
otherwise we say P is zero mod J and write P ≡ OE mod J .

Remark 10. (a) A point P is strongly nonzero mod J if and only if P is nonzero
mod λ for every prime ideal λ | J in OM .

(b) In particular, if J is prime, then P is strongly nonzero mod J if and only if
P 6≡ OE mod J .

Suppose:

(i) K is an imaginary quadratic field with Hilbert class field H,
(ii) α1, . . . , αs, γ ∈ OK − {0}; k = (k1, . . . ks) ∈ Ns,

(iii) πk := 1 + γαk11 · · ·αkss ∈ OK ,
(iv) pk is an ideal of OH such that NH/K(pk) = (πk),
(v) Fk := NH/Q(pk) = NK/Q(πk),
(vi) E is an elliptic curve over H with CM by OK and discriminant prime to Fk.
(vii) Fk > 16 NK/Q(γ2),

(viii) Lk ∈ Z+ is defined by LkZ = (πk−1
γ ) ∩ Z.

Note that if Fk is prime, then pk is a prime ideal of OH . If pk is a prime ideal,
then Fk is a prime power pr with r | [H : Q] = 2h. Since testing primality of a
number that is known to be a prime power is not difficult, the next result can be
viewed as essentially a primality test for Fk.

Theorem 11. Retain the notation and assumptions above. Suppose that whenever
the ideal pk is prime, then:

(a) the Frobenius endomorphism of E over the field OH/pk is πk, and
(b) for every prime ideal λ of OK that divides (α1 · · ·αs) we have P mod pk 6∈

λE(OH/pk).

Then the following are equivalent:

(i) pk is prime.
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(ii) (πk − 1)P ≡ OE mod pk, and for every prime ideal λ of OK that divides

(α1 · · ·αs) there is a point in (πk−1)
λ P that is strongly nonzero mod pk.

Suppose further that α1 · · ·αs is not divisible by any rational prime that splits in
K, and that Fk > 16 NK/Q(γ

∏
λ λ)2 where λ runs over the prime ideals of OK that

divide (α1 · · ·αs) and are ramified in K/Q. Then the following are equivalent:

(i) pk is prime.
(ii) LkγP ≡ OE mod pk, and Lk

p γP is strongly nonzero mod pk for every prime

p | NK/Q(α1 · · ·αs).

Well known results say that if E/Q is an elliptic curve, P ∈ E(Q), and P mod N
has sufficiently large order (in terms of N), then N is prime. This can easily be
generalized to the above setting, to give one direction of the proof. For the converse
direction, if pk is prime and the Frobenius endomorphism of E mod pk is πk, then

E(OH/pk) ∼= OK/(πk − 1) = OK/(γαk11 · · ·αkss )

so (πk − 1)P ≡ OE mod pk as desired. If P mod pk 6∈ λE(OH/pk), then (πk−1)
λ P 6≡

OE mod pk as desired. The dependence on γ is hidden in the assumption that Fk
is sufficiently large compared to γ. Full details are given in [5].

In our algorithms in [3, 30, 5, 1], the work is in finding a large nice set S such
that whenever k ∈ S and pk is prime, then:

(a) the Frobenius endomorphism of E mod pk is πk, and
(b) P mod pk 6∈ λE(OH/pk) for all prime ideals λ | πk−1

γ (i.e., for all λ |
∏
αi).

Finding the k’s that satisfy (a) is doable. More problematic is (b).

7.2. Constraints on K. For any given k, one could check whether P mod pk 6∈
λE(OH/pk) for all prime ideals λ dividing

∏
αi. But the goal is to determine

in advance the “good” k. This is what allows us to obtain efficient deterministic
primality tests. However, finding a nice description of the k for which P mod
pk 6∈ λE(OH/pk) is constrained by the following. Suppose:

• f̂ : E → E′ := E/E[λ̄] is the natural isogeny,
• f : E′ → E is the dual isogeny,
• F := H(E[λ]),
• L := F (f−1(P )).

We prove the next result in [5].

Theorem 12. The following are equivalent:

(i) P mod pk 6∈ λE(OH/pk).
(ii) pk splits completely in F and pk does not split completely in L.

When the extension L/H is abelian, class field theory tells us that the splitting
behavior in L and F of a prime of OH is determined by congruence conditions. If
L/H is not abelian, we do not know a good way to characterize the prime ideals of
OH that split completely in F but not in L. So we insist that L/H be abelian. We
insist that L 6= F , since pk splits completely in F but not L. In [5] we show that if
L/H is abelian and L 6= F then F = H, and we prove:

Proposition 13. If F = H, E is defined over Q(j(E)), and p is the rational prime
below λ, then either:

(i) p = 2, and 2 splits in K, or
(ii) p = 2 or 3, and p ramifies in K, or
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(iii) K = Q(
√
−3) and λ = (2).

In the latter two cases, λ = λ̄ so classical p± 1 primality tests apply.
It follows that if E is defined over Q and one wants a simple description of

congruence classes for the “good” k, then one is restricted to:

(i) K = Q(i) with each αi = 1 + i, or
(ii) K = Q(

√
−2) with each αi =

√
−2, or

(iii) K = Q(
√
−3) with each αi = 2 or

√
−3, or

(iv) K = Q(
√
−7) with each αi = (1±

√
−7)/2.

If we are only interested in cases where λ 6= λ̄ in order to obtain sequences to
which p±1 tests do not apply, and we take (for simplicity) E defined over Q(j(E)),
that restricts us to

K = Q(
√
−7) with αi = (1±

√
−7)/2

if K has class number one (which is the case we handle in [3] and in §6 above), and

K = Q(
√
−15) with αi = (1±

√
−15)/2

if K has class number two (which is the case we handle in [5] and in §8 below).

8. Example with E not defined over Q

Theorem 14 (Abatzoglou-Silverberg-Sutherland-Wong, 2012 [5]). Let

α = 1+
√
−15
2 ,

let E be the elliptic curve y2 = x3 + a4x+ a6 where

a4 = −3234(16195646845− 7242913457
√

5),

a6 = 144(5395199151946361− 2412806411180256
√

5)

(with CM by Z[α]), and let

P = (0,−142(51938421− 23227568
√

5)) ∈ E(Q(
√

5)).

Let fk = 1 − 4αk and Fk = fkf̄k = 1 − 4(αk + ᾱk) + 4k+2 ∈ N. Let β =
√
5+
√
−3

2

and pk = 1 + 2βk. Let

S := {k ∈ N : k ≡ 9, 19, 27, 31, 39, 45, 59, 63, 67, 81, 85, 105, 123, 129,

133, 141, 159, 169, 173, 181, 183, 201, 211, 221, 223, 225, 229, 237 (mod 240)}.

If k ∈ S, then the following are equivalent:

(i) Fk is prime.

(ii) 22k+1P ≡ (7(377709
√

5− 844583), 0) mod pk.
(iii) 22k+2P ≡ OE mod pk and 22k+1P is strongly nonzero mod (pk).
(iv) 4αkP ≡ OE mod pk and 8αk−1P is strongly nonzero mod (pk).

This follows from Theorem 11. Let H = Q(
√
−3,
√

5), the Hilbert class field of
K. If k is odd then fk = NH/K(pk) and Fk = NH/Q(pk). Let λ = (2, α), the ideal

of Z[α] generated by 2 and α. Then (2) = λλ. We can show that if k ∈ S and pk is
prime, then as Z[α]-modules we have

E(OH/(pk)) ∼= Z[α]/(4αk)

∼= Z[α]/(λ
2
)× Z[α]/(λ2k+2)

Advances in Mathematics of Communications Volume X, No. X (200X), X–XX



Primality proving and elliptic curves 9

and P mod pk 6∈ λE(OH/(pk)). (When Fk is prime, we have E(OH/(pk)) ∼=
Z/4Z× Z/4k+1Z as groups.)

Remarks 15. (a) Fk is divisible by 3 if and only if k is even.
(b) Fk is divisible by 5 if and only if k ≡ 2 (mod 4).
(c) Fk is divisible by 7 if and only if k ≡ 16 (mod 24).
(d) Fk is divisible by 11 if and only if k ≡ 48 (mod 60).
(e) Fk is divisible by 31 if and only if k ≡ 6 or 12 (mod 15).
(f) Fk is divisible by 61 if and only if k ≡ 1 (mod 30).

9. Large Primes

We implemented Theorem 8 for all k ≤ 1.2 million. In that range there are
exactly 79 prime Jk’s. The largest, J1,111,930, has 334,725 decimal digits [2].

We implemented Theorem 14 for all k ≤ one million. In that range there are
exactly 9 prime Fk’s. The largest, F696,123, has 419,110 decimal digits [4], and is the
largest proven prime p for which there is no known significant partial factorization
of p− 1 or p+ 1.
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