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Summary. The metabolic networks are very well characterized for a large set of
organisms, a unique case in within thelarge-scale biological networks. For this reason
they provide a a very interesting framework for the construction of analytically
tractable statistical mechanics models. In this paper we introduce a solvable model
for the distribution of fluxes in the metabolic network. We show that the effect of
the topology on the distribution of fluxes is to allow for large fluctuations of their
values, a fact that should have implications on the robustness of the system.

1 Introduction

Dynamical models on networks have attracted a large interest because of the
non-trivial effects of network structure [1, 2, 3, 4] on the dynamics defined
on them [5]. Important examples of the dynamics on networks with relevant
applications are the Ising model [6, 7, 8], the spreading of a disease [9] and the
synchronization models [10, 11]. In this paper introduce a solvable model for
the distribution of fluxes in the metabolic network. While motivations come
from the study of the metabolic network, the problem is quite general and
can be applied to supply networks and to many other linear problems [12] of
constraint satisfaction on continuous variables on a network.

Metabolic networks describe the stoichiometric relations between sub-
strates in biochemical reactions inside the cell. They have been mapped [13]
for a large number of organisms in the three different domains of life (archea,
bacteria and eukaryotes). They provide the biomass needed for cell duplica-
tion, and the rate of biomass production (growth rate) can be identified with
a fitness of the cell. The structure of the metabolic network can be repre-
sented as a factor graph with nodes that are chemical reactions and function
nodes that are chemical metabolites. The projection of the network on the
metabolites has a power-law degree distribution and a hierarchical structure
[14, 15, 16]. To each factor node, which describes a chemical reactions, it is
associated an enzyme which itself is produced by a regulated gene network.
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Important aspect of the functioning of these very complex systems include
dynamical considerations. Flux-balance-analysis [17, 18, 19] make a major
semplification in the problem. In fact it considers only the steady state of the
dynamics and includes all the dynamical terms inside the definition of the flux
of a reaction. For this reason it was able to predict with sufficient accuracy
the fluxes of the reactions in the graph for a given environmentand it con-
situte a real break-through in the field. Special interest has been addressed
to the perturbation of the distribution of the fluxes after knockout of a gene
or in different environments [20, 21]. The problem of identifying the flux dis-
tribution in Escherichia coli was studied experimentally [22] and by means
of Flux-Balance-Analysis [23] . A fat tail in their distribution with different
power-law exponents α < 2 was found.

Metabolic networks provide a very interesting framework for the construc-
tion of analytically tractable models using tools of statistical mechanics of
disordered systems. In this paper we will discuss the impact of the network
structure (degree distributions) on the steady state distribution distribution
of the fluxes. We shall consider random networks with the same degree dis-
tribution as the real ones i.e. networks in the the hidden-variable ensemble
[24, 25, 26] with same expected degree distribution as the metabolic factor
graphs. Formally the problem is resolved with replica calculations on diluted
networks [7] extended to the case of continuous variables. Due the simplicity
of the Hamiltonian the problem is solved with an expansion of the order pa-
rameter in terms of Gaussians. The problem shares some similarity with other
problems in statistical mechanics of disordered systems [28, 29]. In a recent
paper [30] a similar problem was considered in the framework of a different
model where the steady state of the fluxes is not a priori considered and the
positive fluxes don’t have any upper limit.

2 The model

The metabolic network has a bow tie structure [16] : the metabolites are
divided into: (i) input metabolites which are provided by the environment, (ii)
the output metabolites which provide the biomass and (iii) the intermediate
metabolites. The stochiometric matrix is given by ((ξµ,i)) where µ = 1, . . . ,M
indicates the metabolite and i = 1, . . . , N the reaction and the sign of ξµ,i
indicates if the metabolite µ is an input or output metabolite of the reaction
i. As in the Flux-Balance-Analysis method we assume that each intermediate
metabolite has a concentration cµ which is consumed/produced by a reaction
i at a rate fi. At steady state, we have

dcµ
dt

=
∑

i

ξµ,ifi = aµ = 0 (1)

where fi is the flux of the metabolic reaction i. For the metabolites present
in the environment and the metabolites giving rise to the biomass production
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we can fix the incoming flux given by

dcµ
dt

=
∑

i

ξµ,ifi = aµin/out. (2)

The fluxes in Eqs.(1-2) can vary inside a fixed volume Ω. We assume for sim-
plicity that this volume is an hypercube Ω = [0, 2L]N . Changing the variables
fi in the variables si = fi−L and the equations that the fluxes si must satisfy
are given by

N
∑

i=1

ξµ,isi = gµ for µ = 1, . . .M. (3)

where gµ = aµ − L
∑

i ξµ,i. The volume of solutions V , given the constraints
(3), is proportional to the quantity

Ṽ =

∫ L

0

dL′

∫ N
∏

i=1

dsiδ(
∑

i

ξµ,isi − gµ)δ(
∑

j

qjs
2
j − 〈qi〉NL′2). (4)

where we have used the heterogeneous spherical constraints

1

〈qi〉N

∑

i

qis
2
i = L′2 (5)

and integrated over L′ in the interval [0, L] in order to allow analytical treat-
ment of the problem.

3 Replica method

We assume that the support of our stochiometric matrix is a random network
with given degree distribution, i.e. a realization of the random hidden-variable
model [24, 25, 26]. In particular we fix the expected degree distribution of the
nodes of the factor graphs to be qi for the reaction node i = 1, . . .N and qµ for
the metabolite nodes µ = 1, . . . ,M and we assume that the matrix elements
ξµ,i are distributed following

P (ξµ,i) =
qiqµ

2〈qi〉N
[δ(ξµ,i − 1) + δ(ξµ,i + 1)] +

(

1−
qiqµ
〈qi〉N

)

δ(ξµ,i), (6)

where δ() indicates the Kronecker delta. Note that in (6) we have assumed
that the elements of the stochiometric matrix have values 0,±1 with a random
sign and that the variables qi qµ are nothing else than the hidden-variables
associated with metabolite µ of the reaction i of the hidden-variable network
ensemble [24, 25, 26].

In order to evaluate the steady state distribution of the fluxes in a typical
network realization we replicate the realizations of the sai and we compute
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〈log(V )〉 over the different network realizations. To calculate this average we

use the replica trick S = 〈log(Z)〉 = limn→0
〈Ṽ n〉−1

n . The averaged unormal-

ized volume of solutions < Ṽ n > can be expressed as

< Ṽ n >=

∫ L

0

dL′

∫

∏

a

dωa

∫

∏

a,i

dsi,a

∫

∏

a,µ

dλµ,a exp

[

−igµ
∑

a

λµ,a

]

exp



−
∑

i,µ

qiqµ
〈qi〉N

(1− cosλµ· si) + i
∑

a

ωa





∑

j

qjs
2
j,a − L′2〈qi〉N







 . (7)

Using the techniques coming from the field of diluted systems, we introduce
the order parameters [31, 7]

c(λ) =
1

〈qi〉N

∑

µ

qµ
∏

a

δ(λa
µ − λa)

c(s) =
1

〈qi〉N

∑

i

qi
∏

a

δ(sai − sa) (8)

getting for the volume

〈

Ṽ n
〉

=

∫

Dc(λ)

∫

Dĉ(λ)

∫

Dc(s)

∫

Dĉ(s) exp[nNΣ(ĉ(λ), c(λ), ĉ(s), c(s))]

with

nΣ =

∫

dλiĉ(λ)c(λ) +

∫

dsiĉ(s)c(s)−

∫

dλ

∫

dsc(λ)c(s)(1− cos(λ· s)) +

+
1

〈qi〉N

∑

µ

log

∫

dλ exp[−igµ
∑

a

λa − iqµĉ(λ)]− i
∑

a

ωaL′2

+
1

〈qi〉N

∑

i

log

∫

ds exp[−iqiĉ(s) + i
∑

a

qiωas
2
a].

The saddle point equations for evaluating Σ are given by

iĉ(λ) =

∫

dsc(s)(1 − cos(λ· s))

iĉ(s) =

∫

dλc(λ)(1 − cos(λ· s))

c(λ) =
1

〈qi〉N

∑

µ

qµ
exp [−igµ

∑

a λa − iqµĉ(λ)]
∫
∏

a dλ
′
a exp [−igµ

∑

a λ
′
a − iqµĉ(λ′)]

c(s) =
1

〈qi〉N

∑

i

qi
exp

[

−iqiĉ(s) + i
∑

a ωas
2
a

]

∫

ds′ exp
[

−iqiĉ(s′) + i
∑

a ωa(s′)
2

a

]

L2 =
1

〈qi〉N

∑

i

qi

∫

dss2a exp[−iqiĉ(s) + i
∑

a qiω
as2a]

∫

ds′ exp[−iqiĉ(s) + i
∑

a qiωas2a]
. (9)
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We assume that the solution of the saddle point equation is replica symmetric,
i.e. the distribution of the variables za = λa, sa conditioned to a vector field
x are identically equal distributed,

c(z) =

∫

dxP (x)

n
∏

a=1

φ(za|x) (10)

where φ(z|x) are distribution functions of z and P (x) is a probability dis-
tribution of the vector field x. For the function φ(z|x) the exponential form
is usually assumed in Ising models. In our continuous variable case for our
quadratic problem, we assume instead that φ(z|x) has a Gaussian form. This
assumption could be in general considered as an approximate solution of the
equations (9). Explicitly we assume that the functions c(λ) and c(s) can be
expressed as the following,

c(λ) =

∫

dmλdhλP (hλ,mλ)
∏

a

exp

[

−
1

2
hλλ

2
a +

1

2

m2
λ

hλ

]

cos[mλλa]

√

hλ

2π

c(s) =

∫

dmsdhsP (hs,ms)
∏

a

exp

[

−
1

2
hss

2
a −

1

2

m2
s

hs

]

cosh[mss
a]

√

hs

2π

ωa = iω (11)

from which we derive for ĉ(s) and ĉ(λ)

ĉ(s) = −i

(

1−

∫

dmλdhλP (hλ,mλ)
∏

a

exp

[

−
1

2hλ
s2a

]

cosh[mλsa]/hλ

)

ĉ(λ) = −i

(

1−

∫

dmsdhsP (hs,ms)
∏

a

exp

[

−
1

2hs
λ2
a

]

cos[msλ
a/hs]

)

.(12)

The saddle point equations (9), taking into account the expression for the
order parameters (11)(12) closes and can be written as recursive equation for
P (hλ,mλ) and P (hs,ms), i.e.

P (hλ,mλ) =
1

〈qi〉N

∑

µ

qµ
∑

k

e−qµqkµ
1

k!

∫

...

∫

∏

i

dhi
sdm

i
s

∏

i

P (hi
s,m

i
s)

δ

(

hλ −

k
∑

i=1

1

hi
s

)

1

2k

∑

{ni}

δ

(

mλ −
∑

i

(−1)ni
mi

s

hi
s

− gµ

)

P (hs,ms) =
1

〈qi〉N

∑

i

qie
−qi
∑

k

qki
1

k!

∫

...

∫

∏

i

dhi
λdm

i
λ

∏

i

P (hi
λ,m

i
λ)

δ

(

hs −

k
∑

i=1

1

hi
λ

− 2ωqi

)

1

2k

∑

{ni}

δ

(

ms −
∑

i

(−1)ni
mi

λ

hi
λ

)

(13)
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L2 =
1

〈qi〉N

∑

i

qie−qi
∑

k

qki
k!

∑

si

1

2k

∫

...

∫

∏

i

dhi
λdm

i
λ

∏

i

P (hi
λ,m

i
λ)

(H +M2)

δ

(

H −

k
∑

i=1

1

hi
λ

− 2ωqi

)

1

2k

∑

{ni}

δ

(

M −
∑

i

(−1)ni
mi

λ

hi
λ

)

.

Finally S can be calculated at the saddle point as

S = −

∫

dhsdmsdhλdmλP (hs,ms)P (hλ,mλ)

[

−
(ms/hs)

2

2(hλ + 1/hs)
+

(mλ/hλ)
2

hs + 1/hλ
+

+ log cosh

(

msmλ

hshλ + 1

)]

+ (14)

+
1

〈qi〉N

∑

µ

∑

k

e−qµqkµ
1

k!

∫

∏

i

dhi
sdm

i
sP (hi

s,m
i
s)

1

2k+2

[

g2µ +
∑

i(ms,i/hs,i)
2

∑

j
1

hj
s

]

+
1

〈qi〉N

∑

i

∑

k

e−qi qki
1

k!

∫

∏

i

dhi
λdm

i
λP (hi

λ,m
i
λ)

1

2k+1

[

∑

i(mλ,i/hλ,i)
2

∑

i
1

hλ,i
+ 2ωqi

]

4 Population Dynamics

We solved the equations (13) by a population-dynamical algorithm. We rep-
resent the effective field distributions (hs,ms) (hλ,mλ) by a large population
of P ≫ 1 fields. Running the algorithm the population is first initialized ran-
domly and then equations (13) are used to iteratively replace the fields inside
the population until convergence is reached. Instead of fixing ω we introduce
a further variable Λ fixing the value of the average flux in the network. The
action of the algorithm is summarized in the following pseudo code

algorithm PopDyn({h1
s,m

1
s, h

2
s,m

2
s, . . . , h

P
s ,m

P
s };

{h1
λ,m

1
λ, h

2
λ,m

2
λ, . . . , h

P
λ ,m

P
λ }, ω)

begin

do

• choose a metabolite i0 with probability qiP (qi);

• draw d from a Poisson distribution (e−qiqki /k!)

• select d indexes i1, . . . id ∈ {1, . . .M}

• draw a d-dimensional vector n = {ni} of random numbers ni = 0, 1



Viable flux distribution in metabolic networks 7

hi0
s : =

d
∑

l=1

1

hil
λ

+ 2ωqi;

mi0
s : =

d
∑

l=1

(−1)ni
mil

λ

hil
λ

;

L2 : =

(

1−
1

〈qi〉N

)

L2 +
1

〈qi〉N

hi0
s + (mi0

s )2

(hi0
s )2

;

ω : =
L2

Λ2
(15)

• choose a random reaction µ0 with probability qµP (qµ)

• draw d form a Poisson distribution (e−qµqkµ/k!)

• select d indexes i1, . . . id ∈ {1, . . .M}

• draw a d-dimensional vector n = {ni} of random numbers ni = 0, 1

hµ0

λ : =

d
∑

l=1

1

hil
s

+ 2ω;

mµ0

λ : =

d
∑

l=1

(−1)ni
mil

s

hil
s

+ gµ0 (16)

while (not converged)
return

end

We run the population dynamics algorithm and we measure the distribu-
tion of the average fluxes ms/hs, the distribution of the fields hs for different
values of Λ. We consider as the underline network a network with the real
degree distribution of the metabolic factor graph of Saccharomyces cerevisiae
and on a network with the same number of metabolites and reactions as the
real Saccahromyces cerevisiae network but with a fixed connectivity for each
metabolite and reaction node. We consider a population of P = 3000 pair
of fields (hs,ms). A random fraction of 5% of the nodes is chosen as an in-
put/output metabolite. The values of gµ are chosen randomly depending if the
metabolite µ is an intermediate metabolite or an input/output metabolite.

For the input/output metabolites we assume that gµ is a random number
uniformly distributed in the interval [−100Λ, 100Λ] mimicking high rate of
production/consumption. For intermediate metabolites we choose gµ with a
uniform distribution in the interval [−Λ,Λ].
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The distribution of ms/hs as a function of Λ are plotted in figure 1(a) for
the real metabolic network of Saccharomyces cerevisiae and in figure 1(b) for
the random network with two delta function degree distribution (P (qi) = 〈qi〉,
P (qµ) = 〈qi〉N/M). We observe that the average fluxes distribution ms/hs

in Saccharomyces cerevisiae for low Λ has a fatter tail for the real degree
distribution than for the two delta peak degree distribution.

On the other side the distribution of hs is very different in the real and
in the random case (see figure 1(c)-(d)). In particular for the real metabolic
network degree distribution is broader allowing with higher probability for
smaller value of hs than in the case of a two delta peak degree distribution.
Therefore we have shown that the real topology of the networks has as a major
consequence in allowing larger fluctuations of the fluxes in the network.
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Fig. 1. Distribution of the fields ms/hs and of the fields hs for a the real degree
distribution of the metabolic network of Saccharomyces cerevisiae (graphs (a) and
(c))and for a graph with the same number of metabolites and reactions and the
same number of nodes that the real metabolic network of Saccharomyces cerevisiae
but with two delta peaks for the degree distribution (graphs (b) and (d)).

5 Conclusions

In this paper we have proposed a statistical mechanics approach for the study
of flux-balance-analysis in a particular ensemble of metabolic networks. We
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have studied the impact of the topology of the networks on the distribution
of the fluxes. We observe that the role of the real topological structure is to
allow for larger variation of the fluxes, a fact that should have implications
for the robustness of the system. In particular we found that the topology of
real metabolites has an impact on the fat tail of the ms/hs distribution and
on the small h field of the network, Further work is under consideration for
the implementation of a message-passing algorithm able to predict the fluxes
taking into account the full complexity of the real metabolic network.
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