Research article Special Issues

Structure-preserving scheme for one dimension and two dimension fractional KGS equations

  • Received: 30 October 2022 Revised: 07 December 2022 Accepted: 21 December 2022 Published: 13 January 2023
  • In the paper, we study structure-preserving scheme to solve general fractional Klein-Gordon-Schrödinger equations, including one dimension case and two dimension case. First, the high central difference scheme and Crank-Nicolson scheme are used to one dimension fractional Klein-Gordon-Schrödinger equations. We show that the arising scheme is uniquely solvable, and approximate solutions converge to the exact solution at the rate $ O(\tau^2+h^4) $. Moreover, we prove that the resulting scheme can preserve the mass and energy conservation laws. Second, we show Crank-Nicolson scheme for two dimension fractional Klein-Gordon-Schrödinger equations, and the proposed scheme preserves the mass and energy conservation laws in discrete formulations. However, the obtained discrete system is nonlinear system. Then, we show a equivalent form of fractional Klein-Gordon-Schrödinger equations by introducing some new auxiliary variables. The new system is discretized by the high central difference scheme and scalar auxiliary variable scheme, and a linear discrete system is obtained, which can preserve the energy conservation law. Finally, the numerical experiments including one dimension and two dimension fractional Klein-Gordon-Schrödinger systems are given to verify the correctness of theoretical results.

    Citation: Junjie Wang, Yaping Zhang, Liangliang Zhai. Structure-preserving scheme for one dimension and two dimension fractional KGS equations[J]. Networks and Heterogeneous Media, 2023, 18(1): 463-493. doi: 10.3934/nhm.2023019

    Related Papers:

  • In the paper, we study structure-preserving scheme to solve general fractional Klein-Gordon-Schrödinger equations, including one dimension case and two dimension case. First, the high central difference scheme and Crank-Nicolson scheme are used to one dimension fractional Klein-Gordon-Schrödinger equations. We show that the arising scheme is uniquely solvable, and approximate solutions converge to the exact solution at the rate $ O(\tau^2+h^4) $. Moreover, we prove that the resulting scheme can preserve the mass and energy conservation laws. Second, we show Crank-Nicolson scheme for two dimension fractional Klein-Gordon-Schrödinger equations, and the proposed scheme preserves the mass and energy conservation laws in discrete formulations. However, the obtained discrete system is nonlinear system. Then, we show a equivalent form of fractional Klein-Gordon-Schrödinger equations by introducing some new auxiliary variables. The new system is discretized by the high central difference scheme and scalar auxiliary variable scheme, and a linear discrete system is obtained, which can preserve the energy conservation law. Finally, the numerical experiments including one dimension and two dimension fractional Klein-Gordon-Schrödinger systems are given to verify the correctness of theoretical results.



    加载中


    [1] B. Guo, K. Pu, F. Huang, Fractional Partial Differential Equations and their Numerical Solutions, Singapore: World Scientific, 2011.
    [2] Z. Sun, G. Gao, Finite Difference Methods for Fractional-order Differential Equations, Beijing: Science Press, 2015.
    [3] F. Liu, P. Zhuang, Q. Liu, Numerical Methods and Their Applications of Fractional Partial Differential Equations, Beijing: Science Press, 2015.
    [4] C. Pozrikidis, The fractional Laplacian, Baco Raton: CRC Press, 2016.
    [5] J. Xia, S. Han, M. Wang, The exact solitary wave solution for the Klein-Gordon-Schrödinger equations, Appl. Math. Mech., 23 (2002), 52–58. https://doi.org/10.1007/BF02437730 doi: 10.1007/BF02437730
    [6] B. Guo, Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $R^3$, J Differ Equ, 136 (1997), 356–377.
    [7] H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differ. Integral Equ., 17 (2004), 179–214. https://doi.org/10.2752/089279304786991837 doi: 10.2752/089279304786991837
    [8] L. Zhang, Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension, Appl Math Comput, 163 (2005), 343–355. https://doi.org/10.1016/j.amc.2004.02.010 doi: 10.1016/j.amc.2004.02.010
    [9] J. Hong, S. Jiang, C. Li, Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations, J. Comput. Phys., 228 (2009), 3517–3532. https://doi.org/10.1016/j.jcp.2009.02.006 doi: 10.1016/j.jcp.2009.02.006
    [10] T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, J. Math. Anal. Appl., 412 (2014), 155–167. https://doi.org/10.1016/j.jmaa.2013.10.038 doi: 10.1016/j.jmaa.2013.10.038
    [11] W. Bao, L. Yang, Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations, J. Comput. Phys., 225 (2007), 1863–1893. https://doi.org/10.1016/j.jcp.2007.02.018 doi: 10.1016/j.jcp.2007.02.018
    [12] L. Kong, J. Zhang, Y. Cao, Y. Duan, H. Huang, Semi-explicit symplectic partitioned Runge-Kutta Fourier pseudo-spectral scheme for Klein-Gordon-Schrödinger equations, Commun Comput Phys, 181 (2010), 1369–1377.
    [13] C. Huang, G. Guo, D. Huang, Q. Li, Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data, Sci. China Math., 59 (2016), 1345–1366. https://doi.org/10.1007/s11425-016-5133-6 doi: 10.1007/s11425-016-5133-6
    [14] J. Wang, A. Xiao, An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations, Appl Math Comput, 320 (2018), 691–709. https://doi.org/10.1016/j.amc.2017.08.035 doi: 10.1016/j.amc.2017.08.035
    [15] J. Wang, A. Xiao, C. Wang, A conservative difference scheme for space fractional Klein-Gordon-Schrödinger equations with a High-Degree Yukawa Interaction, East Asian J Applied Math, 8 (2018), 715–745.
    [16] J. Wang, A. Xiao, Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations, Appl Math Comput, 350 (2019), 348–365. https://doi.org/10.1016/j.amc.2018.12.046 doi: 10.1016/j.amc.2018.12.046
    [17] J. Wang, Symplectic-preserving Fourier spectral scheme for space fractional Klein-Gordon-Schrödinger equations, Numer Methods Partial Differ Equ, 37 (2021), 1030–1056. https://doi.org/10.1002/num.22565 doi: 10.1002/num.22565
    [18] P. Wang, C. Huang, L. Zhao, Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306 (2016), 231–247. https://doi.org/10.1016/j.cam.2016.04.017 doi: 10.1016/j.cam.2016.04.017
    [19] X. Zhao, Z. Sun, Z. Hao, A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation, SIAM J Sci Comput, 36 (2014), A2865–A2886. https://doi.org/10.1137/140961560 doi: 10.1137/140961560
    [20] A. Xiao, J. Wang, Symplectic scheme for the Schrödinger equation with fractional Laplacian, Appl Numer Math, 146 (2019), 469–487. https://doi.org/10.1016/j.apnum.2019.08.002 doi: 10.1016/j.apnum.2019.08.002
    [21] J. Wang, High-order conservative schemes for the space fractional nonlinear Schrödinger equation, Appl Numer Math, 165 (2021), 248–269. https://doi.org/10.1016/j.apnum.2021.02.017 doi: 10.1016/j.apnum.2021.02.017
    [22] L. Zhai, J. Wang, High-order conservative scheme for the coupled space fractional nonlinear Schrödinger equations, Int. J. Comput. Math., 99 (2022), 607–628. https://doi.org/10.1080/00207160.2021.1925889 doi: 10.1080/00207160.2021.1925889
    [23] M. ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int J Math Math Sci, 2006 (2006), 1–12.
    [24] J. Cui, Z. Sun, H. Wu, A high accurate and conservative difference scheme for the solution of nonlinear schrödinger equation, Numer Math J Chin Univ, 37 (2015), 31–52.
    [25] K. Kirkpatrick, E. Lenzmann, G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Commun. Math. Phys., 317 (2013), 563–591. https://doi.org/10.1007/s00220-012-1621-x doi: 10.1007/s00220-012-1621-x
    [26] D. Hu, W. Cai, Y. Fu, Y. Wang, Fast dissipation-preserving difference scheme for nonlinear generalized wave equations with the integral fractional Laplacian, Commun Nonlinear Sci Numer Simul, 99 (2021), 105786.
    [27] Z. Hao, Z. Zhang, R. Du, Fractional centered difference scheme for high-dimensional integral fractional Laplacian, J. Comput. Phys., 424 (2021), 109851. https://doi.org/10.1016/j.jcp.2020.109851 doi: 10.1016/j.jcp.2020.109851
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(813) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(21)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog